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Abstract
The one-carbon metabolism pathway disorder was important role in successful pregnancy.

The MTHFR and TS protein were crucial factor in one-carbon metabolism. To investigate

the association between recurrent implantation failure (RIF) and enzymes in the one-carbon

metabolism pathway. A total of 120 women diagnosed with RIF and 125 control subjects

were genotyped forMTHFR 677C>T, 1298A>C, TSER 2R/3R and TS 1494del/ins by a poly-

merase chain reaction-restriction fragment length polymorphism assay. According to the

gene-gene combination analysis, theMTHFR 677/MTHFR 1298 (TT/AA) andMTHFR 677/

TS 1494 (TT/6bp6bp) genetic combinations were associated with relatively higher risks

[adjusted odds ratio (AOR), 2.764; 95% CI, 1.065–7.174; P = 0.037 and AOR, 3.186; 95%

CI, 1.241–8.178; P = 0.016] in RIF patients compared to the CC/AA (MTHFR 677/MTHFR
1298) and TT/6bp6bp (MTHFR 677/TS 1494) combinations, respectively. The results sug-

gested that the combinedMTHFR 677/MTHFR 1298 genotype might be associated with

increased risk of RIF. To the best of our knowledge, this study is the first to elucidate the

potential association ofMTHFR, TS and TSER polymorphisms with RIF risk in Korean

patients.

Introduction
Recurrent implantation failure (RIF) is one of the most common reproductive disorders
observed at in vitro fertilization (IVF) clinics. RIF is defined as implantation failure following
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three IVF cycles involving the transfer of a high-grade embryo [1]. Various factors influence
successful implantation, including anatomic or endometrial factors, thrombophilia, genetics,
and immunologic factors, to name a few [2,3]. However, in terms of a clinical approach, the eti-
ology of RIF remains a complicated challenge [2,4].

Successful implantation occurs during a short period of time between days 7 to 10 of the
secretory phase of the normal menstrual cycle, when the embryo develops into a blastocyst and
migrates to the receptive uterus. Communication between the embryo and the uterus is critical
for synchronizing embryonic development and uterine differentiation during the implantation
window and is regulated by numerous pathways, including hormones and signaling factors [5].
Among these pathways, folate metabolism is reported to be an essential regulator of early
development and pregnancy [6–8]. Folate is a critical molecule in the synthesis of S-adenosyl-
methionine (SAMe), which acts as a methyl group carrier in cellular processes including DNA
synthesis, DNA methylation, and amino-acid metabolism. Additionally, folate metabolism is
important for folate-homocysteine homeostasis, which is regulated by numerous enzymes in
the folate-methionine cycle.

Methylenetetrahydrofolate reductase (MTHFR), which is required for the conversion of
5,10-methylenetetrahydrofolate (5,10-MTHF) to 5-methyltetrahydrofolate (5-MTHF), is one
of the major regulatory enzymes in the folate-homocysteine cycle. The methyl group of
5-MTHF is transferred to homocysteine to produce methionine, which is important for the
methylation of various substrates such as DNA, RNA, proteins, and lipids. Further, genetic
polymorphisms inMTHFR are associated with various diseases [9]. Thymidylate synthase
(TS), which catalyzes the conversion of deoxyuridine monophosphate (dUMP) to deoxythymi-
dine monophosphate (dTMP) by the transfer of a 5,10-MTHF methyl group, is a crucial
enzyme in DNA biosynthesis [10]. As well, the activity of TS is affected by polymorphisms in
TS and in the TS enhancer region (TSER), which likewise results in altered metabolic reactions
and the occurrence of disease [11].

In this study, we demonstrated a relationship between RIF and genetic polymorphisms in
genes that encode enzymes involved in folate metabolism, includingMTHFR and TS, as well as
in the enhancer region of TS, in Korean patients experiencing RIF.

Materials and Methods

Participants
The study population consisted of 225 female participants recruited from the Department of
Obstetrics and Gynecology of CHA Bundang Medical Center, CHA University (Seongnam,
Korea) between March 2010 and December 2012 who were experiencing RIF (n = 120) or
served as controls (n = 125). The clinical characteristics of the participants are summarized in
Table 1. The mean age of the RIF patients and the controls was 34.23 ± 3.33 and 32.75 ± 7.47,
respectively (Table 1).

The study was approved by the Institutional Review Board of CHA Bundang Medical Cen-
ter reviewed on 23 February 2010 (reference no. PBC09–120) and all patients provided written
informed consent.

Serum human chorionic gonadotropin (hCG) concentrations were less than 5 mIU/mL 14
days after embryo transfer. All transferred embryos were examined by the embryologist before
transfer and were deemed to be of good quality. We evaluated both the male and female part-
ners in couples experiencing RIF. Subjects who were diagnosed with RIF due to anatomic,
chromosomal, hormonal, infectious, autoimmune, or thrombotic causes were excluded from
the study group. Anatomical abnormalities were evaluated using several imaging modalities
including sonography, hysterosalpingogram, hysteroscopy, computerized tomography, and
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magnetic resonance imaging. Karyotyping was conducted using standard protocols. Hormonal
causes including hyperprolactinemia, luteal insufficiency, and thyroid disease were excluded by
measuring prolactin, thyroid-stimulating hormone, free T4, follicle-stimulating hormone,
luteinizing hormone, and progesterone levels in peripheral blood. Lupus anticoagulant and
anticardiolipin antibodies were examined to rule out autoimmune diseases such as lupus and
antiphospholipid syndrome. Thrombotic disorders were defined as thrombophilia and were
evaluated by protein C and protein S deficiencies and by the presence of anti-α2 glycoprotein
antibody. Among the initial 167 patients evaluated, 47 who had intrauterine adhesion, hypo-
thyroidism, trisomy and chromosomal translocation (patients or spouses), or antiphospholipid
syndrome were excluded from the patient group, leaving 120 patients for the study. Enrollment
criteria for the control group included regular menstrual cycles, normal karyotype (46XX), a
history of at least one naturally-conceived pregnancy, and no history of pregnancy loss. Data
were collected identically for both groups.

Genotyping
Genomic DNA was extracted from patient peripheral blood samples using a G-DEX(TM)
blood extraction kit (iNtRON Biotechnology, Seongnam, South Korea). All of the genetic poly-
morphisms were detected by polymerase chain reaction (PCR) amplification and restriction
enzyme digestion. The PCR primers for each polymorphism were as follows:MTHFR
677C>T, forward 5’-TGA AGG AGA AGG TGT CTG CGG GA-3’ and reverse 5’-AGG ACG
GTG CGG TGA GAG TC-3’;MTHFR 1298A>C, forward 5'-CTT TGG GGA GCT GAA GGA
CTACTA C-3' and reverse 5'-CAC TTT GTG ACC ATT CCG GTT TG-3'; TSER 2R/3R, for-
ward 5’-CGT GGC TCC TGC GTT TCC-3’ and reverse 5’-GAG CCG GCC ACA GGC ATG-
3’; and TS 1494 0bp/6bp, forward 5’-CAA ATC TGA GGG AGC TGA GT-3’ and reverse 5’-
CAG ATA AGT GGC AGT ACA GA-3’.

TheMTHFR 677C>T andMTHFR 1298A>C polymorphism PCR products were con-
firmed by restriction enzyme digestion with HinfI and Fnu4HI (New England BioLaboratories,
Ipswich, MA, USA). ForMTHFR 677, a 203 bp undigested PCR product indicated the CC
genotype, three bands at 203, 173, and 30 bp, respectively, indicated the heterozygous CT geno-
type, and two bands at 170 and 30 bp, respectively, indicated the homozygous TT genotype.

Table 1. Clinical characteristics of RIF patients and control subjects.

Characteristic Control (n = 125) RIF patients (n = 120)

Age (y, mean± SD) 32.75 ± 7.47 34.23 ± 3.33

BMI (kg/m2, mean± SD) 21.72 ± 3.40 20.96 ± 2.59

Previous implantation failure (N, mean± SD) NA 1.59 ± 0.50

Live birth (N, mean± SD) 1.78 ± 0.74 NA

Mean gestational age (week, mean± SD) 39.36 ± 1.66 NA

Confirmed history of RPL (n) NA 17 (14.2)

tHcy (μmol/L, mean± SD) NA 6.56 ± 1.32

Folate (ng/mL, mean± SD) NA 15.37 ± 11.23

BUN (mg/dl, mean± SD) NA 10.35 ± 2.87

Creatinine (mg/dl, mean± SD) NA 0.78 ± 0.1

Uric acid (mg/dl, mean± SD) NA 3.93 ± 0.96

Total Cholesterol (mg/dl, mean± SD) NA 188.93 ± 44.28

Note: RIF, recurrent implantation failure; SD, standard deviation; BMI, body mass index; RPL, recurrent pregnancy loss; NA, not applicable; tHcy, total

plasma homocysteine; BUN, blood urea nitrogen

doi:10.1371/journal.pone.0160884.t001
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ForMTHFR 1298, a single band at 138 bp indicated the AA genotype, and two bands at 119
and 19 bp, respectively, indicated the homozygous CC genotype. The TS 1494 0bp/6bp poly-
morphism fragment was 142 bp for the 0bp allele and 148 bp for the 6bp allele. The PCR prod-
ucts were digested with DraI (New England BioLaboratories, Ipswich, MA, USA), resulting in
a band at 142 bp (0bp/0bp), three bands at 142 bp, 88 bp, and 60 bp, respectively (0bp/6bp),
and two bands at 88 bp and 60 bp, respectively (6bp/6bp). A series of two (2R) or three (3R) 28
bp tandem repeats for the TSER 2R/3R polymorphism were confirmed by electrophoretic sepa-
ration on 4% agarose gels. All of the digestion reactions were performed at 37°C for several
hours, depending on the enzymes.

All genotypes were confirmed in triplicate to rule out genotyping errors due to a violation of
the Hardy-Weinberg equilibrium (HWE). In addition, some of the PCR products were ran-
domly chosen for DNA sequencing using an ABI 3730xl DNA Analyzer (Applied Biosystems,
Foster City, CA, USA).

Statistical analysis
Differences in genetic frequencies of the polymorphisms between patients and control subjects
were compared using Fisher’s exact test and logistic regression. The odds ratio (OR) and 95%
confidence interval (CI) were used as a measure of the strength of the association between
genotype frequencies and RIF. The OR and 95% CI were also used to assess the relationship
between each specific polymorphism and allele combination. The polymorphisms with RIF
incidence was calculated using adjusted ORs (AORs) and 95% CIs from logistic regression
adjusted for age. Statistical significance was accepted at a level of P< 0.05. The false discovery
rate (FDR) correction was performed to adjust for multiple comparisons. All of the polymor-
phisms were in HWE (P> 0.05). Statistical analyses were performed using Graphpad Prism
4.0 (Graphpad Software, Inc., San Diego, CA, USA), StatsDirect software version 2.4.4 (Stats-
Direct Ltd., Altrincham, UK), HaploView 4.1 (Broad Institute of MIT and Harvard, Boston,
MA, USA), and HAPSTAT 3.0 (University of North Carolina, Chapel Hill, NC, USA). Gene-
gene interaction analysis was performed using the open source multidimensional reduction
(MDR) software package v.2.0 (www.epistasis.org). All possible combinations of the polymor-
phisms were studied using the MDR analysis to determine the combinations with strong syner-
gistic effects.

Results
The clinical characteristics of all participants are summarized in Table 1. The average number
of live births and length of gestation of control subjects were 1.78 ± 0.74 and 39.36 ± 1.66,
respectively. RIF patients had no live births and 17 RIF patients had verified histories of recur-
rent pregnancy loss (Table 1).

To examine the relationship between RIF and polymorphisms in major folate metabolism
enzymes and associated genetic enhancer regions, seven alleles were chosen, includingMTHFR
677,MTHFR 1298, TSER, and TS 1494. The genotype and frequency of the genetic polymor-
phisms are summarized in Table 2, S1 Table [patients without recurrent pregnancy loss (RPL)]
and S2 Table [analysis according to number of previous implantation failure (IF)]. Four of the
polymorphisms analyzed were in HWE. TheMTHFR 677C>T,MTHFR 1298A>C, TSER 2R/
3R, and TS 1494 0bp/6bp polymorphisms were not related to the prevalence of RIF.

Combined genotype analysis was performed inMTHFR 677/MTHFR 1298,MTHFR 677/
TSER 238,MTHFR 677/TS 1494,MTHFR 1298/TSER 238,MTHFR 1298/TS 1494, and TSER
238/TS 1494 (Table 3). The combined genotype analysis results that indicated an association
with RIF risk includedMTHFR 677TT/MTHFR 1298AA [adjusted odds ratio (AOR), 2.764;
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95% CI, 1.0665–7.174; P = 0.037],MTHFR 677TT/TS 1494 0bp6bp+6bp6bp (AOR, 3.185; 95%
CI, 1.241–8.178; P = 0.016), andMTHFR 1298AA/TS 1494 0bp6bp+6bp6bp (AOR, 1.945; 95%
CI, 1.024–3.694; P = 0.042). In addition, the combined genotype analyses, ranked according to
the number of implantation failure, are presented in S3 Table. However, theMTHFR 1298AA/
TS 1494 0bp6bp+6bp6bp was not significant in patients without RPL (S4 Table).

To investigate the allele combinations of theMTHFR 677,MTHFR 1298, TS 1494, and
TSER polymorphisms, we carried out gene-gene interaction analysis using the haplotype-based
MDR method (Table 4). The results of the MDR analysis revealed that allele combinations
increased the relative risk of RIF. TheMTHFR 677/MTHFR 1298/TSER/TS 1494 allele combi-
nation (C-A-3R-6bp and T-A-2R-6bp) was significantly higher in RIF patients than in control
subjects. The OR of the combined polymorphisms (C-A-3R-6bp) was 3.678 (95% CI, 1.363–
9.929) and the OR of T-A-2R-6bp was 2.885 (95% CI, 1.222–6.814) when the reference combi-
nation was C-A-3R-0bp. In addition, theMTHFR 677/MTHFR 1298/TSER 238,MTHFR 677/
MTHFR 1298/TS 1494,MTHFR 677/TSER 238/TS 1494, andMTHFR 1298/TSER 238/TS 1494
allele combinations increased the risk of RIF. The OR of the combined alleles (T-A-2R) was
2.407 (95% CI, 1.166–4.970) in theMTHFR 677/MTHFR 1298/TSER 238 combination. As
well, the T-A-0bp (MTHFR 677/MTHFR 1298/TS 1494) increased the risk of RIF (OR, 1.964;
95% CI, 1.109–3.478). Further, the T-2R-6bp (MTHFR 677/TSER 238/TS 1494) and the A-3R-
6bp (MTHFR 1298/TSER 238/TS 1494) allele combinations had higher ORs of 2.395 (95% CI,
1.036–5.534) and 1.788 (95% CI, 1.029–3.107), respectively. In particular, the risk of RIF in
patients carrying the combinedMTHFR 677/MTHFR 1298/TSER 238/TS 1494 (C-A-3R-6bp)
orMTHFR 677/MTHFR 1298/TSER 238 (T-A-2R) alleles increased 3.7 and 2.4 times, respec-
tively, compared to women with the C-A-3R-0bp or C-A-3R reference alleles. The risk of RIF
was not altered when the reference was the value combined, except in the self in haplotype-

Table 2. Genotype frequencies of one-carbonmetabolism-related gene polymorphisms between controls and RIF patients.

Genotype Controls RIF patients Reference allele Models AOR (95% CI) P FDR-P

MTHFR 677C>T n = 125 n = 120

CC 46 (36.8) 35 (29.2) 677C Additive 1.394 (0.957―2.030) 0.083 0.332

CT 64 (51.2) 60 (50.0) 677C Dominant 1.384 (0.807―2.375) 0.238 0.476

TT 15 (12.0) 25 (20.8) 677C Recessive 1.834 (0.908―3.705) 0.091 0.364

HWE P 0.308 0.939

MTHFR 1298A>C

AA 79 (63.2) 78 (65.0) 1298A Additive 1.005 (0.631―1.600) 0.984 0.984

AC 43 (34.4) 38 (31.7) 1298A Dominant 0.977 (0.576―1.657) 0.931 0.931

CC 3 (2.4) 4 (3.3) 1298A Recessive 1.273 (0.277―5.851) 0.756 0.907

HWE P 0.306 0.810

TSER 2R/3R

3R3R 82 (65.6) 81 (67.5) 3R Additive 0.958 (0.615―1.493) 0.850 0.984

2R3R 37 (29.6) 34 (28.3) 3R Dominant 0.953 (0.558―1.628) 0.860 0.931

2R2R 6 (4.8) 5 (4.2) 3R Recessive 0.930 (0.275―3.143) 0.907 0.907

HWE P 0.497 0.811

TS 1494 0bp/6bp

0bp0bp 70 (56.0) 59 (49.2) 14940bp Additive 1.242 (0.835―1.848) 0.285 0.570

0bp6bp 45 (36.0) 51 (42.5) 14940bp Dominant 1.391 (0.836―2.316) 0.204 0.476

6bp6bp 10 (8.0) 10 (8.3) 14940bp Recessive 1.091 (0.435―2.739) 0.852 0.907

HWE P 0.471 0.826

RIF, recurrent implantation failure; AOR, adjusted odds ratio; FDR, false discovery rate. Adjusted by age of female participants.

doi:10.1371/journal.pone.0160884.t002
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based MDR analysis. In contrast, theMTHFR 677/MTHFR 1298/TSER 238/TS 1494 (C-A-2R-
6bp) andMTHFR 677/MTHFR 1298/TS 1494 (C-A-2R) allele combinations exhibited protec-
tive effects compared to the reference allele combinations. The ORs of C-A-2R-6bp and C-2R-
6bp were 0.045 (95% CI, 0.003–0.765) and 0.345 (95% CI, 0.147–0.812), respectively (Table 4),
which suggested that patients with C-A-2R-6bp allele combination reduced risk of RIF. In
addition, theMTHFR 677/TSER 238 (C-2R and T-2R) was significantly association with RIF
risk (S5 Table).

The results of theMTHFR 677C>T screening is summarized in Fig 1. We were search asso-
ciation study betweenMTHFR 677C>T polymorphism and RIF, found 3 studies in PubMed
database (http://www.ncbi.nlm.nih.gov/pubmed). A total of 364 controls and 351 patients

Table 3. The combination model of one-carbonmetabolism-related gene polymorphisms between controls and RIF patients.

1st SNP 2nd SNP Controls RIF patients AOR (95% CI) P FDR-P

MTHFR 677C>T MTHFR 1298A>C n = 125 n = 120

CC AA 21 (16.8) 13 (10.8) 1.000 (reference)

CC AC 22 (17.6) 18 (15.0) 1.358 (0.530―3.480) 0.523 0.523

CC CC 3 (2.4) 4 (3.3) 1.994 (0.375―10.612) 0.418 0.523

CT AA 43 (34.4) 40 (33.3) 1.486 (0.657―3.363) 0.342 0.523

CT AC 21 (16.8) 20 (16.7) 1.755 (0.662―4.652) 0.258 0.523

TT AA 15 (12.0) 25 (20.8) 2.764 (1.065―7.174) 0.037 0.185

MTHFR 677C>T TSER 2R/3R

CC+CT 3R3R 70 (56.0) 65 (54.2) 1.000 (reference)

CC+CT 2R3R+2R2R 40 (32.0) 30 (25.0) 0.843 (0.468―1.520) 0.570 0.570

TT 3R3R 12 (9.6) 16 (13.3) 1.388 (0.607―3.172) 0.437 0.570

TT 2R3R+2R2R 3 (2.4) 9 (7.5) 3.195 (0.823―12.407) 0.093 0.279

MTHFR 677C>T TS 1494 0bp/6bp

CC+CT 0bp0bp 62 (49.6) 53 (44.2) 1.000 (reference)

CC+CT 0bp6bp+6bp6bp 48 (38.4) 42 (35.0) 1.094 (0.623―1.920) 0.754 0.858

TT 0bp0bp 8 (6.4) 6 (5.0) 0.902 (0.291―2.793) 0.858 0.858

TT 0bp6bp+6bp6bp 7 (5.6) 19 (15.8) 3.186 (1.241―8.178) 0.016 0.048

MTHFR 1298A>C TSER 2R/3R

AA 3R3R 53 (42.4) 51 (42.5) 1.000 (reference)

AA 2R3R+2R2R 26 (20.8) 27 (22.5) 1.087 (0.559―2.114) 0.805 0.805

AC+CC 3R3R 29 (23.2) 30 (25.0) 1.123 (0.589―2.142) 0.725 0.805

AC+CC 2R3R+2R2R 17 (13.6) 12 (10.0) 0.738 (0.319―1.708) 0.478 0.805

MTHFR 1298A>C TS 1494 0bp/6bp

AA 0bp0bp 47 (37.6) 34 (28.3) 1.000 (reference)

AA 0bp6bp+6bp6bp 32 (25.6) 44 (36.7) 1.945 (1.024―3.694) 0.042 0.126

AC+CC 0bp0bp 23 (18.4) 25 (20.8) 1.484 (0.718―3.066) 0.287 0.431

AC+CC 0bp6bp+6bp6bp 23 (18.4) 17 (14.2) 1.012 (0.466―2.198) 0.975 0.975

TSER 2R/3R TS 1494 0bp/6bp

3R3R 0bp0bp 53 (42.4) 45 (37.5) 1.000 (reference)

3R3R 0bp6bp+6bp6bp 29 (23.2) 36 (30.0) 1.530 (0.809―2.892) 0.191 0.573

2R3R+2R2R 0bp0bp 17 (13.6) 14 (11.7) 0.955 (0.423―2.158) 0.912 0.912

2R3R+2R2R 0bp6bp+6bp6bp 26 (20.8) 25 (20.8) 1.166 (0.589―2.309) 0.660 0.912

Adjusted by age of female participants.

RIF, recurrent implantation failure; SNP, single nucleotide polymorphism; AOR, adjusted odds ratio

doi:10.1371/journal.pone.0160884.t003
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Table 4. Allelic gene-gene interaction of one-carbonmetabolism-related gene polymorphisms between controls and RIF patients.

Haplotype Controls (2n = 250) RIF patients (2n = 240) OR (95% CI) P FDR-P

MTHFR 677/MTHFR 1298/TSER 238/TS 1494

C-A-3R-0bp 74 (29.7) 57 (23.8) 1.000 (reference)

C-A-3R-6bp 6 (2.5) 17 (7.1) 3.678 (1.363–9.929) 0.012 0.055

C-A-2R-0bp 13 (5.2) 10 (4.2) 0.999 (0.408–2.442) 1.000 1.000

C-A-2R-6bp 14 (5.4) 0 (0.0) 0.045 (0.003–0.765) 0.001 0.011

C-C-3R-0bp 24 (9.7) 32 (13.3) 1.731 (0.920–3.257) 0.110 0.242

C-C-3R-6bp 13 (5.0) 6 (2.7) 0.599 (0.215–1.674) 0.457 0.628

C-C-2R-0bp 9 (3.5) 4 (1.6) 0.577 (0.169–1.970) 0.558 0.682

C-C-2R-6bp 4 (1.4) 4 (1.7) 1.298 (0.311–5.418) 0.730 0.803

T-A-3R-0bp 64 (25.6) 61 (25.2) 1.237 (0.756–2.025) 0.452 0.628

T-A-3R-6bp 20 (7.9) 23 (9.7) 1.493 (0.748–2.982) 0.292 0.535

T-A-2R-0bp 1 (0.4) 6 (2.4) 7.789 (0.911–66.57) 0.047 0.129

T-A-2R-6bp 9 (3.7) 20 (8.5) 2.885 (1.222–6.814) 0.015 0.055

MTHFR 677/MTHFR 1298/TSER 238

C-A-3R 82 (32.8) 76 (31.8) 1.000 (reference)

C-A-2R 25 (10.0) 8 (3.2) 0.345 (0.147–0.812) 0.013 0.058

C-C-3R 38 (15.3) 39 (16.1) 1.107 (0.642–1.910) 0.781 0.781

C-C-2R 11 (4.3) 7 (3.1) 0.687 (0.253–1.863) 0.619 0.781

T-A-3R 81 (32.3) 81 (33.8) 1.079 (0.696–1.673) 0.739 0.781

T-A-2R 13 (5.3) 29 (12.1) 2.407 (1.166–4.970) 0.023 0.058

MTHFR 677/MTHFR 1298/TS 1494

C-A-0bp 85 (34.0) 68 (28.3) 1.000 (reference)

C-A-6bp 22 (8.8) 16 (6.7) 0.909 (0.443–1.865) 0.856 0.856

C-C-0bp 35 (13.8) 36 (14.8) 1.286 (0.731–2.260) 0.392 0.675

C-C-6bp 14 (5.8) 10 (4.4) 0.893 (0.373–2.136) 0.829 0.856

T-A-0bp 66 (26.2) 65 (27.3) 1.231 (0.771–1.966) 0.405 0.675

T-A-6bp 28 (11.4) 44 (18.5) 1.964 (1.109–3.478) 0.023 0.115

MTHFR 677/TSER 238/TS 1494

C-3R-0bp 97 (39.0) 90 (37.5) 1.000 (reference)

C-3R-6bp 19 (7.6) 22 (9.0) 1.248 (0.634–2.458) 0.606 0.707

C-2R-0bp 23 (9.1) 13 (5.4) 0.609 (0.291–1.275) 0.205 0.359

C-2R-6bp 17 (6.8) 6 (2.3) 0.380 (0.144–1.008) 0.049 0.114

T-3R-0bp 65 (26.0) 60 (25.1) 0.995 (0.632–1.565) 1.000 1.000

T-3R-6bp 20 (7.8) 24 (10.1) 1.293 (0.669–2.501) 0.504 0.706

T-2R-0bp 0 (0.0) 6 (2.5) 14.01 (0.777–252.3) 0.014 0.098

T-2R-6bp 9 (3.8) 20 (8.2) 2.395 (1.036–5.534) 0.046 0.114

MTHFR 1298/TSER 238/TS 1494

A-3R-0bp 136 (54.4) 117 (48.7) 1.000 (reference)

A-3R-6bp 26 (10.5) 40 (16.5) 1.788 (1.029–3.107) 0.039 0.273

A-2R-0bp 16 (6.3) 16 (6.7) 1.162 (0.557–2.426) 0.711 0.749

A-2R-6bp 23 (9.2) 22 (9.0) 1.112 (0.589–2.098) 0.749 0.749

C-3R-0bp 26 (10.5) 34 (14.0) 1.520 (0.862–2.681) 0.154 0.539

C-3R-6bp 12 (5.0) 6 (2.5) 0.581 (0.212–1.597) 0.335 0.620

C-2R-0bp 7 (2.8) 3 (1.1) 0.498 (0.126–1.971) 0.354 0.620

C-2R-6bp 3 (1.3) 4 (1.6) 1.550 (0.340–7.069) 0.708 0.749

RIF, recurrent implantation failure; OR, odds ratio; p-value Fisher’s exact test.

doi:10.1371/journal.pone.0160884.t004
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were positive for theMTHFR 677C>T polymorphism. Overall, the results indicate an associa-
tion of this polymorphism with risk of RIF (OR, 3.394; 95% CI, 1.451–7.938; Fig 1, S6 Table).

Discussion
At present, the relationship between RIF and polymorphisms in genes that encode major folate
metabolism enzymes remains unclear. However, in this study, we demonstrated that patients
carrying theMTHFR 677 andMTHFR 1298 alleles in combination with the TS 1494 polymor-
phism had a significantly higher risk of experiencing RIF.

Successful implantation begins with proper implantation of the embryo in a receptive uter-
ine endometrium. Afterward, the endometrium undergoes dynamic morphological and func-
tional changes to become receptive to the embryo during early implantation [12]. In addition,
the uterus undergoes cellular processes, including DNA synthesis and angiogenesis, which are
required for cell proliferation and decidualization, and for orchestrating complicated implanta-
tion processes. Hence, DNA synthesis and homeostasis are important during this process. As
well, folate acts as a methyl group carrier for the targets and is required for the homeostasis of
the one-carbon metabolism pathway. One of the forms of folate is 5,10-MTHF, which can be
used for the synthesis of either methionine or dTMP. Methionine is synthesized by the transfer
of a 5-MTHF methyl group to homocysteine, whereas dTMP is generated by the transfer of a
5-MTHF methyl group to deoxyuridine monophosphate (dUTP) [13].

The one-carbon metabolism pathway is precisely regulated by two critical enzymes,
MTHFR and TS. Further, MTHFR generates 5-MTHF from 5,10-MTHF [13,14], and is located
on the short arm of chromosome 1 (1p36.3[15].MTHFR 677C>T, a polymorphism of
MTHFR, leads to the conversion of the amino acid alanine to valine, resulting in decreased
MTHFR activity and impaired enzyme activity [16]. Also, theMTHFR 677C>T polymorphism
is associated with various diseases, including stroke, hypertension, and cancer [reviewed in
[9,17]]. The A and C nucleotides are involved in theMTHFR 1298 polymorphism, but the
MTHFR 1298A allele is more common than the 1298C allele. TheMTHFR 1298A>C polymor-
phism leads to the substitution of alanine for glutamine at amino acid 429, but the mutation
does not affect the thermolability or FAD release activity functions of the MTHFR protein, or

Fig 1. A meta-analysis ofMTHFR 677C>T in RIF. Ameta-analysis of the association between carriers of
the T allele (individuals with TT genotype) in theMTHFR 677C>T polymorphism and recurrent implantation
failure (RIF). The fixed and random effects models were used to calculate the pooled weighted odds ratios
(ORs).

doi:10.1371/journal.pone.0160884.g001
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the protective effects of 5-methyl-THF [18]. Several recent reports have demonstrated an asso-
ciation between the one-carbon metabolism enzymes and recurrent spontaneous abortion [19–
21]. In addition, idiopathic infertile women exhibit an increased frequency ofMTHFR
677C>T polymorphisms compared to control women [22]. Safdarian et al. reported associa-
tion betweenMTHFR 677C>T and RIF risk in term of hereditary thrombophilia [23].

Thymidylate synthetase catalyzes the conversion of dUMP to dTMP by oxidation of
5,10-MTHF [24]. As well, dTMP is required for de novo DNA synthesis. Further, two TSER
and TS 1494 polymorphisms affect the transcription and translation of the TS gene [25]. The
5’-untranslated region (UTR) of TSER contains 2R and 3R repeats of 28 bp sequences, and the
3’-UTR of TS 1494 has either a 6 bp deletion or insertion, which results in the modulation of
TS expression and stability [25–28]. However, little is known regarding the effect of TSER and
TS polymorphisms on RIF. Recently, we reported that the TSER 2R2R and TS 6bp6bp com-
bined genotype was associated with cancer [29], which suggests that the presence of these com-
binations might affect susceptibility to RIF.

The results of our previous studies established an association between polymorphisms in
folate metabolism-related genes (MTHFR 677C>T, 1298A>C, TSER 2R/3R, and TS 1494 0bp/
6bpins/del) and increased risk of reproductive diseases, including RPL, premature ovarian fail-
ure, and spontaneously aborted embryos in the Korean population [30–34]. However, these
studies only showed the difference in genotype frequencies between control subjects and
patient groups. In addition, we have identified an indirect effect of theMTHFR 677C>T,
1298A>C, and TSER 2R/3R polymorphisms on RPL [35]. In previous study,MTHFR gene
polymorphisms (677C>T and 1298A>C) were reported association between maternal, fetal
and paternal in RPL risk by meta-analysis [36]. These meta-analyses of RPL and our screening
data of RIF were suggestion that MTHFR 677C>T was considered to crucial genetic factor dur-
ing implantation, or maintaining pregnancy. In this study, one interesting result was the indi-
cation that theMTHFR 677TT/1298AA andMTHFR 677TT/TS 1494 0bp6bp+6bp6bp
combinations conveyed increased risk of RIF occurrence. In addition, we identified relation-
ships between theMTHFR/TSER/TS genetic polymorphisms and risk of RIF in Korean
women. The genetic combinations ofMTHFR 677/MTHFR 1298/TSER, TS 1494 (C-A-3R-
6bp), andMTHFR 677/MTHFR 1298/TS 1494(C-A-6bp) increased the risk of RIF compared
to the risk associated with each reference combination.

We also performed a screening of published studies to investigate the genetic association
betweenMTHFR 677C>T and the risk of RIF, which revealed thatMTHFR 677C>T increased
the risk of RIF. However, this study has some limitations. First, the lack of clinical parameters, such
as vitamin B6, inflammatory cytokine and hormone levels in RIF women remains to be investi-
gated. Second, the sample size (number of included studies) was so small; therefore, we cannot rule
out the possibility of the results being biased, although no significant publication bias was found.

In conclusion, these interesting findings indicated that the combinedMTHFR, TSER, and
TS genotypes could potentially be novel diagnostic markers for evaluating the risk of experienc-
ing RIF. However, due to the small number of patients and clinical insufficiency, further studies
are required to confirm our conclusions. Nonetheless, the results of the current study provided
us with a better understanding of idiopathic RIF and the relationship between RIF and poly-
morphisms in genes that encode major folate metabolism enzymes.
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