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Background: KRAS-mutant lung adenocarcinomas (LUADs) are heterogeneous and frequently occur in smokers.
The heterogeneity of KRAS-mutant LUAD has been an obstacle for the drug discovery.
Methods:We integrated multiplatform datatypes and identified two corresponding subtypes in the patients and
cell lines. We further characterized the features of these two subtypes and performed drug screening to identify
subtype-specific drugs. Finally,we used thedefining features of theKRAS subtypes for drug sensitivity prediction.
Findings: Patient-Subtype 1 (PS1) was characterized by increased smoking-relatedmutational signature activity,
a low tumor-infiltrating lymphocyte (TIL)-associating score and STK11/KEAP1 co-mutations. Patient-Subtype 2
(PS2) was characterized by an increased smoking-related methylation signature activity, a high TIL-associating
score and increased KRAS dependency. The cell line subtypes faithfully recapitulated all the patients' features.
Drug screening of the two cell line subtypes yielded several potential candidates, such as cytarabine and
enzastaurin for Cell-line-Subtype 1 (CS1) and a BTK inhibitor QL-XII-61 for Cell-line-Subtype 2 (CS2). The defin-
ing features, such as smoking-related methylation signature, were significantly associatedwith the sensitivity to
several drugs.
Interpretation: The heterogeneity of KRAS-mutant LUAD is associated with smoking-related genomic and
epigenomic aberration along with other features such as immunogenicity, KRAS dependency and STK11/KEAP1
co-mutations. These features might be used as biomarkers for drug sensitivity prediction.
Fund: This researchwas fundedby the Young Scientists Fundof theNational Natural Science Foundation of China,
the Natural Science Foundation of Fujian Province, China and the Education and Research Foundation for Young
Scholars of Education Department of Fujian Province, China.
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1. Introduction

KRASmutations occur in ~30% of lung adenocarcinomas [1,2]. Onco-
genic KRAS is known to be “undruggable”; therefore, major efforts to
combatKRAS-driven cancer focus on either inhibitingKRASdownstream
targets [3,4] or screening for molecules that exhibit synthetic lethal
interactions with oncogenic KRAS [5–14]. However, rare common hits
have been identified among these screens. Fruitful results obtained
from synthetical lethal screening suffered from poor reproducibility
Center for
-120 South

. Zhou).
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[9,11]. Moreover, only approximately 20% of KRAS-mutant lung cancer
patients respond to MEK inhibitors, in contrast to a 60% response rate
to EGFR inhibitors [4,15]. This lack of reproducibility is likely due to
the heterogeneous background of both cell lines and patients harboring
KRASmutations. Therefore, it is critical to identify KRAS subtypes, char-
acterize their features and further explore these features to predict of
potential effective drugs.

How does one comprehensively evaluate KRAS heterogeneity?With
the completion of The Cancer Genome Atlas (TCGA) project in April
2018, various datatypes and analyses including the immune landscape
[16–18], oncogenic processes [17], cell of origin [19], and mutational
signatures of cancer [20,21] are all now publicly available.
Multiplatform analysis has become feasible and essential for elucidating
the heterogeneity of cancer [22–26]. Moreover, several large-scale cell
line drug sensitivity projects, including the Cancer Cell Line
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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T1:1
T1:2 Research in context

T1:4 Evidence before this study

T1:5 The heterogeneity of KRAS-mutant lung adenocarcinoma has
T1:6 been an obstacle for clinical treatment. However, the underlying
T1:7 mechanism has remained unclear. Therefore, only a subset of pa-
T1:8 tients can benefit from either KRAS downstream targeted therapy
T1:9 or immune checkpoint blockades. We searched primary research
T1:10 studies in PubMed by using the terms ((((KRAS[Title]) AND
T1:11 (Heterogeneity[Title] OR subtype[Title] OR subtypes[Title] OR
T1:12 subset[Title] OR subsets[Title])) AND Lung[Title])). We identified
T1:13 14 studies in which KRAS mutation (codon) subtypes are the
T1:14 major subject in these studies and only 1 study published in Can-
T1:15 cer Discov. 2015 by Skoulidis F. et al. discussed the major sub-
T1:16 sets of KRAS-mutant lung adenocarcinoma and observed no
T1:17 difference of the KRASmutation types among subsets. These au-
T1:18 thors performed an elegant study using gene expression data to
T1:19 group KRAS-mutant lung adenocarcinomas into three subtypes
T1:20 and found that HSP90 inhibitors selectively killed KRAS and
T1:21 STK11 co-mutant cancer cells. However, we hypothesized that
T1:22 the heterogeneity of KRAS-mutant lung adenocarcinoma may be
T1:23 the consequence of different features, such as smoking-induced
T1:24 genomic and epigenomic changes, the identification of which
T1:25 might be helpful for drug sensitivity prediction.

T1:26
T1:27 Added value of this study

T1:28 KRAS-mutant lung cancer is associatedwith smoking activity and
T1:29 smoking can cause genomic and epigenomic changes. However,
T1:30 it is not clear that whether the smoking-related genomic and
T1:31 epigenomic changes contribute to the heterogeneity of KRAS-
T1:32 mutant lung adenocarcinomas. In this study, we found that the
T1:33 heterogeneity of KRAS-mutant lung adenocarcinomas was result-
T1:34 ed from contributions by smoking-related DNA methylation, so-
T1:35 matic mutational changes and the tumor-infiltrating leukocyte
T1:36 fraction. We were able to identify several promising drugs for
T1:37 each KRAS subtype and use the defining features of the subtypes
T1:38 for drug sensitivity prediction.

T1:39
T1:40 Implications of all the available evidence

T1:41 Our findings indicate that the heterogeneity of KRAS-mutant lung
T1:42 adenocarcinomas is associated with smoking and can be
T1:43 interpreted at many levels, from genomic and epigenomic to
T1:44 transcriptomic and immunogenic levels. In addition, the multilevel
T1:45 features might be used as biomarkers for drug sensitivity predic-
T1:46 tion. However, additional studies that independently validate the
T1:47 clustering results are required. Moreover, it is necessary to use
T1:48 cell-line derived xenografts and/or patient-derived xenograft
T1:49 mouse models to further validate the potential drugs.

T1:50
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Encyclopedia (CCLE) [27], Cancer Therapeutics Response Portal (CTRP)
[28,29], and The Genomics of Drug Sensitivity in Cancer Project
(GDSC) [30–32], are all now publicly available for researchers' to
explore.

Skoulidis et al. performed an elegant study using gene expression
data to group KRAS-mutant lung adenocarcinoma into three subtypes
and found that HSP90 inhibitors selectively killed KRAS and STK11 co-
mutant cancer cells [33]. However, it is not clear whether the
smoking-related genomic aberrations, epigenomic changes and tumor
immunogenicity all contribute to the heterogeneity of KRAS-mutant
lung adenocarcinoma. Given thatKRAS-mutant lung cancer is associated
with smoking activity [34–36] and smoking can cause genomic and
epigenomic changes [37], it is very likely that smoking-induced geno-
mic and epigenomic alterationsmay also contribute to the KRAS hetero-
geneity. Interestingly, Vaz et al. also found that chronic cigarette smoke
condensate (CSC)-induced methylation changes are associated with
KRAS-mutant lung cancer [38]. These authors hypothesized that onco-
genic KRAS may contribute to the maintenance of smoking-induced
DNA methylation. Therefore, in our study, we used a set of chronic
CSC-induced DNA methylation according to Vaz et al. as metric for
smoking-related DNA methylation changes and we calculated
smoking-related mutational signature activity characterized by C N A
transversions [20,39] to reflect smoking-induced genomic changes.

In this study, we took advantage of the aforementioned databases
and identified two major subtypes of KRAS-mutant lung adenocarcino-
ma in patients by integrating multiplatform datatypes. We further vali-
dated the results obtained for patients using cell lines and found
consistent features in cell line subtypes. Therefore, the cell line subtypes
are useful surrogates for patient drug screening. We reanalyzed the
publicly available drug sensitivity data using the cell line subtypes and
found several promising drugs for each subtype. Interestingly, drug sen-
sitivity was significantly associated with one or more oncogenic fea-
tures of the KRAS subtypes.

2. Materials and methods

2.1. Data source

2.1.1. Patients
RNAseq (polyA+ IlluminaHiSeq), DNA methylation

(Methylation450k), miRNA gene expression RNAseq (IlluminaHiSeq),
somatic copy number variation (SCNA) (gene level, gistic2), somatic
mutations (base substitution) (hg19, IlluminaGA) and clinical informa-
tion for the patients (version: 2016-08-16) were downloaded from the
UCSC Xena website: http://xena.ucsc.edu, dataset: TCGA-LUAD. There
are 128 KRAS-mutant LUAD patients with all five data types, namely,
gene expression RNAseq, DNA methylation, miRNA expression, SCNAs
and somatic mutation (base substitution), available.

2.1.2. Cell lines
Gene expression array (Affymetrix Human GenomeU219 array data

at ArrayExpress (E-MTAB-3610)), DNAmethylation (Methylation450k)
and drug sensitivity data for the cell lines were downloaded from GDSC
(https://www.cancerrxgene.org/). Somatic mutations of lung cancer
cell lineswere obtained from the COSMICdatabase [40]. Drug sensitivity
data were also downloaded from CTRP (https://portals.broadinstitute.
org/ctrp) and CCLE (https://portals.broadinstitute.org/ccle). Cell line
histology informationwas obtained fromGDSC, COSMIC or the previous
literature. Of 35KRAS-mutant lung cancer cell lines,we removed 3 small
cell lung cancer (SCLC), 1 lung squamous cancer (LUSC) (according to
GDSC records) and 3 LUAD cell lines with missing data types, resulting
in the inclusion in the study of a total 28 KRAS-mutant cell lines with
all three datatypes, namely, mRNA expression, DNA methylation and
base substitution, available (Supplementary Table 1).

2.2. Somatic mutational signature analysis

The somatic mutational signatures of 543 LUAD patients and 178
lung cancer cell lines were decomposed and visualized using
“SignatureAnalyzer” [41]. The results were compared with 30 reported
mutational signatures from COSMIC to identify related etiologies. The
similarity measures were based on the “cosine similarity”.

2.3. Data preprocessing

For the DNA methylation data, we first filtered out the following
probes as previously reported [42]: 1. probes on chromosomes X and

http://xena.ucsc.edu
https://www.cancerrxgene.org
https://portals.broadinstitute.org/ctrp
https://portals.broadinstitute.org/ctrp
https://portals.broadinstitute.org/ccle
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Y; 2. probes targeting multiple genes; and 3. probes containing an SNP,
including the targeted CpG-site [43].

We then preprocessed the RNAseq, DNA methylation, miRNA ex-
pression and SCNA data in three steps as previously reported [23]. In
brief, 1. Outlier removal: we deleted the features and samples that had
N20% NAs using the R package DMwR [44]. 2. Missing data imputation:
We imputed themissing data via the K nearest neighbor (KNN) imputa-
tion using the R package impute [45]. 3. Data normalization (Z-score).

In terms of preprocessing of the somatic base substitution data type,
we calculated the frequency of six base substitutions (C N A, C N G, C N T,
T N A, T N C and T N G).

The same preprocessing procedures were performed for the mRNA
expression, DNA methylation and base substitution data using the
lung cancer cell lines.

2.4. Similar network fusion and clustering

Similar network fusion (SNF) [23]was applied to integrate the above
five preprocessed data types for patients, namely, RNAseq (16,661
identifiers × 128 samples), DNA methylation (331,515 identifiers
× 128 samples), miRNA gene expression (554 identifiers × 128 sam-
ples), copy number (24,776 identifiers × 128 samples) and base substi-
tutions (6 identifiers × 128 samples). For the cell lines, there are three
data types available, namely, gene expression array data (17,484
identifiers × 28cell lines), DNA methylation (379,745 identifiers × 28
cell lines) and base substitution (6 identifiers × 28 cell lines) data. SNF
created a similarity matrix for each data type and fused them into one
similarity matrix. The network fusion step uses a nonlinear method
based on themessage-passing theory that iteratively updates every net-
work and converges the data to a single network [23]. The fused SNF
network was then subjected to consensus clustering (SNF-CC) by the
function “ExecuteSNF.CC” from the R package “CancerSubtypes” [46].
The optimal parameters were tested and set as follows: 1. Patients clus-
tering: K = 20, alpha = 0.5, t = 20, maxK = 10, pItem = 0.8, reps =
500. 2. Cell line clustering: K = 10, alpha = 0.5, t = 20, maxK = 10,
pItem= 0.8, reps = 500.

Normalized mutual information (NMI) was calculated to assess the
contributions to the network and compatibility of the data sources as
described in ref. [23]. We calculated NMI values for the five data types
using the function “rankFeaturesByNMI” in the R package “SNFtool”
[23]. The percentages of the top-ranking features were used to select
datatypes in cell lines for similar network fusion and clustering.

2.5. DNA methylation analysis

We used the R package
“IlluminaHumanMethylation450kanno.ilmn12.hg19” [47] to analyze
and annotate DNA methylation data. We also obtained a list of 847
unique smoking-related DNA methylation probes from the two repeats
in the experiments conducted by Vaz et al. In their study, there were
633 CSC-induced probes in the first experiment and 242 CSC-induced
probes in the repeated experiment. We considered the union of these
two sets of experiments and there were a total of 847 unique probes
from the two experiments. The smoking-related methylation signature
was composed by calculating the mean of the β values of the 847
smoking-related DNA methylation probes for each patient and cell
line. We then compared the difference in the smoking-relatedmethyla-
tion signatures between the two subtypes and KRAS wild-type group
(Kruskal-Wallis test and Wilcoxon test, the Q value is FDR-adjusted P
value) in patients and cell lines.

2.6. Analysis of differentially expressed genes (DEGs)

To define genes that were differentially expressed between the two
subtypes of patients and cell lines, we used the function “lmFit” in the R
package “limma”.
For patients, we first selected genes at Q b 0.25. Then, we ordered
these genes according to their log fold-change (logFC). We chose the
genes with Q b 0.25, |logFC| N 0.5 as PS1-DEGs (n = 729) and PS2-
DEGs (n = 2963).

Similarly, for cell lines, we also first selected genes at Q b 0.25. Then,
we ordered these genes according to their logFC. We chose the genes
with Q b 0.25, |logFC| N 0.5 as CS1-DEGs (n = 444) and CS2-DEGs
(n= 356). The above DEGswere then subjected to gene set enrichment
analysis (GSEA) using gene sets including Hallmark (MSigDB v6.1),
KEGG (MSigDB v6.1) and Reactome (MSigDB v6.1).

2.7. Immune feature analysis

We used recently published TIL fraction data for TCGA LUAD pa-
tients according to Saltz et al. [18], who used deep learning methods
(convolutional neural networks) to estimate TILs on hematoxylin
and eosin stained (H&E-stained) slides. In our study, we took advan-
tage of their data and built a linear model, Expi = β0 + β1 × TIL
fractioni + εi to identify gene expression that was significantly associ-
ated with the TIL fraction of patients. We termed these genes “TIL-as-
sociating genes”. Q values are FDR adjusted P values. Genes with Q b

0.05 were considered TIL-associating genes. There were 214 positive
TIL-associating genes and 3 negative TIL-associating genes (Supple-
mentary Table 2). To explore whether TIL-associating genes were
expressed in the cell lines, we plotted expression density curves of
TIL-associating genes as well as 100 random background genes. After
ensuring the expression of TIL-associating genes in both patients and
cell lines, we calculated a composite score as the TIL-associating
score according to the expression of TIL-associating genes. First, we
median-centered each TIL-associating gene across the patients or cell
lines. Then, we calculated the TIL-associating score by subtracting
the mean of 3 negative TIL-associating genes from the mean of 214
positive TIL-associating genes. We then compared the TIL-associating
score among the KRAS-mutant subtypes and KRAS wild-type group
of LUAD patients and cell lines.

2.8. KRAS dependency score calculation

Two independent RAS gene expression signatures were used to cal-
culate the KRAS dependency score. First, we calculated the “Singh
Score” according to Singh et al. [48]. There were 262 KRAS-
upregulated genes and 88 KRAS-downregulated genes in their study.
We first median-centered these gene expression levels across all the
samples. Next, we calculated the “Singh Score” by subtracting the
mean of KRAS-downregulated genes from the mean of KRAS-
upregulated genes.

Similarly, we calculated the “Loboda Score” according to Loboda et al
[49]. Briefly, we calculated a composite score as described in [49,50].
There were 99 RAS-upregulated genes and 37 RAS-downregulated
genes according to Loboda et al. [49]. We first median-centered these
genes across the samples. Then we calculated the “Loboda Score” by
subtracting the mean of KRAS-downregulated genes from the mean of
KRAS-upregulated genes.

2.9. Drug screening data analysis

We compared the LN(IC50) of 265 drugs among the two CS and
KRAS wild-type cell lines (Kruskal-Wallis test and Wilcoxon test).
Drugs that were specifically sensitive to CS1 and CS2 were selected for
further analysis. 1. CS1-specific drugs (n = 12), criteria: LN(IC50)CS1
b LN(IC50)CS2, P b 0.05; LN(IC50)CS1 b LN(IC50)WT, P b 0.05; and
LN(IC50)CS2 ≈ LN(IC50)WT, P N 0.05. Wilcoxon test was used for
pairwise comparison. 2. CS2-specific drugs: no drug met the following
criteria: LN(IC50)CS2 b LN(IC50)CS1, P b 0.05; LN(IC50)CS2
b LN(IC50)WT, P b 0.05; LN(IC50)CS1 ≈ LN(IC50)WT, P N 0.05. There
was only 1 drug that met the following criteria: LN(IC50)CS2
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b LN(IC50)CS1, P b 0.05; LN(IC50)CS2 b LN(IC50)WT, P b 0.15; LN(IC50)CS1
≈ LN(IC50)WT, P N 0.05. We listed and plotted all these subtype-
specific drugs in Fig. 6, Supplementary Fig. 9 and Supplementary
Table 3.

2.10. Univariate and multivariate analysis of drug prediction

We used the data of 28 KRAS-mutant lung cancer cell lines and built
the following linear models for drug sensitivity prediction.

Univariate regression model:

LN IC50ð Þi ¼ β0 þ β1 � smoking–related methylation signaturei þ εi

LN IC50ð Þi ¼ β0 þ β1 � TIL−associating scorei þ εi

LN IC50ð Þi ¼ β0 þ β1 � KRAS dependency scorei þ εi

LN IC50ð Þi ¼ β0 þ β1 � smoking–related mutational signaturei þ εi

LN IC50ð Þi ¼ β0 þ β1 � STK11mutation statusi þ εi

Multivariate regression model:

LN IC50ð Þi ¼ β0 þ β1 � smoking–related methylation signaturei þ β2
� TIL−associating scorei þ β3 � KRAS dependency scorei
þ β4 � smoking–related mutational signaturei þ β5
� STK11 mutation statusi þ εi
Fig. 1. SNF-CC identifies two robust subsets of KRAS-mutant lung adenocarcinomas in patients a
class. (b) Silhouette values for the k = 2 to k= 5 classes. (c) The percentages of important feat
integrated 3 data types of cell lines (N= 28) and similarity matrices for each class.
3. Results

3.1. Identification of two major subtypes of KRAS-mutant lung
adenocarcinoma

3.1.1. Patient subtypes
We integrated DNA methylation, mRNA expression, miRNA expres-

sion, SCNAs and base substitution (C N A, C N G, C N T, T N A, T N C and T
N G), for a total of 5 data types, and we used SNF-CC [23,51] to cluster
128 KRAS-mutant lung adenocarcinoma patients (TCGA) into two sub-
types (see 2.4 for detailed methods). The use of one data type yielded
different classification results (Supplementary Fig. 1). By contrast, the
SNF network captured both shared and complementary information
from the above 5 data types and identified two subtypes in KRAS-
mutant lung adenocarcinomas, PS1 and PS2 (silhouette = 0.92)
(Fig. 1a and b). We next sought to evaluate the contribution of each
data type to the fused network by NMI value [23]. The percentages of
important features from each datatype were calculated based on the
NMI values. We found that the fused network was mainly driven by
three data types, mRNA expression (18.3% contribution), DNAmethyla-
tion (20.5%) and base substitution (16.7%), according to the top 20%
NMI (Fig. 1c) (Supplementary Table 4).
3.1.2. Cell lines' subtypes
To explore potential treatments for each subtype, we next sought to

identify the subtypes in 28 LUAD cell lines (GDSC) harboring KRASmu-
tations. We used the three most important datatypes that contribute to
the fused network from the patient clustering, namely, base substitu-
tion, DNA methylation and gene expression. Similarly, we identified
nd cell lines. (a) SNF-CC integrated 5 data types of patients and similarity matrices for each
ures (top 20% NMI) from each data type that contribute to the fused network. (d) SNF-CC
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lines (b). Probes hypermethylated in PS1 or CS1 are labeled in dark red (difference N 0.2, Q b 0.1), whereas probes hypermethylated in PS2 or CS2 are labeled in dark blue (difference b

−0.2, Q b 0.1). Wilcoxon test, Q values are FDR-adjusted P values. (c) and (d) Comparison of the smoking-related methylation signature among the three groups in patients (c) and
cell lines (d) Wilcoxon test was used for the comparison.
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two subtypes of mutant KRAS cell lines (N=28), CS1 (N=14) and CS2
(N= 14) (Fig. 1d).

3.2. Biological features of the KRAS subtypes

Given that DNAmethylation, base substitution (somatic mutations),
and gene expression were the 3 major datatypes contributing to the
heterogeneity of KRAS-mutant LUAD, we extracted and characterized
the biological features of the KRAS subtypes from these datatypes.

3.2.1. Smoking-related methylation signature
Since DNA methylation was the top 1 datatype contributing to the

heterogeneity and smoking can cause epigenomic perturbations in
lung tissues, we assessed both the global and smoking-induced DNA
methylation patterns of the two subtypes.

Both PS2 and CS2 displayed global hypermethylation compared
with PS1 and CS1, respectively (995 differentially methylated probes
(DMPs) in PS2 vs. 20 DMPs in PS1 (Fig. 2a); 4626 DMPs in CS2 vs. 624
DMPs in CS1 (Fig. 2b)). Next, we composed the smoking-related meth-
ylation signature activity using the average β values of 847 unique
smoking-related probes from two repeats of the experiment according
to Vaz et al. [38] and compared the signature activity between the two
subtypes. We found that the activity of smoking-related methylation
signature was significantly higher in PS2 than in PS1 (P = 0.0094,
Wilcoxon test) and KRAS wild-type patients (P = 0.00012, Wilcoxon
test) (Fig. 2c), whereas there was no difference in the smoking-related
methylation signature activity between PS1 and KRAS wild-type pa-
tients (P = 0.71, Wilcoxon test) (Fig. 2c). The results suggested that
PS2 exhibited more epigenomic alterations related to smoking
compared with PS1 and KRAS wild-type patients. Similarly, CS2
displayed the highest smoking-related methylation signature activity
compared with CS1 (P = 0.00037) and KRAS wild-type cell lines (P =
0.00021). Additionally, CS1 and KRASwild-type cell lines showed simi-
lar lower smoking-related methylation signature activity (P = 0.28)
(Fig. 2d).

3.2.2. TIL-associating score
The second important datatype contributing to fused network for

clusteringwasgeneexpression.Wenext analyzed theenrichedpathways
of the DEGs (Q b 0.25, |logFC| N 0.5) in each subtype (PS1/CS1-DEGs and
PS2/CS2-DEGs). The enriched pathways were very similar between the
corresponding subtypes of patients and cell lines (Fig. 3a and b). For ex-
ample, PS1 and CS1were both enriched for lung cancer poor survival sig-
natures, cell cycle andmetabolic pathways (Qb 0.1) (Fig. 3a); By contrast,
PS2 and CS2were both enriched for pathways such as allograft rejection,
inflammatory response, interferon-gamma (IFN-γ) response, and KRAS
signaling up, among others (Q b 0.1) (Fig. 3b).

Given that both PS2 and CS2 displayed active immune pathways, we
decided to further characterize the immunological features of the KRAS
subtypes. We first compared the tumor-infiltrating lymphocyte (TIL)
fractions estimated from H&E-stained slides according to Saltz et al.
[18] among the three groups. We found that PS2 exhibited the highest
TIL fraction (median 0.056) compared with PS1 (median 0.030, P =
0.027) and wild-type (median 0.045, P = 0.10) (Fig. 3c). However, we
could not compare the TIL fractions in cell lines due to the lacking of a
tumor microenvironment.

To quantify the immunogenicity in the cell line subtypes,we derived
a TIL-associating score using 217 TIL-associating genes (Supplementary



Fig. 3. The transcriptomic and immunological features of the KRAS subtypes. (a) The enriched pathways of PS1 and CS1 according to GSEA, Q b 0.1 (Q is FDR adjusted P value). (b) The
enriched pathways of PS2 and CS2 by GSEA, Q b 0.1 (Q is FDR adjusted P value). (c) Comparison of TIL fractions estimated from H&E-stained slides among the three groups. Wilcoxon
test was used for the comparison. (d) The distribution of TIL-associating genes in PS1-DEGs or PS2-DEGs (Hypergeometric test). (e) Comparison of TIL-associating scores among the
three groups of patients and cell lines. Wilcoxon test was used for the comparison.
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Table 2) that were significantly associated with the TIL fraction (Q b

0.05) (see 2.7 for detailed methods). These genes were enriched in
pathways such as allograft rejection, IFN-γ, and inflammatory response,
among others (Supplementary Fig. 2a). Given that the tumor samples
from the patients were infiltrated by immune cells and other cell
types, we were concerned that part of TIL-associating genes might be
contributed by infiltrated immune cells but not cancer cells. If this sce-
nario was true, then a portion of TIL-associating genes would exhibit
very low expression in cancer cell lines. Therefore, we checked the ex-
pression pattern of all 217 TIL-associating gene in the KRAS mutant
cell lines. We split these 217 genes into 47 reported immune genes
[52] and 170 non-immune genes. Importantly, we did not observe any
differential expression patterns among the 47 immune genes, the
other 170 genes and randomly sampled 100 background genes in lung
cancer cell lines (Supplementary Fig. 2b), suggesting that the TIL-
associating geneswere indeed expressed by the tumor cells themselves.
Interestingly, these genes were significantly enriched in PS2-DEGs,
which indicated that PS2 tumors were more immunogenic than PS1
tumors (P = 3.25e-71, Hypergeometric test) (Fig. 3d). Thus, we com-
posed a TIL-associating score according to the expression of the TIL-
associating genes (see 2.7 for detailed methods). We then could com-
pare the TIL-associating score not only in the patients but also in the
cell lines. Indeed, we found that the TIL-associating score displayed
the same trend between patients and cell lines. PS2/CS2 (median: PS2
= 0.92, CS2 = 0.43) had the highest TIL-associating score, followed by
wild-type KRAS patients/cell lines (wtKRAS_P/wtKRAS_C) (median:
wtKRAS_P = −0.0031, P = 0.0061 and wtKRAS_C = 0.16, P =
0.0089); PS1/CS1 had the lowest TIL-associating score (Fig. 3e) (medi-
an: PS1 = −1.24, P = 1.6e-08 and CS1 = −0.17, P = 0.00015).

In addition,we compared the spatial structural pattern of TIL accord-
ing to Saltz et al. [18]. Interestingly, PS2 had the highest proportion of
the “Brisk, diffuse” category (48.6%, 34/70) compared with PS1 (34.5%,
20/58) and KRAS wild-type group (32.2%, 122/379) (Supplementary
Fig. 3). In contrast, PS1 had the highest proportion of “Non-Brisk,
focal” category (13.8%, 8/58) compared with PS2 (8.6%, 6/70) and
KRAS wild-type group (8.2%, 31/379) (Supplementary Fig. 3). All these
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findings indicated that PS2/CS2 were the most immunogenic, whereas
PS1/CS1 were the least immunogenic and were even worse than wild-
type KRAS patients/cell lines.

3.2.3. KRAS dependency score
Through pathway enrichment analysis, we found that KRAS signal-

ing was significantly enriched in PS2 and CS2, although KRASmutations
existed in both subtypes. Additionally, there are reports suggesting that
a gene expression signature-based pathway readout might bemore ap-
propriate than relying on a single indicator (KRAS mutation status) of
pathway activity [48,49]. Tomeasure Ras pathway activation, we calcu-
lated the KRAS dependency score (Singh Score and Loboda Score) ac-
cording to two previous studies by Singh et al. [48] and Loboda et al.
[49]. In both studies, they developed a method for the quantification
of Ras-dependent gene expression that provides a better measure of
Ras activity in cancer cells than KRASmutation type analysis. Important-
ly, we found that PS2 had a significantly increased KRAS dependency
score compared with PS1 (Singh Score: P = 9.3e-05 and Loboda
Score: P = 6.9e-06, Wilcoxon test) and KRAS wild-type group (Singh
Score: P = 2.9e-07 and Loboda Score: P = 6.4e-08) (Fig. 4a and b),
supporting the presence of a hyperactive Ras pathway in PS2. PS1 and
KRAS wild-type patients had similar KRAS dependency scores despite
their different KRAS mutation statuses (Singh Score: P = 0.98 and
Loboda Score: P=0.99). The KRAS dependency score displayed a simi-
lar trend in cell lines, but with less significance. CS2 had the highest
KRAS dependency score compared with CS1 (Loboda Score: P = 0.023
and Singh Score: P= 0.15). CS1 and KRASwild-type cell lines had sim-
ilar KRAS dependency scores (Singh Score: P = 0.18) (Fig. 4c and d).
Fig. 4. Comparison of KRAS dependency scores among the KRAS subtypes. (a, b) Comparison o
independent studies.Wilcoxon test was used for the comparison. (c, d) Comparison of KRA
independent studies. Wilcoxon test was used for the comparison.
3.2.4. Smoking-related mutational signature
Finally, base substitution was the third important datatype contrib-

uting to the fused network for clustering. We assessed the somatic mu-
tational pattern derived from base substitution and extracted 4 somatic
mutational signatures from 543 lung adenocarcinoma patients (Supple-
mentary Fig. 4a). Similarly, we extracted 5 somatic mutational signa-
tures from 178 lung cancer cell lines (Supplementary Fig. 5a). Then,
we compared these mutational signatures to 30 known somatic muta-
tional signatures in theCOSMICdatabase (cancer.sanger.ac.uk)using co-
sine similarity (CS) (Supplementary Fig.4b and 5b) [40,53]. Among
them, signature 1 of patients (PSig1) and signature 1 of cell lines
(CSig1) were both characterized primarily by C N A mutations and
were highly similar to Signature 4 in COSMIC (smoking, CS = 0.96 and
CS= 0.91, respectively) (Fig. 5a and b). Moreover, PSig1 accounted for
66% of the total somatic mutational signature activity in the patients,
and CSig1 accounted for 50% of the total mutational signature activity
in the cell lines. The remaining somatic signatures represented a
relatively small fraction of the total normalized mutational signature
activity (Supplementary Figs. 6 and 7). Therefore, the smoking-related
mutational signature was the most important somatic mutational
signature.

Importantly, we found that PSig1 was significantly increased in PS1
(median 0.86) compared with PS2 (median 0.67, P = 4.0e-06) and
wild-type KRAS patients (median 0.57, P = 6.0e-11). Furthermore,
smoking-related mutational signature activity was not significantly dif-
ferent between PS2 and KRAS wild-type patients (P = 0.11) (Fig. 5c).
Very similarly, the smoking-related mutational signature activity was
the highest in CS1 (median 0.73) compared with CS2 (median 0.52, P
f KRAS dependency scores among PS1, PS2 and KRASwild-type patients according to two
S dependency scores among CS1, CS2 and KRAS wild-type cell lines according to two

http://cancer.sanger.ac.uk


Fig. 5.Genomic and clinical features of the KRAS subtypes. (a) Smoking-relatedmutational signatureswere retrieved from themutational profiles of LUADpatients or lung cancer cell lines.
The mutation types are displayed on the horizontal axis, whereas the vertical axis depicts the percentage of mutations attributed to a specific mutation type. (b) Comparison of the
smoking-related mutational signatures with the reported mutational signatures in COSMIC. The similarity measures are based on the cosine similarity. (c) Differential activities of the
smoking-related mutational signature among the subtypes of patients and cell lines. The Kruskal-Wallis test and Wilcoxon test were used for the comparison. (d) Comparison of KRAS,
STK11, KEAP1 and TP53 mutation types between the two subtypes of patients and cell lines. Fisher's exact test, ****P b 0.0001; ***P b 0.001; **P b 0.01; *P b 0.05. (e) The clinical
features between the two subtypes of patients. Fisher's exact test or Wilcoxon test, *P b 0.05.
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=0.012) andwild-typeKRAS cancer cell lines (median 0.50, P=0.012).
Additionally, therewas no difference in the smoking-relatedmutational
signature activity between CS2 and the wild-type KRAS cell lines (P =
0.70) (Fig. 5c).
3.2.5. STK11 and KEAP1 mutation status
Finally, we also assessed 54 significantly mutated genes in lung can-

cer from the Firehose Broad website (http://gdac.broadinstitute.org/;
Jan 2016). We found that STK11 mutations (P = 5.22e-07, Fisher's

http://gdac.broadinstitute.org


Fig. 6. Screened drugs with selective sensitivity toward the KRAS subtypes. (a) Drugs that selectively killed CS1 or CS2. (b–m) CS1-specific drugs that are ordered by logFC: enzastaurin,
lestaurtinib, cytarabine, docetaxel, vinblastine, cisplatin, AZD7762, NU7441, olaparib, GSK429286A, tanespimycin and CCT-018159. The Wilcoxon test was used for the pairwise
comparison. (n) CS2-specific drug: QL-XII-61. The Wilcoxon test was used for the pairwise comparison.
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exact test) and KEAP1 mutations (P = 0.0085) were significantly
enriched within PS1, whereas the distribution of TP53 mutations was
less significant between the two subtypes (P = 0.10) (Fig. 5d). More-
over, the types of KRAS mutation types were not significantly different
between the two subtypes (patients: P = 0.43, cell lines: P = 0.34)
(Fig. 5d and Supplementary Table 5). A similar enrichment pattern
was also observed in the cell lines although the enrichment of STK11
mutations in the cell lines was not as significant as in the patients.
STK11 mutations (P = 0.23) and KEAP1 mutations (P = 0.0007) oc-
curred more frequently in CS1 than CS2, whereas the distribution
of TP53 mutations was relatively even between the cell line subtypes
(P = 0.43) (Fig. 5d).

3.2.6. Other features
Although the smoking-relatedmutational signature was significant-

ly higher in PS1/CS1 while the smoking-related methylation signature
was significantly higher in PS2/CS2, the smoking pack-years and
smoking history of the patients did not show any difference between
two the subtypes (Fig. 5e), suggesting that the molecular smoking sig-
nature is a more accurate molecular measurement of smoking-
induced genomic damage and epigenomic alterations. Another interest-
ing feature is that PS1 patients were significantly younger than PS2 pa-
tients (median age 63 vs. 69 years, P b 0.05) (Fig. 5e), providing further
evidence supporting a poor prognosis for PS1.

3.3. Screening for compounds with selective sensitivity to the KRAS
subtypes

After characterizing the key features of the subtypes, we next sought
to explore potential drugs thatwere selective for each subtypeusing cell
line models. We reanalyzed 265 drugs that tested on KRAS-mutant and
KRASwild-type lung adenocarcinoma cell lines from GDSC [30–32] and
validated some of our results using two other large-scale cell line drug
sensitivity projects, CCLE and CTRPv2 [28,29]. We were particularly in-
terested in drugs with specific sensitivity to CS1 or CS2 (Fig. 6a). Twelve
CS1-specific drugs and 1 CS2-specific drugwere discovered according to
the pairwise comparison of CS1, CS2 and the KRASwild-type group.

CS1-specific drugs can roughly be classified into the following cate-
gories. First, a protein kinase C beta (PKCβ) inhibitor, enzastaurin, was
found to preferentially kill CS1 (LN (IC50) = 1.89) compared with CS2
(LN (IC50) = 4.90, P = 0.044) and wild-type KRAS cell lines (LN
(IC50)=3.16, P=0.013) (Fig. 6b). Second, a pyrimidine nucleoside an-
alog, cytarabine, was applied. CS1 was sensitive to cytarabine treatment
(LN (IC50)=−1.32) comparedwith CS2 (LN (IC50)= 1.05, P=0.013,
Wilcoxon test) and wild-type KRAS cell lines (LN (IC50) = 0.83, P =
0.010, Wilcoxon test). CS2 and wild-type KRAS cell lines were equally
resistant to cytarabine (P=0.94). Importantly, cytarabine showed sim-
ilar specific toxicity with less significance to CS1 (AUC = 12.90) com-
pared with CS2 (AUC = 13.59, P = 0.15) using drug sensitivity data
from CTRP v2 (Fig. 6c). The structure of this drug mimics pyrimidine,
and it can inhibit S phase of the cell cycle. Importantly, the cell cycle
pathway was both enriched in both CS1 and PS1 (Fig. 3a). Therefore,
cytarabine is a very promising drug for KRAS tailored therapy.

In addition, lestaurtinib, a multiple tyrosine kinase inhibitor (FLT3,
JAK2), also showed specific killing effect for CS1 (LN (IC50) = −0.94)
compared with CS2 (LN (IC50) = 0.58, P = 0.018) and wild-type
KRAS cell lines (LN (IC50)=−011, P=0.008) (Fig. 6d). It has been re-
ported that FLT3 promotes the activation of RAS signaling and phos-
phorylation of downstream kinases in leukemia [54]. However, the
role of this inhibitor in KRAS-mutant LUAD has been less explored.

Moreover, chemotherapy drugs, such as two microtubule-targeted
drugs, docetaxel and vinblastine, and one DNA crosslinker, cisplatin,
showed greater toxicity to CS1 than to CS2 (docetaxel: CS1_ LN (IC50)
= −5.97, P = 0.045, vinblastine: CS1_ LN (IC50) = −4.41, P = 0.034,
cisplatin: CS1_ LN (IC50) = 2.43, P = 0.018) and KRAS wild-type
group (Fig. 6e–g). in addition, drugs involved in DNA damage response,
such as the Chk1 inhibitor AZD7762, DNA-dependent protein kinase
(DNA-PK) inhibitor, NU7441, and PARP1 inhibitor, olaparib, all showed
better efficacy in CS1 than CS2 (AZD7762: CS1_LN (IC50) = −1.12,
CS2_LN (IC50) = 0.17, P = 0.021; NU7441: CS1_LN (IC50) = 1.82,
CS2_LN (IC50) = 2.74, P = 0.039; olaparib: CS1_LN (IC50) = 3.63,
CS2_LN (IC50) = 4.16, P = 0.029) (Fig. 6h–j). Interestingly, DNA-PK
gene expression was significantly increased in PS1 compared to PS2
(P = 0.0076) and a similar trend was observed in the cell lines, but
with less significance (Supplementary Fig. 8a and b). Considering that
the cell growthpathway (MTORC1 signaling) and the cell cycle pathway
were activated in PS1/CS1 (Fig. 3a), it is reasonable that these chemo-
therapy drugs were more effective against the faster growing cells
(CS1). In addition, given that smoking-induced genomic damage was
more severe in PS1/CS1, it is plausible that that drugs involved in DNA
damage repair were also more toxic to CS1.

Finally, previously reported compounds or targets [7,33], ROCK1, 2
inhibitor GSK429286A and HSP90 inhibitors tanespimycin (17-AAG)
and CCT-018159, were also discovered in our study that were more
toxic to CS1 compared with CS2 (GSK429286A: CS1_LN (IC50) = 4.91,
CS2_LN (IC50) = 5.80, P = 0.0082; tanespimycin: CS1_LN (IC50) =
−2.69, CS2_LN (IC50) = −1.21, P = 0.013; CCT-018159: CS1_LN
(IC50) = 2.27, CS2_LN (IC50)= 3.75, P=0.029) (Fig. 6k–m). A similar
result, but with less significance was obtained for tanespimycin using
data from CCLE (P = 0.095) (Fig. 6l).

The CS2-specific drug, QL-XII-61 (BMX, BTK inhibitor), which is re-
lated to the immune pathway, showed a selective killing effect against
CS2 (CS1_LN (IC50) = 4.81, CS2_LN (IC50) = 3.78, P = 0.044)
(Fig. 6n). Interestingly, both PS2 and CS2 were enriched for active B
cell receptor (BCR) signaling (Fig. 3b). Moreover, BTK expression was
significantly increased in PS2 than PS1 (P = 6.6e-10), and a similar
trend, but with less significance was observed in the cell lines (Supple-
mentary Fig. 8c and d). All evidences implied that BTK inhibitors might
be potential candidates for PS2 patients.

In addition, as a positive control, we found thatMEK1/2 and BRAF in-
hibitors killed both subtypes of KRAS-mutant cell lines but spared KRAS
wild-type cell lines (Supplementary Fig. 9).
3.4. Drug response prediction by the subtype features

Given that we found several promising drugs that were synthetical
lethal to the KRAS subtypes, wewere interested in investigatingwheth-
er the drug response could be predicted by the biological features of the
KRAS subtypes using both univariate and multivariate regressions.

Importantly, all the candidate drugs could be predicted by one or
more features in the univariate analysis and some of them could be pre-
dicted by the defining features in themultivariate analysis. For example,
cytarabine could be predicted by the smoking-related methylation sig-
nature through univariate (coefficient (β) = 7.31, 95% CI: 2.83 to
11.79, P = 0.0027) or multivariate (β = 7.24, 95% CI: 1.81 to 12.67,
P = 0.012) analysis (Fig. 7a and b). The positive β value for the
smoking-related methylation signature suggested that IC50 increased
with increases in smoking-related methylation signature activity.

In addition, the IC50 values of vinblastine (β= 5.66, 95% CI: 0.17 to
11.16, P = 0.044), AZD7762 (β = 6.52, 95% CI: 3.08 to 9.97, P =
0.00094) and GSK429286A (β = 2.39, 95% CI: −0.0065 to 4.78, P =
0.051) (Fig. 7b) were all positively associated with the smoking-
related methylation signature in the multivariate analysis, indicating
that the smoking-related methylation signature was a very strong pre-
dictor for multiple drugs.

Moreover, NU7441 could be predicted by the smoking-related mu-
tational signature using either univariate (β = −1.85, 95% CI: −3.58
to −0.11, P = 0.038) or multivariate (β = −2.26, 95% CI: −4.45 to
−0.070, P = 0.044) regression (Fig. 7a and b). The results indicated
that NU7441 (DNA-PK inhibitor) would be more effective against
tumor cells with higher smoking-related mutational signature activity.



Fig. 7. Drug sensitivity can be predicted by the KRAS subtype features. (a) The drug sensitivity was predicted by the KRAS subtype features in the univariate analysis. The P value is the
significance of the coefficients (β) in the univariate regression model. ****P b 0.0001; ***P b 0.001; **P b 0.01; *P b 0.05; ·P b 0.1. (b) Forest plots of coefficients (β) with 95%
confidence intervals for features predicting the drug sensitivity in the multivariate analysis. the P value is the significance of the coefficients (β) in the multivariate regression model.
**P b 0.01; *P b 0.05; ·P b 0.1.
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Although CCT-018159 and tanespimycin are both HSP90 inhibitors,
their predictors were quite different. CCT-018159 sensitivity could be
predicted by the KRAS dependency score in both univariate (β = 0.53,
95% CI: −0.017 to 1.09, P = 0.057) and multivariate (β = 0.64, 95%
CI: −0.056 to 1.33, P = 0.070) regressions (Fig. 7a and b). In contrast,
tanespimycin could be predicted by either the smoking-relatedmethyl-
ation signature (β= 8.40, 95% CI: 3.47 to 13.36, P= 0.0019, univariate
analysis) (β=6.43, 95% CI: 0.27 to 12.59, P=0.042, multivariate anal-
ysis) or STK11 mutation status (β = −1.69, 95% CI: −3.35 to −0.039,
P = 0.045, univariate analysis) in agreement with a previous report
showing that co-mutant KRAS/STK11 lung cancer cells were sensitive
to HSP90 inhibitors [33]. However, the STK11 mutation status was not
any more significant when the smoking-related methylation signature
was added as a predictor, suggesting that the smoking-related methyl-
ation signature is a stronger predictor than STK11 mutation status for
tanespimycin.

Finally, the CS2-specific drug, QL-XII-61, was significantly predicted
by the TIL-associating score both in univariate (β = −0.86, 95%
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CI:−1.69 to −0.033, P = 0.043) and multivariate (β = −1.06, 95% CI:
−2.14 to 0.020, P=0.054) analyses (Fig. 7a and b), suggesting that it is
more effective against tumor cells with greater immunogenicity (a
higher TIL-associating score).

4. Discussion

KRAS is one of the most frequently mutated genes in human cancers
and related to smoking activity [34,35]. Gain-of-function mutations
in KRAS are thought to be involved in tumor initiation, invasion and
metastasis [55]. The design of therapeutics toward KRASmutations has
proven extremely challenging, although recent studies suggest that
targeting “undruggable” oncogenic KRAS may be an attainable goal
[56–58]. However, only recently has the heterogeneity of tumors
harboring KRAS mutations been recognized [33], which may provide
another layer of complexity to the treatment of this malignant tumor
type.

In this study, we identified five important features of the heteroge-
neity of KRAS-mutant tumors and cell lines, including smoking-
induced two processes. PS1 had an enhanced smoking-related muta-
tional signature, while PS2 had increased smoking-related methylation
signature although the reported smoking history were not different be-
tween the subtypes.We suspect that the brand of cigarettes and dosage
and length of smoking are probably the underlying cause of the
smoking-related features in the two subtypes. PS1 possibly consumed
a higher dosage in a shorter period, causing more severe DNA damage,
including the active smoking mutational signature and copy number
variations, and the patients were younger in this category. Moreover,
PS2 probably suffered from a longer exposure to a lower dosage of
smoking, which was not enough to cause much genomic damage but
led to the accumulation of smoking-specific DNAmethylation. Further-
more, oncogenic KRAS contributed to both the accumulation of the
smoking signature and the maintenance of smoking-induced methyla-
tion in these two subtypes. The smoking-history and smoking-pack
years were not significant different between the two subtypes. This re-
sult was like due to an insufficient or incorrect patient-reported
smoking history, suggesting that smoking molecular signatures were
more accurate indicators for predicting KRAS subtypes and drug sensi-
tivity than patient-reported smoking history which has also been sug-
gested elsewhere [59].

Given the key role of immunotherapy treatments in contemporary
cancer care, tumor-associated lymphocyte analysis is becoming increas-
ingly important. Studies suggest that high densities of TILs correlate
with favorable clinical outcomes, such as longer disease-free survival
or improved overall survival (OS) in multiple cancer types [60–63]. To
compare the TIL-associated features both in the patients and cell lines,
we derived a set of TIL-associating genes and composed a TIL-
associating score so that the TIL feature could also be measured in the
cell lines. By quantifying the TIL-associating score in the cell lines, we
were able to use this new metric for drug prediction.

Finally,we reanalyzed three publicly available cell line drug sensitiv-
ity datasets and discovered several promising drugs along with previ-
ously reported HSP90 inhibitors. Among them, the RAS mutation was
reported to disappeared after low-dose cytarabine treatment of in a
52-year-old women with myelodysplastic syndromes [64]. In addition,
patientswith acutemyeloid leukemia (AML) carryingmutant RAS expe-
rienced a greater benefit from higher cytarabine doses than patients
withwild-type RAS [65]. These studies togetherwith our results suggest
that cytarabine is a very promising drug for CS1/PS1. Another drug,
NU7441, which is a DNA-PK inhibitor, is also toxic to CS1/PS1. DNA-PK
plays a key role in the repair of DNA double-stranded breaks (DSBs) in
cancer cells [66–68]. CS1 shows increased smoking-related mutational
signature activity which in turn might activate DNA-PK. Moreover, the
sensitivity to NU7441 can be predicted by the smoking-related muta-
tional signature but by no other biological features, suggesting that
NU7441 may be used for mutant KRAS tumors with higher smoking-
related mutational signature activity. It is also worth noting that the
CS2-specific drug, the BTK inhibitor QL-XII-61, can be predicted by the
TIL-associating score, which corresponds to the observation that PS2/
CS2 are highly immunogenic. It is known that BTK kinase is a key ele-
ment of BCR signaling and plays important roles in the regulation of
B-cell activation, proliferation and differentiation [69,70]. Therefore,
our results might suggest a novel role of BTK inhibitors in the immuno-
genic KRAS subtype.

In summary, we identified twomajor subtypes of KRAS-mutant lung
adenocarcinoma patients, PS1 is characterized by increased activity of
the smoking-related mutational signature, a low TIL-associating score
and STK11/KEAP1 co-mutations. PS2 is characterized by increased activ-
ity of the smoking-relatedmethylation signature, an increased KRASde-
pendency and a high TIL-associating score. Importantly, the cell line
subtypes faithfully recapitulated all the biological features in the pa-
tients. We also identified several KRAS subtype-specific drugs in the
cell lines, and these drugs could be predicted by one or more biological
features of the KRAS subtypes. Our results shed light on the understand-
ing of the heterogeneity of KRAS-mutant lung adenocarcinomas and the
discovery of associated targeted drug. However, since our research
focus was a multiplatform analysis of KRAS-mutant lung adenocarci-
nomas, a relatively small sample size of patients and cell lines are cur-
rently available. Therefore, it is necessary to validate our results in
new datasets and use cell-line derived xenografts and/or patient-
derived xenograft mouse models to confirm these potential drugs in
the future.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.09.034.
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