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Even simple mental arithmetic is fraught with cognitive biases. For example, adding
repeated numbers (so-called tie problems, e.g., 2 + 2) not only has a speed and
accuracy advantage over adding different numbers (e.g., 1 + 3) but may also lead to
under-representation of the result relative to a standard value (Charras et al., 2012,
2014). Does the tie advantage merely reflect easier encoding or retrieval compared to
non-ties, or also a distorted result representation? To answer this question, 47 healthy
adults performed two tasks, both of which indicated under-representation of tie results:
In a result-to-position pointing task (Experiment 1) we measured the spatial mapping
of numbers and found a left-bias for tie compared to non-tie problems. In a result-
to-line-length production task (Experiment 2) we measured the underlying magnitude
representation directly and obtained shorter lines for tie- compared to non-tie problems.
These observations suggest that the processing benefit of tie problems comes at the
cost of representational reduction of result meaning. This conclusion is discussed in the
context of a recent model of arithmetic heuristics and biases.

Keywords: AHAB, cognitive bias, mental arithmetic, numerical cognition, operational momentum, SNARC, tie
problems

REPEATING NUMBERS REDUCES RESULTS: EVIDENCE FROM
POINTING AND PRODUCTION

Human cognition is thought to be a pinnacle of evolution, yet on closer inspection it is fraught
with biases (e.g., Tversky and Kahneman, 1974; Evans, 1989; Kahneman, 2012). This is true even
for domains of supposedly rational reasoning such as logic or mathematics. In logical reasoning we
tend to deny the antecedent or affirm the consequent (Wason, 1966). In mathematics, we fail to
correctly solve even simple additions under certain circumstances: Once there is uncertainty in the
expression of arithmetic results, we violate the commutativity axiom (a + b = b + a: Shaki et al.,
2015) or accept larger than the correct outcomes for simple additions (recent reviews in Fischer and
Shaki, 2018; Pinheiro-Chagas et al., 2018). Given the profound importance of rational reasoning for
everyday life we need to better understand the sources of such surprising errors. Here we focus on
a novel violation of the identity axiom for sums s (s1 = s2) where s1 = a + a and s2 = b + c and
a+ a = b+ c.

The starting point of the present investigation was a series of speeded classification experiments
performed by Charras et al. (2012); see also Charras et al. (2014). Participants in their study had
to quickly press one of two buttons to classify the sums of visually presented symbolic addition
problems as either larger or smaller than a previously presented standard number. Specifically,
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participants responded to sums of addition problems stated with
either two repeated numbers (RN), such as “24 + 24”, or two
different numbers (DN), such as “22 + 26”, by classifying them
relative to a standard (e.g., 45).

The authors replicated two well-established findings in this
set of studies. First, participants were faster for RN than
DN problems, indicating the “tie effect” in mental arithmetic
(Groen and Parkman, 1972), a cognitive advantage for arithmetic
problems with repeated over DN. The tie effect has been
attributed to either faster encoding (Blankenberger, 2001) or
better memory access (Campbell and Gunter, 2002; Lefevre et al.,
2004), thus postulating more efficient processing for repeated
over DN.

And secondly, participants of Charras et al. (2012, 2014)
were slower and less accurate for sums that were numerically
near compared to far from the standard; this outcome reflects
a “distance effect” and held for both RN and DN problems.
The distance effect with numbers (Moyer and Landauer, 1967)
points to the embodied nature of symbol comprehension: instead
of performing all number comparisons with equal speed, as a
computer does, humans seem to recur to analog magnitude
representations which are harder to discriminate when they are
more similar (Dehaene et al., 1990; see also Hoedemaker and
Gordon, 2014). The “perceptual symbol systems” account of
cognition (Barsalou, 1999; Fischer and Coello, 2016) has gained
substantial ground across the cognitive sciences generally and
focuses on representational instead of processing differences, also
for supposedly abstract number concepts which are believed to be
represented on an analog “mental number line” (MNL; cf. Fischer
and Shaki, 2018).

While neither tie nor distance effect were novel, the
interpretation offered by the authors was. Specifically, Charras
et al. (2012, 2014) repeatedly found that DN problems generated
more errors when their sum was smaller than the standard while
RN problems generated more errors when their sum exceeded
the standard. The latter observation implies that participants
misperceived a sum made from identical operands as less than
it was and declared a sum larger than the standard as being
smaller, thereby creating an error. The authors likened this latter
finding to a perceptual bias for accurately bisected lines, which are
typically underestimated in length (Charras and Lupianez, 2009,
2010). In other words, both correctly bisected lines and correctly
bisected sums seem to induce an underestimation bias.

Thus, Charras et al. (2012, 2014) offered a novel
underestimation account of their finding for tie problems,
as follows: In each trial the numbers are initially mapped onto
a MNL for comprehension; however, in RN trials this mapping
occurs only once because the second number repeats the first.
The resulting effort reduction leads to faster response latencies;
this is internally monitored and activates “a heuristic linking
cognitive effort and magnitude estimation” (Charras et al.,
2012, p. 163) which makes smaller than the correct results
seem acceptable for RN problems (even though the correct sum
actually exceeds the standard), thus creating the asymmetric
error distribution. This explanation would effectively constitute
a violation of the identity axiom of arithmetic, according to
which any sum s = s, regardless of its composition. An example

of identity violation has been reported for length productions by
Shaki et al. (2015). So is this representational claim correct?

Two arguments seem to contradict the proposal of
underestimation of sums computed from ties. First, the
idea of tie underestimation contradicts the very characteristic
of tie-problems, namely being solved more accurately (as well
as faster) than non-tie problems. And secondly, if anything,
addition should yield overestimation not underestimation of
results, as indicated by the recent literature on operational
momentum (OM): Since its discovery (McCrink et al., 2007),
several reports with both symbolic and non-symbolic addition
tasks showed that normal adult participants, as well as children
and infants, tend to overestimate the outcomes of addition
problems when either the encoding of operands (in the form
of dot clouds) or the production of results (in the form of line
lengths or line positions) is somewhat uncertain (for recent
review, see Pinheiro-Chagas et al., 2018). Specifically, they
either accept larger than the correct numerosities as acceptable
outcomes, or produce longer than the correct line lengths. The
same overestimation would thus be expected in tie addition
problems.

For these reasons we decided to re-asses the underestimation
claim of Charras et al. (2012, 2014) for tie addition problems.
The evidence provided by Charras et al. (2012, 2014) rests on
inferences from latencies and error distributions. Instead, the
current study examined the hypothesized underestimation of
tie-based results more directly by applying two well-established
methods for magnitude estimation in mental arithmetic: the
result-to-position pointing task (RPPT) (Experiment 1) and the
result-to-line-length production task (RLPT) (Experiment 2).
Our findings converge with the authors’ representational claim.

EXPERIMENT 1: RESULT-TO-POSITION
POINTING TASK (RPPT)

In the RPPT, participants locate target numbers on a horizontal
line where small numbers are located on the left and larger
numbers on the right side. This population stereotype is captured
in the MNL and leads to systematic biases in many number-
related tasks (for reviews, see Fischer and Shaki, 2014, 2018;
Winter et al., 2015; Toomarian and Hubbard, 2018). Spatial biases
in performance reflect the cognitive operations involved in the
retrieval of number concepts, both in children and adults (Siegler
and Opfer, 2003; Rouder and Geary, 2014; Bar et al., 2018). The
RPPT has been extended from single numbers to the study of
mental arithmetic (Pinhas and Fischer, 2008; Pinhas et al., 2014,
2015) where the OM effect was documented as a left-bias in
subtraction and a right-bias in addition, supporting the notion
of a spatially extended MNL. In the present context, the pointing
task clarified whether sums computed from RN addition were
indeed underestimated, and would then generate a left-bias, or
instead overestimated, as would be reflected in a right-bias.

Another advantage of the RPPT was that, performed on a
touch screen, it enabled recording of reaction time (RT, the
time interval from stimulus onset to releasing with one’s finger
a start location on the touch screen) and movement time (MT,
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the time from breaking the contact to re-establishing the finger
contact with the screen, i.e., from response initiation to response
completion). RT is a well-established indicator of response
planning and underlying representational complexity (Henry and
Rogers, 1960; Fischer, 2001). We would thus expect longer RTs
for RN compared to DN trials. MT is sensitive to cognitive effort
during response execution (Fitts, 1954; Fischer, 2003). Thus,
additional insights about cognitive differences between RN and
DN processing would be obtained with our method. A likely
candidate process would be the spatial mapping postulated by
Charras et al. (2012, 2014): In each trial of their experiment,
numbers were initially mapped onto a MNL as part of their
comprehension. If that is the case, we can use MT to measure the
duration of this mapping process because the mental mapping of
numbers onto the MNL and the spatial localization of these same
numbers on a physical line are closely related processes (Fischer,
2003; Song and Nakayama, 2008; Dotan and Dehaene, 2013, 2016;
Fischer and Hartmann, 2014). According to Charras et al. (2012,
2014) RN trials should have shorter MTs than DN trials.

Methods
Participants
The sample consisted of a convenience sample of 30 female and
2 male (n = 32) undergraduate psychology students from the
University of Potsdam in Germany, ranging in age from 18 to
30 (mean age = 22.65 years), in exchange for course credit. All
participants had normal vision and were native German speakers.

Stimuli and Apparatus
The numerical stimuli were taken from the original study
by Charras et al. (2012), Experiment 1 and are listed in the
Appendix. They were either single numbers (SN, e.g., 26; these
served as non-arithmetic baseline) or pairs of numbers with a
plus operator, constituting an addition problem. The additions
were manipulated as either a RN addition (e.g., 13 + 13) or a
DN addition (11+ 15) while controlling result size. DN addition
resulted from RN addition by subtracting n-2 from the first
operand and adding n + 2 to the second operand, thus creating
a constant split of 4 between operands. There were 25 stimuli in
each of the three stimulus categories and results varied from 6 to
96 (see Appendix).

Stimuli were presented on a 55-inch Iiyama touch screen in
landscape orientation that was tilted about 45 degrees away from
the participant and with its lower edge approximately at the belt
height of the standing participant. The screen resolution was
1920× 1080 pixels. The experiment was designed and controlled
using the open source Python library Expyriment© (Krause and
Lindemann, 2014).

Design
Each stimulus was presented 4 times, resulting in 300 trials in
total. These trials were presented in a new randomized sequence
to each participant.

Procedure
The experiment was completed in a quiet and dimly lit room
with only the experimenter present. Before commencing with the

task, participants signed an informed consent form. Participants
were advised to stand comfortably in front of the screen center
as the experiment lasted approximately 40 min. Participants read
the instructions on the screen before starting the experiment.
Participants were asked to use the right forefinger during the
experiment to indicate their answers.

A typical trial is shown in Figure 1. On the screen participants
saw a 1500 pixels long horizontal black line (three pixels wide)
90 pixels below the vertical screen center with a start box (gray
square, 50 pixels length) at a distance of 290 pixels below its
midpoint. This line represented the magnitude 100, thus each
number occupied 15 pixels on the continuum. No anchors or
flankers were provided to avoid perceptual distortions (Fischer,
1994). In each trial the participant had to touch the start box
until the stimulus digit(s) appeared 135 pixels above the center
of the screen (225 pixels above the midpoint of the line).
Stimulus onsets were randomly delayed from 250 to 750 ms
from registration of the start box contact to prevent anticipatory
responses. Each stimulus was shown until the participant had
released and then touched the screen again; these landing
coordinates were registered. A blank screen followed for 1000 ms
and the next trial started when the start box was touched again.

Results
RT was defined as the time from onset of the numerical stimulus
to the release of the start button. MT was the time from releasing
the start button to touching the screen again. We also computed
horizontal and vertical landing errors as follows: the center of
the 15-point continuum representing each number was regarded
as the exact position of the respective number. For example, the
horizontal pixel value of 83 represented the correct location of
target number 6, which extended from 76 to 90 pixels. Deviation
along the x-axis was then computed by subtracting the correct
result from the registered landing coordinate. Vertical deviation
was computed by subtracting the y-position of the line from the
recorded landing position.

Three participants were excluded from the data analysis
because of an incomplete data set due to equipment malfunction,
leaving data from 29 participants for analysis. All trials with RT
below 100 ms or above 3000 ms, with MT below 200 ms or above

FIGURE 1 | Illustration of event sequence in an RN trial of the RPPT (not to
scale).
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5000 ms, or an answer that deviated on the y-axis by more than 50
pixels from the response line were removed as non-representative
behavior (2.9% of trials). In a subsequent trimming procedure, all
data points which deviated by more than two standard deviations
from an individual’s mean in RT, MT, horizontal or vertical
deviation were successively removed from the data (13.7% of
trials).

Horizontal Deviations
An analysis of variance (ANOVA) on the trimmed data evaluated
the effect of stimulus category (3 levels: RN, Different Number,
Single Number) on horizontal deviations. The results are
visualized in Figure 2. We found a reliable effect of stimulus
category, F(2, 56) = 9.59, η2

p = 0.20, p < 0.001; t-tests showed
that all landing positions were significantly to the left of the
true target location (all p < 0.001) and that there was a reliable
difference between landing coordinates for DN compared to RN
trials, t(28) = 2.84, p < 0.01. Moreover, SN trials showed reliably
smaller left bias than RN trials, t(28) = 4.56, p < 0.001, but not
when compared to DN trials, t(28) = 1.49, p > 0.05.

Reaction Times
A second ANOVA evaluated the effect of stimulus category on
RT. We found again a reliable effect of stimulus category, F(2,
56) = 19.70, η2

p = 0.41, p < 0.001, indicating that SN trials led
to faster response initiation than RN trials, which in turn led to
faster response initiation than DN trials. Post-hoc t-tests showed
that all pairwise contrasts were statistically reliable, p < 0.001.
These results are visualized in Figure 3.

Movement Times
A final ANOVA evaluated the effect of stimulus category on MT.
The results are also shown in Figure 3. We found again a reliable
effect of stimulus category, F(2, 56) = 30.27, η2

p = 0.52, p< 0.001,
due to fastest movement completion for SN trials, followed by RN
trials, and slowest movement completions for DN trials. As with
RT, the pairwise t-tests showed that all contrasts were statistically
reliable, all p < 0.01.

The regression of MT on RT revealed no reliable effect,
p > 0.05.

FIGURE 2 | Horizontal deviations (in pixels) for the three stimulus categories.
Error bars represent one standard error of the mean.

FIGURE 3 | Average RT (dark portion) and MT (light portion) for the different
stimulus categories. Error bars represent one standard error of the mean.

Discussion
In Experiment 1, we adopted the RPPT and found support for the
proposal made by Charras et al. (2012, 2014) that RN problems
activate cognitively smaller result magnitudes than DN problems
with controlled result sizes. Their evidence from response biases
was supplemented here by evidence from spatial biases in a
pointing task in which smaller numbers are associated with left
space.

Further information in support of the underestimation
hypothesis was obtained from the chronometric results. They
confirm not only the differential ease of processing for RN
compared to DN problems (a finding that is well-established,
see Introduction), but also provide, for the first time, a direct
measurement of the differential duration of the hypothetical
mapping process. By interpreting MT as an indicator for spatial
mapping processes, we found that, consistent with the claim
of Charras et al. (2012, 2014), the mapping of numbers onto
a MNL was faster (and thus easier) for RN compared to DN
problems. The fact that RT and MT were negatively correlated
is not problematic because it occurred in all conditions equally.
Instead, this observation actually validates our argument that the
crucial mapping process, stipulated by Charras et al. (2012, 2014),
can indeed be captured by measuring physical movement times.
We will elaborate on this argument in the General Discussion.

The present results replicate an underestimation bias in
addition, thus supporting the notion that we systematically
violate the identity axiom of formal arithmetic. We note that
the sample consisted largely of female participants and there
might be a problem with generalizing these findings although
we are unaware of gender biases in this pointing task. However,
a more pertinent problem with the present results is the
spatial nature of the pointing task which might contaminate
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the assessment of the cognitive representation of numbers by
introducing space-related associations that do not normally occur
when thinking about numbers (for full discussion, see Fischer
and Shaki, 2018). Arguably, the underestimation effect found
by Charras et al. (2012, 2014) was equally contaminated by
extraneous spatial associations because they used two lateral
response buttons. A task without spatially biased features would
remove the possible contribution of the sign-space association
to the present results and clarify the sole effect of anchoring
bias. This would in turn add further weight to the conclusion
that sums computed in RN problems are underestimated.
Finally, the evidence for underestimation of RN so far remains
indirect because it required an inference from either biased
choices (Charras et al., 2012, 2014) or from temporal-spatial
performance patterns (Experiment 1 above) on the underlying
quantity representation. For these reasons, we adopted a non-
spatial task in Experiment 2 to provide more direct evidence of
underestimation while also removing (or at least reducing) any
spatial contamination from the assessment. Our choice of task
was inspired by well-established psychophysical procedures for
assessing perception with so-called production tasks. In these
tasks participants generate their own responses and results do not
need to be adapted or calibrated to the specific observer because
idiosyncratic aspects of responding affect all values provided by
any given participant (cf. Gescheider, 1997).

EXPERIMENT 2:
RESULT-TO-LINE-LENGTH
PRODUCTION TASK (RLPT)

Several reasons suggested the use of RLPT in order to provide
further converging evidence for an underestimation of RN. First,
the RLPT allows direct assessment of the quantity associated
with a specific numerical concept (Shaki et al., 2015, 2018):
Participants equate the length of a horizontal line so that it
corresponds to their internal magnitude for the result of an
arithmetic computation. Thus, the resulting length is a direct
indicator of the cognitive magnitude. Adopting this rationale, we
expected to see shorter lines for RN compared to DN problems.

Another benefit of using the specific RLPT we describe
below is to (largely) remove spatial biases from the task. Note
that participants produced self-calculated arithmetic results by
changing bi-directionally the length of a horizontally extended
line, using vertically aligned keys. These features ensured that
participants evaluated magnitude representations of outcomes
without response-related directional spatial biases (cf. Fischer
and Shaki, 2016).

Methods
Participants
Eighteen students (mean age 23.2, SD = 3.69 years, 5 male,
2 left-handed) from Ariel University participated for course
credit. They all provided written informed consent prior to the
beginning of the experiment, using a protocol approved by the
Ariel University Institutional Review Board.

Stimuli and Apparatus
For reasons of efficiency, the stimuli set consisted a subset
of the stimuli we used in Experiment 1. Nine outcomes of
14, 26, 38, 44, 50, 56, 62, 74, and 86 were presented as
SN (baseline) or manipulated as either RN addition or DN
addition (in the same way as in Experiment 1). Presentation
of instructions, stimuli, timing and response recording were
controlled by in-house-software. Stimuli (30 points bold Times
New Roman, black on white) were presented on a 19-
inch (1280 × 1024 pixels) display. The horizontal lines
were three pixels (0.75 mm) tall. Responses were made
with up- and down-arrow-keys of a standard QWERTY
keyboard.

Design
Each trial started with a horizontal line of “one unit” (100
pixels) presented at the display center. Based on this standard,
participants produced the line length corresponding to the
magnitude of a result (calculation task) or a single number
(baseline). Pressing an arrow-key initiated the presentation of a
“dot” (2 pixels); each additional press adjusted the line-length
bi-directionally by 2 pixels (up/down arrow for longer/shorter
lines, respectively). Continuous pressing adjusted line length
at a rate of 30 Hz. Figure 4 illustrates the trial sequence.
Each arithmetic problem or single number appeared 4 times (9
outcomes × 2 problem types 4 repetitions = 72 trials; 9 single
numbers × 4 repetitions = 36 baseline trials), yielding 108 trials
per participant.

Procedure
Participants sat approximately 50 cm from the display. Response
keys were centered under the display. Each trial started with the
standard line of “one unit” for 400 ms, followed after 200 ms
blank screen by the stimulus for 600 ms, followed by another
blank screen until participants pressed an arrow key to trigger the
starting point display of the ’dot. Both increasing and decreasing
line adjustments were permitted until participants pressed the
“Enter” key to register their response. This was followed by
the next trial without feedback. A practice block preceded the
experiment.

FIGURE 4 | Illustration of the RLPT method used in Experiment 2. Directional
arrows in the “Production” panel illustrate bilateral line extension and were not
actually shown.
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Results
An analysis of variance (ANOVA) evaluated the effect of
Outcome magnitude (9 possible outcomes: 14, 26, 38, 44, 50, 56,
62, 74, and 86) and stimulus condition (3 levels: RN, DN, and SN)
on line length production. A main effect of outcome magnitude,
F(8, 136) = 222.53, MSE = 7,750, p< 0.001, η2

p = 0.93, confirmed
task compliance. Average line lengths for outcomes 14, 26, 38, 44,
50, 56, 62, 74, and 86 were 168, 272, 378, 422, 529, 519, 564, 644,
and 733 pixels, respectively. More interesting, we found a reliable
main effect of stimulus condition, F(2, 34) = 7.70, MSE = 2,980,
p < 0.01, η2

p = 0.31, revealed shorter line length for RN
compared to DN and SN (457, 473, and 480 pixels, respectively).
This is depicted in Figure 5. Paired t-tests between conditions
showed that participants produced significantly shorter lines in
RN compared to DN [t(17) = 2.89, p< 0.01] and SN [t(17) = 4.06,
p < 0.001] conditions, while no reliable difference was found
between DN and SN conditions [t(17) = 1.12, p = 0.28].

Discussion
Our second experiment adopted a RLPT and replicated the
findings of Experiment 1 that sums computed from RN lead to
significant underestimation of the underlying result magnitude.
This outcome provided direct support for the proposal of
Charras et al. (2012, 2014). Our finding was obtained with a
method that has previously been argued to reduce or remove
spatial biases from the assessment itself, thus making it less
likely that the outcome reflects extraneous factors. On the other
hand, this method requires a somewhat artificial behavior which
might raise concerns about the generalizability of results to
real-life arithmetic. With this in mind we can now turn to a
general discussion of our findings and their implications for our
understanding of mental arithmetic.

GENERAL DISCUSSION

This study was motivated by the report of an apparent
anomaly in mental arithmetic. Specifically, Charras et al. (2012,
2014) inferred from the error pattern in their data that
results of RN addition problems (so-called “tie problems”)
were underestimated relative to results of DN problems. This
interpretation stands in conflict with the established superior

FIGURE 5 | Horizontal line length productions (in pixels) for the three stimulus
categories. Error bars represent one standard error of the mean.

performance on tie compared to non-tie problems, and with a
substantial literature reporting an OM effect according to which
results of addition problems are normally overestimated (and
results of subtraction problems underestimated).

Here we applied a pointing task and a line production task
to clarify that additions are indeed underestimated and that
RN results are reliably more underestimated compared to DN
results: In Experiment 1, 29 adult participants localized RN
results significantly further left on a visually presented number
line than DN results. This spontaneous left-bias is an established
signature of underestimation (Siegler and Opfer, 2003; Pinhas
and Fischer, 2008; for review see Fischer and Shaki, 2014) and
confirms the interpretation of Charras et al. (2012, 2014) that
RN results are underestimated. The fact that all responses were,
on average, to the left of the correct location is not unexpected
given the normal tendency to bisect lines to the left of their true
center (cf. Jewell and McCourt, 2000). The fact that even DN
problems did not induce OM is particularly remarkable because
it shows that task details can strongly affect the nature of the
observed bias. We attribute this aspect of our results to the fact
that we used an ascending order of operands throughout, thus
inducing strong anchoring on the smaller first operand values.
This post-hoc account can be tested in a new study.

Our pointing task also included measurements of RT as
indicator of response planning and MT as indicator of the spatial
mapping of numbers to assess the relative difficulty of RN and
DN conditions. We found that RN results were significantly
easier to compute than DN results, as evidenced by reliably
faster response planning. These results replicate the established
processing advantage of tie problems and also the observations
of Charras et al. (2012, 2014). Moreover, our MT results provide
support for their second claim, namely that the subsequent
spatial mapping is easier for RN compared to DN problems.
The cognitive mapping of numbers onto the MNL and the
spatial mapping of a number onto a physical number line are
closely related processes, as evidenced by a series of number-
related movement tasks (Fischer, 2003; Song and Nakayama,
2008; Dotan and Dehaene, 2013, 2016; Fischer and Hartmann,
2014). The fact that participants were able to flexibly complete
some of the necessary cognitive steps during either RT or MT, as
established by their negative correlation, supports our claim that
this mapping process can be captured by measuring MTs.

In Experiment 2, line length productions were adopted
as performance measure to provide more direct evidence for
the hypothesized underestimation of results when computed
from RN rather than DN operands. Again consistent with the
prediction of Charras et al. (2012, 2014), 18 healthy adult
participants produced shorter line lengths in the RN compared
to the DN and SN tasks. Given that the task was performed with
response keys that were orthogonal to the relevant (horizontal)
stimulus dimension, and the stimulus itself (the line) was
modified bi-laterally and bi-directionally, we are confident that
magnitude assessments were not contaminated by prevalent
spatial-numerical biases (cf. Shaki and Fischer, 2018).

The current data suggest a re-evaluation of the unanimous
processing advantage of tie problems because this apparent
advantage comes with a representational bias. Regardless
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of whether the tie advantage is due to faster encoding
(Blankenberger, 2001) or better memory access (Campbell and
Gunter, 2002; Lefevre et al., 2004), once the task introduces
uncertainty regarding the expression of results, a tendency to
violate the identity axiom of arithmetic by underestimating tie
outcomes becomes evident. While there may be no immediate
practical implications of this discovery, this fact does have
theoretical implications.

This finding supports the arithmetic heuristics and biases
(AHAB) model of cognitive biases in mental arithmetic,
according to which three sources of error can contaminate
mental arithmetic outcomes (Shaki et al., 2018): First, the
use of a heuristic according to which we accept “more”
during additions and “less” during subtractions; this OM
component predicts overestimation of addition outcomes
(McCrink et al., 2007). Second, an association between operators
and space which relates right space to addition and to
larger magnitudes (Pinhas et al., 2014; Mathieu et al., 2017);
this OM component is only effective in tasks with spatial
aspects, such as pointing to results of additions on a number
line (RPPT; e.g., Pinhas and Fischer, 2008; Pinhas et al.,
2014, 2015). And finally, an anchoring effect from the first
number (Tversky and Kahneman, 1974); importantly, this OM
component can explain reverse OM, e.g., when subtraction
problems have larger first operands than addition problems
due to controlled result size between operations. In the
studies conducted by Charras et al. (2012, 2014) this was the
case.

However, while reverse OM – and thus underestimation
of addition outcomes - is predicted by AHAB as a result of
anchoring on small first operands, the ordering of means in the
present study is not. Note that our DN problems all had smaller
first than second operands compared to RN problems, yet they
induced less underestimation compared to RN problems. This
unexpected lack of stronger anchoring on small numbers with
smaller first operands suggests that operand order is a further
factor that must be taken into consideration when predicting
OM. Specifically, we suggest that ascending operand order (which
we adopted for all DN problems) is congruent with the mental
number line, thus inducing a bias similar to the processing
fluency heuristic postulated by Charras et al., which in turn leads
to larger perceived results in DN compared to RN problems.
Further work is needed to test this proposed extension of AHAB
and the relative contribution of biases when compared to SN.

One particularly diagnostic test would be to manipulate operand
order and compare results in subtraction tasks; ideally this could
be done in separate blocks to see if there is a general operation-
specific mental set that affects (and eliminates) the heuristic
component of OM.

In summary, the present study supports the view that tie
problems have not only a processing advantage in terms of
fast and accurate problem solving but also a processing penalty
in the form of a distorted magnitude representation. This
representational distortion violates a fundamental axiom of
arithmetic and constitutes a novel bias that must be considered
when understanding errors in simple mental arithmetic.
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APPENDIX

TABLE A1 | Stimuli used in Experiment 1. Tie problems appear in the Repeated
Numbers (RN) column.

SN RN DN

6 3 + 3 1 + 5

8 4 + 4 2 + 6

12 6 + 6 4 + 8

14 7 + 7 5 + 9

18 9 + 9 7 + 11

20 10 + 10 8 + 12

26 13 + 13 11 + 15

30 15 + 15 13 + 17

32 16 + 16 14 + 18

38 19 + 19 17 + 21

42 21 + 21 19 + 23

44 22 + 22 20 + 24

50 25 + 25 23 + 27

54 27 + 27 25 + 29

56 28 + 28 26 + 30

62 31 + 31 29 + 33

66 33 + 33 31 + 35

68 34 + 34 32 + 36

74 37 + 37 35 + 39

78 39 + 39 37 + 41

80 40 + 40 38 + 42

86 43 + 43 41 + 45

90 45 + 45 43 + 47

92 46 + 46 44 + 48

96 48 + 48 46 + 50

SN, Single Number; RN, Repeated Number Addition; DN, Different Number
Addition.
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