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Aberrant deposits of neurofibrillary tangles (NFT), the main characteristic of

Alzheimer’s disease (AD), are highly related to cognitive impairment. However,

the pathological mechanism of NFT formation is still unclear. This study

explored di�erences in gene expression patterns in multiple brain regions

[entorhinal, temporal, and frontal cortex (EC, TC, FC)] with distinct Braak stages

(0- VI), and identified the hub genes viaweighted gene co-expression network

analysis (WGCNA) and machine learning. For WGCNA, consensus modules

were detected and correlated with the single sample gene set enrichment

analysis (ssGSEA) scores. Overlapping the di�erentially expressed genes (DEGs,

Braak stages 0 vs. I-VI) with that in the interest module, metascape analysis, and

Random Forest were conducted to explore the function of overlapping genes

and obtain the most significant genes. We found that the three brain regions

have high similarities in the gene expression pattern and that oxidative damage

plays a vital role in NFT formation via machine learning. Through further

filtering of genes from interested modules by Random Forest, we screened

out key genes, such as LYN, LAPTM5, and IFI30. These key genes, including

LYN, LAPTM5, and ARHGDIB, may play an important role in the development

of AD through the inflammatory response pathway mediated by microglia.

KEYWORDS

Braak stages, random forest, WGCNA, ssGSEA, neurodegeneration

Introduction

Via the distribution of neurofibrillary tangles (NFT) in the brain, Braak stages can

not only be used for the pathological classification of Alzheimer’s disease (AD) (Dickson,

1997), they are also related to memory and intellectual performance. However, to date,

the pathological mechanism of NFT formation is still unclear (Duyckaerts et al., 1997;

Grober et al., 1999). A large body of evidence indicates that at different stages of AD,
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the distribution region of NFT in the brain is also different.

For example, the entorhinal cortex (EC) is the area where

NFT deposits occur first in AD (Braak and Braak, 1991).

However, the pathological mechanism of its formation is still

unclear. Several hypotheses, such as oxidative damage, oxidative

stress, insulin resistance, apoE, neuroinflammation, and other

theories were established (Solomon et al., 2014; Nakamura

et al., 2018). Exploring the gene expression patterns of different

brain regions, especially EC, may better help understand the

mechanism of NFT formation.

Weighted gene co-expression network analysis (WGCNA)

is a biology algorithm used to describe the correlation between

clinical characters and gene expression based on the microarray

data (Langfelder and Horvath, 2008). WGCNA can be used for

clustering genes with highly correlated expression, for relating

the modules to phenotypes to get the most phenotypic trait-

related module, and for summarizing these co-expressed gene

clusters by identification of the module eigengene or hub genes.

Random forest (RF) is a more advanced machine learning

algorithm based on a decision tree (Sarica et al., 2017). Like other

decision trees, random forests can be used for both regression

and classification.

In this study, we performed ssGSEA, machine learning,

and WGCNA analysis on publicly accessible transcriptome

data obtained from the human different cortex regions of

individuals at different Braak stages. We found the similarities

and differences in the transcription patterns of the genome in

the three different brain regions [EC, temporal and frontal cortex

(TC, FC)] in Braak stages 0-VI. By evaluating the ssGSEA results

of EC, we found that the oxidative damage pathway plays a vital

role in classifying the Braak stages via the random forest and

best subset algorithm, the imp is 0.57. Through calculating the

correlation coefficients between the modules and the oxidative

damage pathway, we obtained a module of interest. We then

disclosed the overlapping genes between differentially expressed

genes (DEG, between Braak stage 0 and Braak stage I–VI) and

genes of interest in the module. Using these overlapping genes,

we conducted metascape analysis and further identified the

central players within themodule through network analysis. Our

findings reveal that C1QA, C1QB, LYN, CD68, LAPTM5, IFI30,

PI3KAP1, HCK, and ARHGDIB are significantly associated with

oxidative damage and immune response, which may be novel

biomarkers involved in AD.

Results

Identification of consensus modules
across di�erent cortical regions

Before WGCNA, the genes detected in GSE131617 were

filtered according to the filtering procedure described in

Method, and 13,629 genes were obtained. Then the microarray

data of 46 samples in each cortical region were read

by R for Hierarchical clustering (Supplementary Figure S1a).

The consensus network of scale independence and mean

connectivity analysis showed that when the weighted value

equals to 14, the average degree of connectivity was close to 0,

and scale independence was greater than 0.9, so the weighted

value was set to 14 (Supplementary Figure S1b). WGCNA

was performed to identify consensus modules. A comparison

between EC set-specific modules and EC-FC consensus modules

of the global co-expression network indicated that most EC

modules were preserved in FC (Figure 1A). The strong overlap

of the corresponding gene modules showed the similarity

of cluster patterns in the EC and FC regions. Figures 1B–G

and Supplementary Figures S1c, S2, S3 show that the overall

preservation of the three networks is a positive correlation.

The mean density of the three networks exceeded 0.9 in all

3 cortical regions, demonstrating that the overall structures of

the co-expression networks were similar for the three cortical

regions. These results indicated that the differences in these

cortical regions may exist in the particular genes within the

consensus network.

ssGSEA functional enrichment analyses
and key pathway identification and
validation help to find the module of
interest verified in WGCNA analysis in EC

In the above results, we found that the overall structures of

the co-expression networks were similar for the three cortical

regions. In addition, an abundance of studies have shown that in

the Braak stages I–II, aberrant deposits of NFT first appear in the

entorhinal cortex, which is significant for finding the potential

biomarkers and therapeutic targets of AD.

To explore the signaling pathways most related to

Alzheimer’s disease, first, the ssGSEA analysis was performed

(Figure 2A). The gene set of pathways related to Alzheimer’s

disease can be seen in Supplementary Table S1. The second, best

subset regression was conducted to identify the representative

subset (Figures 2B,C). From the results, we can see that the

feature number of best subsets is 8, and GO-NFT, HP-NFT,

oxidative damage, and axon degeneration pathway are saved

in the best subset. Next, we performed the random forest

algorithm based on the sklearn and boruta packages to analyze

the best subset of data to find the most important features, as

shown in Figure 2D and Supplementary Table S2, the oxidative

damage pathway was found to be the most important feature.

To identify the modules which are most significantly

associated with the oxidative damage pathway in EC, the

Pearson’s correlation coefficient between the module and

oxidative damage was calculated. The highest positive

association in the module trait relationship was found between
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FIGURE 1

(A) Comparison between EC set-specific modules and EC-FC consensus modules of the global co-expression network. The numbers in the

table represent genes that are shared between EC modules and consensus modules. The color code of the table is -log(p), where p is the

p-value of Fisher’s exact test of the overlap of the two modules. The darker the red, the more pronounced the overlap. (B,C) Clustering

dendrograms of consensus module eigengenes for identifying meta-modules show the presence of similar major branching patterns in the EC

and FC eigengene network. (D,G) The heatmap shows the eigengene adjacencies in EC and FC eigengene networks. Each row and column

correspond to an eigengene tagged by consensus module color. Within each heatmap, red represents high adjacency (positive correlation) and

blue represents low adjacency (negative correlation) as represented by the color legend. (E) Bar plot shows the preservation degree of each

consensus eigengene as the height of the bar (y-axis) where each colored bar corresponds to the eigengene of the associated consensus

module. The high-density value D (Preserve EC, FC) = 0.91 indicates the high overall preservation between the EC and FC networks. (F)

Adjacency heatmap of the preservation network between EC and FC consensus eigengene networks. The saturation of the red color indicates a

correlation preservation of EC and FC module eigengenes.

the black module and oxidative damage score (cor = 0.88, p

<0.001, Figure 2E), and we also found that the black module

had a high correlation with the aging and Aβ clearance pathway

(cor = 0.69, 0.56, p < 0.001, Figure 2E). Thus, the black module

was selected as a module of interest in subsequent analysis.

Identifying hub genes in the black
module

First, to find the DEG between Braak stage 0 and Braak

stages I–VI, the EC samples were grouped into individuals at

Braak stage 0 and Braak stages I–VI, and Limma packages

were performed. About 10% of the genes were significantly

changed (p < 0.05, Figure 3A), and the 201 DEGs were

enriched in interleukin-4 related pathways (Supplementary

Figure S4). We then performed overlap analysis between DEGs

and Top30 genes in the black module by online veen tool,

we found 26 genes that were in DEGs and also in the

black module (Figures 3B–D). These genes are highly related

to oxidative damage, suggesting that they might play an

important role in oxidative damage AD. We found that 21

genes of DEGs in the data set GSE53480 (expression data

from Tg4510 transgenic mice) also exist in the DEGs of

GSE131617 (Supplementary Figure S5). The Tg4510 mouse is

a classical model which is used to express pathological tau

in neurons, having a high correlation with NF formation.

Therefore, we chose this model to support our findings. To

prove that there is no gender bias among the 26 genes of

interest, we compared the DEGs between the genders, and

36 genes that were co-expressed in male and female patients

were identified. Among the 36 genes, 22 genes were also

found in the 26 interested genes (Supplementary Figure S6 and

Supplementary Table S5).
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FIGURE 2

ssGSEA and WGCNA analysis of the EC data. (A) Heatmap shows the ssGSEA scores of the di�erent gene sets in corresponding samples. (B) The

heatmap shows the adj R2 of the Best subset regression result of each ssGSEA pathway. (C) The plot shows the adj R2 of the number of features

in the Best subset regression model. (D)The bar plot shows the importance of each ssGSEA pathway by the RF model. (E) Pearson correlation

coe�cient between the pathway and module eigengenes, numbers in brackets indicate the corresponding p-values.

Identifying the hub gene functional
annotation

The above-identified overlapping genes were subjected to

GO functional and KEGG pathway enrichment analysis. The

biological processes of overlapping genes were found to focus

on the regulation of inflammatory response and leukocyte

degranulation. The molecular functions of overlapping genes

were found to focus on IgE binding, non-membrane spanning

protein tyrosine kinase activity, and phosphotransferase activity

(Figure 4 and Supplementary Figure S7).

Identification of the most significant
genes and network construction

To identify the most important genes related to oxidative

damage, the overlapping genes were further filtered by RF

classification. Gene counts were input into the RF classifier

model, and the unimportant genes, such as C1QA, C1QB,

CTSC, SLC2A5, UCP2, and others, were removed (Figure 5A

and Supplementary Table S3). To ascertain the significance of

genes and analyze the network in the corresponding modules,

the PPImaps were constructed via String (Figure 5B). Hub genes
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FIGURE 3

Identifying the overlapping genes between downregulated DEGs in the aged group and genes in the black module. (A) Heatmap of the

expression of DEGs. (B) Heatmap of the Top30 gene expression in the black module. (C) Using veen tools to find the overlap genes between

downregulated genes in DEGs and genes in the black module. (D) Heatmap showing the expression of the overlapping genes in di�erent

samples.

in the network, including PTPRC, LYN, LAPYM5, HCK, IFI30,

ARHGDIB, and PIK3AP1 were constructed. In the cell marker

database, we found that the distribution of the above genes in

brain cells was very similar, mainly inmicroglia cells (Figure 5C).

Discussion

NFT is the major pathological characteristic of

neurodegenerative diseases, such as PD (Parkinson’s

disease)/AD (Wang and Mandelkow, 2016). Exploring the

mechanism of NFT formation is extremely important for

discovering the therapeutic targets in these diseases. In this

study, we performed WGCNA, ssGSEA, and machine learning

analysis on the dataset GSE131617, which includes 46 samples

from individuals at Braak stages between 0 and I-VI. Data from

multiple samples based on the different brain regions (EC, FC,

TC) is a good candidate for WGCNA analysis. First, consensus

modules between different brain regions were constructed,

and 7 consensus modules were identified between EC and FC.

Figures 1B-G and Supplementary Figures S1c, S2, S3 showed

that the overall preservation of the three networks was a

positive correlation. The mean density of the three networks

exceeded 0.9 in all 3 consensus modules, demonstrating

that the overall structures of the co-expression networks

were similar for the 3 cortical regions. However, the purple,

pink, green-yellow, and magenta module of EC were not

recognized in the consensus module (EC, FC), indicating

that the difference between the two regions was related to

these modules. Furthermore, the black and red modules

in EC that are most related to oxidative damage and the

Aβ clearance pathway have not been recognized in the

consensus module identified by EC and TC (Figure 2E and

Supplementary Figure S2). These showed that TC was quite
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FIGURE 4

The Metascape of the overlapping genes. The network shows the GO terms that the log P (−23 to −8) correlates with the significance of the

enrichment.

FIGURE 5

Identifying the most important genes via RF and the cellular distribution of the important genes in the brain. (A) Random Forest algorithm result.

The blue box plot corresponds to the minimum, average, and maximum Z scores of a color attribute. The red, yellow, and green boxes represent

the Z scores of rejected, tentative, and confirmed genes, respectively. (B) The PPI network of important genes via String. (C) The heatmap shows

the distribution of the selected genes in di�erent cell types.

different from EC in the signal pathway of oxidative damage

and Aβ clearance.

A number of studies show that NFT formed by the

aggregation of tau is the main pathological character of AD,

the peak of tau aggregation occurs in the Braak stages I of

individuals in their 40–50 s, as opposed to in later life (Wischik

et al., 2014). Furthermore, many studies have shown that the EC

is the region where NFT deposits occur first during the process

of neurodegeneration (Cui et al., 2015). Therefore, studying the

differences in gene transcription levels between Braak stages I
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and Braak Stages 0 in the EC is extremely important to reveal the

pathogenesis and therapeutic targets of AD. It should be added

that we use the Braak stage as a simple qualitative marker of AD

to identify the DEGs between the Braak stage 0 and Braak stage

I–VI. In this study, when we performed ssGSEA and random

forest analysis on the dataset of EC samples, we found that

the unexpected oxidative damage signaling pathway was most

important when distinguishing between Braak stage 0 and Braak

stages I- VI rather than the signaling pathway related to NFT

(Figures 2A–D). This indicates that among the important basis

of Braak stages, the formation of NFT is more likely due to

changes in the expression level of genes related to the oxidative

stress pathway, rather than the NFT signaling pathway. When

we analyzed the overlapping genes in the black module which

were most related to oxidative damage and the DEG, we found

that these genes were not only related to oxidative damage

but also related to immune response and microglia-mediated

inflammation (Figures 2E, 3, 4). To identify the genes that were

most intensively related to Braak stages, we further used one of

the machine learning algorithms, Random Forest, and inputted

the expression matrix of the overlapping 26 genes as features

into the model for training, and finally screened out 9 key

genes (Figure 5A and Supplementary Table S3). When analyzing

these 9 molecules, we found that most of them are expressed

in microglia (Figure 5C), which further indicated that microglia

might play an important role in the Braak stages (0 vs. I–VI).

It has been reported that activated microglia can induce the

formation of NFT (Fan et al., 2017), and several hypotheses

can explain how the activated microglia mediates the formation

of NFT, such as complement pathway, IL-CDK5 pathway, and

exosome secretion, etc. (Quintanilla et al., 2004; Asai et al., 2015;

Saha and Sen, 2019; Vogels et al., 2019). However, this requires

further research, examining how molecules such as LYN, HCK,

and PTPRC, which are distributed in the microglia, promote the

formation of NFT. LYN and HCK, as Non-receptor tyrosine-

protein kinases, can combine with NLRP3, which is involved in

the phosphorylation of tau and the formation of NFT to promote

the release of IL1B from microglia (Fitzer-Attas et al., 2000;

Jevtic et al., 2017; Gwon et al., 2019; Kong et al., 2020). In the co-

expression network, PTPRC and LAPTM5were identified as hub

genes. PTPRC is not only an important regulator of T cell and B

cell antigen receptor signal transduction but also an enzyme that

dephosphorylates LYN. It has been reported that LAPTM5 can

not only regulate the production of pro-inflammatory cytokines

in macrophages but also regulate the antigen receptor signal

transduction of T cells and B cells (Zouali, 2014). There is a

lot of data showing that LAPTM5 and PTPRC are not only

co-expressed in AD/PD (Figure 5B), but also in systemic lupus

erythematosus, lung cancer, and other diseases (Salih et al.,

2019; Zhang et al., 2020, 2021). This indicated that LAPTM5

and PTPRC may play a similar role in the phosphorylation

of LYN. Moreover, in this study, we found that a decrease in

the expression of these co-expressed genes at Braak stage I- VI,

which was negatively correlated with the degree of NFT needs

further discussion. It has been reported that the expression

of LYN in activated microglia is less than that of homeostasis

microglia (Sierksma et al., 2020). This indicated that LYN may

play a role in activated microglia, and the decrease of PTPRC

and LAPTM5may lead to an increase of phosphorylated LYN so

that it can promote the release of inflammatory factors.

In this study, we also found that IFI30 and FCERIG in

the co-expression network were also distributed in microglia

(Figures 5B,C). It has been reported that both of them are highly

expressed in microglia around Aβ (Satoh et al., 2018), which

may imply that the two of them are involved in the function

of Aβ clearance (Figure 2E). However, in this study, we found

that their expression in Braak stage I–VI decreased. How their

reduction in microglia promotes the formation of NFT requires

further study.

To our surprise, ARHGDIB was found to be mainly co-

expressed with LAPTM5 and PTPRC in the co-expression

network. Its related pathways are involved in the GPCR

signaling pathway, apoptosis, and survival Caspase cascade

(Kardol-Hoefnagel et al., 2020). Through network analysis

(Figures 5B,C), we speculated that it may have similar functions

to LAPTM5 and PTPRC. A decrease in the expression of

ARHGDIB may also play a role in the formation of NFT.

Further studies are needed to reveal the function of ARHGDIB

in microglia.

In conclusion, through WGCNA and machine learning

analysis, we found that the EC, FC, and TC regions of

Braak stages 0-VI had similar genome transcription patterns.

Furthermore, we found that oxidative stress might play a key

role in the development of AD, which may be mediated by

ARHGDIB, IFI30, and LAPTM5, etc. through microglia.

Materials and methods

Data acquisition and preprocessing

The data used in this paper were obtained from the GEO

database in NCBI (Gene Expression Omnibus, http://www.

ncbi.nlm.gov/geo), and the data entry number is GSE131617

(Kikuchi et al., 2020, p. 1). The platform is Affymetrix Human

Exon 1.0 ST Array [transcript (gene) version, HuEx-1_0-st].

Gene expression in the cortex of Braak stages 0, I–II, III–IV,

and V–VI was detected. The normalized and log2-transformed

data from 71 samples were downloaded and the expression

matrix was obtained, and data filtering was performed before

WGCNA analysis. For data filtering, first, 61 samples with

a neuropathological diagnosis of minimal senile change and

AD were performed. Second, the gene type of APOE was

3∗3 and 15 samples were removed. Forty six samples in

the dataset were kept and the clinical characteristics of these

samples are shown in Supplementary Table S4. Probes without

corresponding annotation information were removed. There

were about 13,629 genes in the dataset.
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Single sample gene set enrichment
analysis

ssGSEA is an implementation method proposed for a single

sample GSEA (Subramanian et al., 2005; Barbie et al., 2009).

The difference between GSEA and ssGSEA is that ssGSEA does

not need to prepare an expression matrix file. The functions

of the gene set were acquired from a Molecular Signatures

Database (MSigDB) as described in the review, including

aging, insulin receptor pathways, oxidative stress, oxidative

damage, NFT, and Nicotine activity on dopaminergic neurons,

etc. The performances of the pathway in the gene set were

quantified by the ssGSEA algorithm (R package “gsva”) based on

transcriptome profiling data and pathway gene sets.

Application of best subset regression to
find the best subset of the ssGSEA
pathway

The entorhinal cortical samples were grouped into

individuals of Braak stage 0 and Braak stages I–VI. We used the

Braak stage as a binary category for simple AD diagnosis and

classification. Inputting the ssGSEA scores into the best subset

regression model via leaps package to predict which group the

samples belong to, and the best number of features as the input

for subsequent analysis.

Application of random forest algorithm
to find the most important pathway and
genes related to braak stages

The entorhinal cortical samples were grouped into

individuals of Braak stage 0 or individuals of Braak stages

I- VI. Inputting the overlapping genes counts and ssGSEA

enrich scores into the random forest classifier model via Boruta

package to predict which group the samples belonged to and

the most important overlapping genes and identify the ssGSEA

pathway for the most accurate model for grouping.

Construction of weighted gene
co-expression network and identification
of significant modules

Data were processed using R 3.4.2 software. To ensure

that the results of network construction are reliable, abnormal

samples were removed. Then, the weighted gene co-expression

network was constructed by the WGCNA package based on R

3.4.2. First, the Pearson correlation coefficient was calculated

to assess the similarity of the gene expression profiles. Second,

the correlation coefficients between genes were weighted by

a power function to obtain a scale-free network. A gene

module is a cluster of densely interconnected genes in terms

of co-expression. Then, the hierarchical cluster was used to

identify gene modules and different modules were represented

by different colors. The dynamic treecut method was used to

identify different modules, the adjacency matrix was converted

to a topology overlay matrix (TOM) and modules were detected

by cluster analysis during module selection.

Correlation analysis of gene modules
with clinical phenotype

To detect the associations of modules and clinical phenotype

(ssGSEA scores), first, the clinical phenotype data and gene

expression data were correlated using the match function.

Secondly, the associations of the module eigengene (ME) and

the clinical phenotype were calculated by Pearson’s correlation

analysis. Modules showing significant association to oxidative

damage pathway were obtained. At last, to further confirm the

modules with significant correlation to oxidative damage, the

correlation coefficient between the module membership (gene

expression level) with gene significance (GS, for assessing the

association of genes with phenotypes) was calculated using the

labeled heatmaps function, and p-values were obtained.

Finding the overlapping genes between
the di�erentially expressed genes (DEG,
between braak stage 0 and braak stages
I–VI) and genes of interest in the module
verified by WGCNA

The entorhinal cortical samples were grouped into

individuals at Braak stages 0 and individuals at Braak stages

I- VI and Limma packages were performed to find the DEG

(Diboun et al., 2006; Ritchie et al., 2015). Samples of Braak stage

0 were regarded as control, 201 genes with a corrected p-value of

less than 0.05 were found in samples of Braak stages I–VI. Next,

the overlapping genes between downregulated DEG and genes

of interest in the module were discovered by using online veen

tools (http://bioinformatics.psb.ugent.be/webtools/Venn/).

Metascape analyzes, identification of hub
genes, and protein-protein interaction
analysis

For the obtained overlapping genes, functional enrichment

of Gene Ontology (GO) and KEGG pathways analyses were

performed usingMetascape (https://metascape.org) (Zhou et al.,
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2019). Log P between −23 and −8 were considered to be

significant enrichment. These enrichment results were also

analyzed using Cytoscape for the identification of important

pathways (Warde-Farley et al., 2010). The identified hub genes

were further confirmed and analyzed using a String network

constructed by the online database String (http://string-db.org)

(Szklarczyk et al., 2017).

Exploring the cellular distribution of the
identified genes

By using the Cell marker database (http://biocc.hrbmu.

edu.cn/CellMarker/search.jsp), the cellular distribution of the

identified important genes was further explored.
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