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THE BIGGERPICTURE The cost of healthcare is at an all-time high in the United States, consuming 19.7% of
gross domestic product (GDP). Chronic diseases, such as dementia, diabetes, and cardiovascular disease,
are especially expensive and also complex, involving multiple genetic, clinical, and epidemiological factors,
making finding druggable targets particularly difficult. This leaves many patients with unmet medical needs
but also creates opportunities to reposition active molecules that were originally designed to treat another
disease but which act on mechanisms relevant to poorly treated patient subgroups.
To do this systematically, we first need to accurately determine which targets are driving disease within clin-
ically relevant patient subgroups in the new indication. High-resolution patient stratification based on combi-
natorial analytics offers an accurate and scalable way to map safe and effective drugs to patient subgroups
across multiple new disease indications, providing a faster, cheaper, and derisked route to their approval.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY

Indication extension or repositioning of drugs can, if done well, provide a faster, cheaper, and derisked route
to the approval of new therapies, creating new options to address pockets of unmetmedical need for patients
and offering the potential for significant commercial and clinical benefits. We look at the promises and chal-
lenges of different repositioning strategies and the disease insights and scalability that new high-resolution
patient stratificationmethodologies can bring. This is exemplified by a systematic analysis of all development
candidates and on-market drugs, which identified 477 indication extension opportunities across 30 chronic
disease areas, each supported by patient stratification biomarkers. This illustrates the potential that new arti-
ficial intelligence (AI) and combinatorial analytics methods have to enhance the rate and cost of innovation
across the drug discovery industry.
INTRODUCTION

Despite huge investment in pharmaceutical research and devel-

opment (R&D) in recent years, success in translating this into

novel therapeutic treatments with better patient outcomes has

been lower than expected. We are starting to see signs of a re-

covery in R&D productivity,1 but still in the last decade, fewer

than 10% of the targets investigated in discovery programs

have led to approved drugs.2 Unfortunately, this has too often

manifested as expensive late-stage phase III failures, mainly

due to inability to demonstrate clinical efficacy in patients. In

large part, this is due to poor understanding of the complexities

and differences in disease biology across heterogeneous patient

populations in many of the chronic disorders that are so expen-

sive for health systems to treat.
This is an open access article under the CC BY-N
In this period, there have been major technological advances

in the generation and analysis of biological and patient datasets.

However, our approach to disease characterization and the

study of the underlying pathogenesis of complex diseases has

remained relatively basic and rooted around single targets.While

effective in relatively monogenic diseases, traditional drug dis-

covery approaches have been concentrated on a small fraction

of well-studied genes and pathways, leading to pools of unmet

medical need, annotation bias, a lack of innovation, and even

to dozens of repeated expensive failures within a single

mechanism.3,4

Too often, drug discovery projects become focused on targets

and disease mechanisms very early, implicitly assuming that pa-

tients who share a clinical diagnosis have a single common dis-

ease cause and that those mechanisms remain relevant and/or
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druggable through different stages of their disease.5 This is too

simplistic to capture the biological complexity of chronic disease

processes and the varied disease etiologies and influences in

different subgroups of patients.6

It is clear that diagnoses such as schizophrenia,7 asthma,8 and

type 2 diabetes9 are umbrella terms for various distinct disease

subgroups (or endotypes) that have different underlying mecha-

nisms, even though patients may ultimately exhibit similar symp-

toms. This heterogeneity can result in significant variations in

prognosis and therapy response across the patient population.

Consequently, a ‘‘one size fits all’’ clinical pathway or ‘‘block-

buster’’ discovery strategy does not work well for complex,

chronic diseases, leading to late-stage clinical trial failures and

patients often enduring a largely trial-and-error process before

they get access to the right treatment.10,11

New precision medicine approaches, driven by patient strati-

fication insights, can identify subgroups of patients who have

similar disease etiologies and who are therefore likely to exhibit

similar treatment responses. This provides both a route to inno-

vation and also generates the patient stratification biomarker

tools required to accelerate and derisk clinical development of

novel targets.

At the same time, it is clear that many existing development

and on-market compounds have potentially useful effects on

pathways and mechanisms that may be shared between multi-

ple disease indications. Exploiting such secondary uses within

patients whose disease etiology involves these mechanisms

can offer a faster, cheaper, and derisked opportunity to bring

to market new medicines that address significant pockets of un-

met medical need, to the benefit of both the inventor of the drug

and patients. New artificial intelligence (AI)-based combinatorial

analytics methods are enabling identification of such opportu-

nities at unprecedented scale.

DRUG INDICATION EXTENSION

Identification of new indication extension (also known as reposi-

tioning) opportunities for approved or investigational drugs has

long been recognized as a potentially interesting commercial

strategy for pharmaceutical companies, especially if the com-

pound has good remaining composition of matter patent life

and well-established safety profiles, and the dosage and route

of administration are similar in the new indication.

Until recently,many repositioning examples have beendiscov-

ered serendipitously,12 butwith the availability of larger biological

datasets,13 computational approaches are now being used to do

this systematically. Fewvalidated repositioning candidates have,

however, yet been identified, and success has often been limited

by the quality of the data used in the analysis.14,15 Even some

high-profile repositioned drugs with good mechanistic hypothe-

ses, such as the potent anti-inflammatory activity of tocilizumab

used in severe coronavirus disease 2019 (COVID-19) patients,

have sometimes failed to show clear benefit once in the

clinic.16,17

While potentially quicker, cheaper, and less risky, reposition-

ing still faces many of the same challenges as novel drug discov-

ery—hypothesis generation, understanding of the mechanism(s)

of action, identification of the patient subgroups in the new indi-

cation area who would benefit from the drug, and establishing a
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robust patent position. In addition, for repositioning candidates,

drug safety data from adverse event report databases18–20 and

toxicity assessment21 or prediction data22 should be used, along

with an evaluation of the dosage and route of administration

needed, to identify any potential safety concerns associated

with the drug and new indication(s) in question.

The most widely used drug-repositioning methods involve

comparison of drug characteristics, such as transcriptomic or

adverse event profiles, with a disease or clinical phenotype

(phenotypic drug discovery [PDD]). These methods utilize data

from resources such as Library of Integrated Network-based

Cellular Signatures (LINCS),23,24 which holds gene and protein

expression profiles from cell lines perturbed with a wide range

of chemical compounds, and NCATS OpenData Portal,25 which

contains phenotype data from high-throughput drug screening

assays. Despite the richness and quantity of these data sources,

concerns have been raised about the quality and reproducibility

of the cellular phenotype data and challenges remain for decon-

voluting druggable targets. These issues have affected the accu-

racy, clinical relevance, and scalability of such drug repositioning

and PDD studies.26,27

Other drug-repositioning methods utilize knowledge-driven

approaches thatmake use of graph- or network-based datamin-

ing methods13,28 that integrate data from genome-wide associ-

ation studies (GWASs), gene expression, biological pathways,

and molecular interactions to search for new indication opportu-

nities for drugs. The biggest limitation of such annotation-driven

methods is that the sparsity and biases of our knowledge of sys-

tems biology make it challenging to identify opportunities

beyond the relatively obvious ‘‘low-hanging fruits.’’ This is

because functional annotation of even well-researched genes

cannot be considered as complete; experimental assays are

limited in the type of information they can discover and, most

notably, experimental designs are often guided by what is

already known or expected.

Neither of thesePDD-ornetwork-basedapproachesaddresses

themajor challenge that almost60%of late-stageclinical trials fail-

ures are due to an inability to demonstrate clinical efficacy.11 The

key factor here is a poor understanding of the mapping between

the proposed mechanism of action of the target(s) involved and

the subgroups of patients who will benefit from this approach

andshould thereforebe recruited into theclinical trial. Thisdetailed

patient stratification is an essential component both of novel drug

discoveryandeffective indicationextension,but it cannotbedeliv-

ered by existing approaches, such as GWASs.
HIGH-RESOLUTION PATIENT STRATIFICATION USING
COMBINATORIAL ANALYTICS

Targets with strong genetic evidence are known to bemore likely

to succeed in clinical trials.29 However, although GWASs have

revealed several disease-associated genes, their translation

into the clinic has been far from successful, especially in

complex, chronic diseases.30 This is largely because GWAS is

inherently a low-resolution technique designed to identify single

variants that exhibit a relatively large effect size across a whole

study population, characteristics that are much more relevant

to relatively monogenic diseases in homogeneous populations.
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With non-linear contributions of multiple interacting genetic

variants playing such an important role in chronic disease popu-

lations, and their inherent heterogeneity, GWAS results account

for only a small proportion of genetic variation in these diseases

and fail to delineate different patient subgroups.31 This funda-

mentally constrains its potential to identify targets relevant to

specific patient subgroups and thus guide precision medicine

outside of monogenic diseases.32

The key to understanding complex diseases that are influenced

bymultiple genetic loci and epidemiological and/or environmental

factors is to find combinations of these disease-associated fac-

tors that distinguish one patient subgroup from another.

Combinatorial analysis uses advanced analytics and AI

methods to identify such combinations of features in complex

chronic diseases.33 It is a hypothesis-free method for the detec-

tion of high-order, disease-associated combinations of features

(disease signatures—typically comprising three to ten features)

that together are strongly associated with variations in disease

risk, symptoms, progression rates, and therapy response

commonly seen in subgroups of patients using a case-control

cohort design.34,35

The disease signatures arising from combinatorial analysis

capture the quantitative epistatic and other non-linear effects

on disease biology and phenotypes arising from interactions of

multiple genes across genetic andmolecular networks, signaling

cascades or changes in transcription, translation, and/or meta-

bolism. These non-linear effects cannot be captured either

with GWASs or standard machine-learning methods.

The resulting combinatorial features can be used to stratify

large patient datasets. Disease signatures can be clustered by

the patients in which they co-occur to provide a high-resolution

stratification of the patient population. Mapping the SNPs in the

disease signatures to genes and pathways can reveal more

novel disease biology as well as correlate specific mechanism-

based disease signatures with different patient subgroups within

the overall study population.

The combination of SNPs linked to a target of interest in a

patient subgroup can thus serve as a biomarker to identify individ-

uals comprising a subgroup within a heterogeneous patient pop-

ulation who would be most responsive to pharmacological mod-

ulation of the target. This approach has been validated in

multiple diseasepopulationsusingbothphenotypic35 andgenetic

data36,37 and is essential for systematic indication extension.

DRUG INDICATION EXTENSION POWERED BY HIGH-
RESOLUTION PATIENT STRATIFICATION

To illustrate the potential of high-resolution patient stratification

insights for systematic drug indication extension, we have briefly

described such a repositioning approach and highlighted two

examples of new drug- and target-indication opportunities iden-

tified by it.

Combinatorial analysis has previously been used to stratify pa-

tient populations and identify disease-associated SNPs and tar-

gets for more than 30 disease populations38 using genomic data

available from the UK Biobank39 and Database of Genotypes

and Phenotypes (dbGaP),40 among other sources. These dis-

eases cover a wide range of indications in different therapeutic

areas, such as neurodegenerative, neuropsychiatric, respiratory
cardiovascular, metabolic, autoimmune, infectious diseases,

and women’s health.

For each indication, all significant disease signatures were

clustered by the patients in whom they co-occur to generate a

disease architecture that provides a high-resolution view of the

targets and mechanisms of actions associated with specific pa-

tient subgroups.41 The targets were prioritized based on the 5Rs

drug discovery framework,42 and efficacy potential metrics (a

measure of how well stratified the disease biology around a cho-

sen target is within the patient population) and patient stratifica-

tion biomarkers were generated for all prioritized targets.

Biomedical knowledge graphs were used to amplify genetic

signals using a naive guilt by association approach to identify

genes proximal to prioritized targets in key metabolic pathways

whose SNPs may not be well represented in the genotype array.

These biological and patient stratification insights provide the

framework for the systematic identification of indication exten-

sion opportunities.

Industry-wide information on pipeline and marketed drugs

was sourced fromGlobalData’s Pipeline &Marketed Drugs data-

base (GlobalData; https://www.globaldata.com/). This includes

known target genes, indication(s), and therapy areas with their

development phase, molecule type, modality, and mode of ac-

tion. Additional data were extracted from ChEMBL43 and

UniChem,44 including molecular properties, pharmacology,

pharmacovigilance, predicted toxicity, clinical trials, and with-

drawals data, where available.

For each development candidate or approved drug with more

than5years remainingcompositionofmatterpatent life, their target

wascorrelatedwithall of thedetailedmechanisticpatient stratifica-

tion insights for each of the 30 disease-stratification studies

(Figure 1). This identified 477 potential indication opportunities

across the 30 disease areas (Figure 2) where that target or mecha-

nism was also found to be strongly associated with one or more

clinically relevant patient subgroups in another disease study.

These indication extension opportunities can be further evalu-

ated to assess the target-secondary disease linkage and the

novelty and viability of the drug- and target-indication pair based

on factors such as:

d strength ofmechanistic hypotheses and supporting tissue-

specific evidence,

d clinical relevance,

d 5Rs drug discovery criteria,

d dosage, route of administration, and impact on toxicity,

d remaining patent life, and

d freedom to operate.

Several of the indication extension opportunities identified

have already been evaluated in clinical trials in the new indication

by other groups. Two such examples provide confirmatory evi-

dence that the combinatorial analytics approach can identify pa-

tient subgroups in a secondary indication where repositioned

clinical candidates have the potential to be highly effective.
Mineralocorticoid receptor antagonists: Type2diabetes
renal complications
There are currently 201marketed drugs that are mineralocorticoid

receptor (MR) (NR3C2, MR, and aldosterone receptor)
Patterns 3, July 8, 2022 3
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Figure 1. Systematic drug indication extension approach based on high-resolution patient stratification insights generated by combinatorial
analytics for 30 disease studies
FTO, freedom to operate; IP, intellectual property.
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antagonists,with themajority licensed foredema,heart failure,and

hypertension. With this number of marketed drugs, there is a

wealth of safety, efficacy, and side effect data available for a range

of MR antagonists in different patient populations. This makes the

MR a promising candidate for indication extension analysis.

NR3C2—the gene target for MR antagonists—was

searched across the 30 chronic disease studies to identify
Figure 2. Analysis of all pipeline and marketed drugs from GlobalData
opportunities were found, shown by therapy area and drug developme
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clinically relevant patient subgroups where the use of MR

antagonist may be an effective therapeutic option. In one

such group, a combinatorial disease signature containing a

variant in NR3C2 was identified to be highly associated with

type 2 diabetes patients (from the UK Biobank ICD-10 code,

E11) who have developed at least one of the main complica-

tions associated with diabetes, including ketoacidosis,
with >5 years remaining patent life where indication extension
nt phase



Figure 3. Disease architecture of the UK Biobank patient population with type-2-diabetes-associated complications generated by
combinatorial analytics
Each circle represents a disease-associated SNP genotype, and edges represent co-association in patients.
(A) Each colored cluster represents a distinct patient subgroup.
(B) The highlighted group of SNPs (dark) contains the variant in NR3C2 that was associated with patients who developed renal complications.
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cardiovascular, neurological complications, and chronic kid-

ney disease (Figure 3).

The signature containing this genetic variant is found in 209

cases with type 2 diabetes complications and in zero controls

(long-term diabetics without complications). Furthermore, the

cases with this signature were significantly more likely to have

developed renal complications, suggesting that this signature

specifically increases the risk of developing kidney disease in as-

sociation with type 2 diabetes. This suggests that the use of MR

antagonists may be beneficial to type 2 diabetic patients who are

most at risk of developing renal complications according to their

genetic data.

There is considerable supporting evidence in the literature of

dysregulated MR and aldosterone signaling in patients who

developed diabetic nephropathy and chronic kidney disease.45

Over-activation of the renin-angiotensin-aldosterone system

(RAAS) is a key driver of renal fibrosis in diabetic kidney disease,

and preclinical studies show that the use of RAAS inhibitors de-

creases expression of pro-fibrotic markers and renal function in

diabetic rats.46

MR antagonists have been shown to prevent the progression

of diabetic nephropathy by improving insulin resistance and

lowering blood pressure.47,48 These include drugs such as spiro-

nolactone and finerenone. A multicenter study of the use of spi-

ronolactone in diabetic patients with high risk of developing kid-

ney failure did not indicate that treatment with spironolactone

prevented development of microalbuminuria.49 Furthermore,

spironolactone is associated with increased risk of hyper-

kalemia.50

However, finerenone is a more recently developed MR

antagonist that has greater selectivity and binding affinity

than other MR antagonists, such as spironolactone and epler-
enone.51 In a double-blind clinical trial containing 5,734 pa-

tients with type 2 diabetes and chronic kidney disease, treat-

ment with finerenone resulted in reduced risk of chronic

kidney disease (CKD) progression compared against the pla-

cebo, supporting the hypothesis of its repositioning po-

tential.52

IL-6R antagonists: Amyotrophic lateral sclerosis
This analysis also identified a potential indication extension op-

portunity for interleukin-6R (IL-6R) antagonists for use in patients

with amyotrophic lateral sclerosis (ALS), a progressive neurode-

generative disease predominantly affecting motor neurons.

In one of the 30 patient stratification studies, 736 patients (438

male and 291 female) with ALS were compared against a set of

healthy gender-matched controls. Genetic variants involved in

the regulation of IL-6 secretionwere identified as part of a combi-

natorial disease signature significantly associated with a sub-

group of ALS patients who were more likely to develop earlier

onset and more aggressive forms of the disease (patient sub-

group A; Figure 4). This suggests that IL-6R antagonists may be

effective at slowing disease progression within this subgroup of

patients.

Although the levels of IL-6 in ALS patients can be highly vari-

able between cases, there is evidence that IL-6 is increased in

the plasma of ALS patients and is negatively correlated with

Revised Amyotrophic Lateral Sclerosis Functional Rating Scale

(ALSFRS-R) scores.53,54 This provides additional supporting ev-

idence as to why patients with genetic variants in IL-6 signaling

were more likely to have greater functional impairment and dis-

ease progression.

There is now also clinical data that support the label extension

of IL-6R antagonists in ALS. Results from a phase II trial
Patterns 3, July 8, 2022 5



Figure 4. Comparison of the distribution of clinical features associated with the three patient subgroups identified by combinatorial analysis
of an ALS population
(A)–(C) show ALSFRS-r, age at death, and survival from disease onset until death for patient subgroups, respectively. Age at death (A) was found to be signif-
icantly different between patient subgroup A and subgroup C using Mann-Whitney U test (p < 0.05).
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investigating the safety and tolerability of tocilizumab, currently

licensed in rheumatoid arthritis and several other inflammatory

diseases, indicated that the drug was well tolerated by ALS pa-

tients and suppresses inflammation.55 Infusion with tocilizumab

also slowed clinical progression in ALS patients, although the

sample size of this study was small.56
CONCLUSIONS

This analysis illustrates that high-resolution patient stratification

based on a combinatorial analysis approach is sufficiently scal-

able and accurate for the systematic analysis of potential sec-

ondary indications for pipeline, marketed, and even withdrawn

compounds (which failed for efficacy reasons). Nearly 500

such indication extension opportunities were identified by this

analysis across the 30 complex, chronic disease areas studied.

The examples highlighted show that this approach accurately

identified drugs that do have high efficacy potential in at least

one new secondary indication as well as finding patient stratifica-

tionbiomarkers that canbeused to accelerate andderisk theclin-

ical development and approval of the repositioned compounds.

High-resolution patient stratification driven by combinatorial

analytics has identified many further indication extension oppor-

tunities for drugs that have not yet been evaluated in clinical trials

but which could potentially be highly effective in chronic disease

populations and help to address the efficient delivery of new

therapeutic options in areas of significant unmet medical need.

This would be of significant benefit both commercially as well

as for patients, for whom it offers the hope of new therapeutic

options addressing a range of underserved diseases and patient

subgroups.
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