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In evolutionary biology, niche construction is sometimes described as a

genuine evolutionary process whereby organisms, through their activities

and regulatory mechanisms, modify their environment such as to steer

their own evolutionary trajectory, and that of other species. There is ongoing

debate, however, on the extent to which niche construction ought to be con-

sidered a bona fide evolutionary force, on a par with natural selection.

Recent formulations of the variational free-energy principle as applied to the

life sciences describe the properties of living systems, and their selection in evol-

ution, in terms of variational inference. We argue that niche construction can be

described using a variational approach. We propose new arguments to support

the niche construction perspective, and to extend the variational approach to

niche construction to current perspectives in various scientific fields.
1. Introduction
Niche construction refers to any (implicit or explicit) modification by organisms of

the (biotic or abiotic) states of the niche that they and others inhabit [1–3]. Niche

construction theory (NCT) casts niche construction and ecological inheritance (the

inheritance of selection pressures modified by organisms) as bona fide evolution-

ary processes acting in tandem with standard evolutionary processes like natural

selection. NCT studies the way organisms (i) generate non-random biases on

selection pressures, (ii) stabilize environmental conditions [1], (iii) and secure

organism–niche complementarity (adaptation) [2]. Central to NCT is the view

of reciprocal causation, which refers to the fact that developing systems can be

both the products and causes of evolution [4].

Reciprocal causal dynamics that pertain to niche construction are expressed at

two temporal scales: the timescale of ontogeny and the timescale of phylogeny [5].

Developmental niche construction (DNC) allows for the optimization of pheno-

types over ontogenetic timescales, via feedback interactions between organisms

and resources of the niche (e.g. parental care and culture acquisition). Selective

niche construction (SNC) acts in tandem with natural selection to optimize

phenotypes over intergenerational timescales by modifying selection pressures.

It concerns consequences of feedback interactions that span over multiple

generations (e.g. ecological inheritance).

There is much debate among proponents of the modern synthesis (MS) in

biology as to whether niche construction is a bona fide evolutionary process
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[6,7]. Proponents of MS acknowledge the effects of constructed

niches on evolutionary processes [8], but tend to under-

emphasize their significance. For instance, environmental

modifications emanating from organisms’ activity are gener-

ally cast as being on a par with random environmental

changes, e.g. the effects of tsunamis, or volcanic eruptions [8].

The aim of this paper is to review and integrate recent

theoretical work on niche construction in neuroscience,

biology and anthropology [1,5,9–18]. We present the theoreti-

cal foundations and modelling heuristics for a novel

computational framework for niche construction dynamics.

The variational approach casts evolutionary processes in gen-

eral as approximate Bayesian (variational) inference, serving

the attainment of maximum attunement between the states

of an organism and the states of its environment [19] (i.e.

the occupation of local free-energy minima in the organ-

ism–niche state space). For instance, natural selection can

be cast as a process of variational inference, in the sense

that the fittest phenotype for a given ecological niche is also

the one most likely to be found in that niche and populate

it, given a set of environmental constraints. Somatic changes

can be cast as a Bayesian update of the parameters of the

model embodied by the organism, and genotypic change

through natural selection can be cast as a process of Bayesian

model selection [20–24] (see the electronic supplementary

material for further details).

Central to this paper, the variational (free-energy)

approach supports the view of niche construction as a bona

fide evolutionary process. Specifically, it may provide a

principled method of quantifying the complementarity that

obtains between organisms and their niche via niche con-

struction, as well as a computationally tractable definition of

algorithmic information [25] and its transmission via ecological

inheritance [3]. We discuss the implications of this framework

with respect to extensions of the niche construction perspective

in developmental psychology (e.g. [26]). Overall, the vari-

ational approach could provide a promising modelling tool

for research on the niche construction perspective.
2. The scope of niche construction theory
In this section, we review recent developments in the litera-

ture on NCT, namely the views on DNC and SNC, and

present the standard critiques of NCT, which we interpret

under the lens of the variational approach in the final section

of the paper.

2.1. Selective niche construction
From the point of view of SNC, the ecological niche comprises

the set of environmental factors that causally influence

the inclusive fitness (rates of survival and reproduction) of

organisms, emphasizing those produced by organisms. SNC

encompasses all such environmental changes, ranging from

the constitution of a layer of warm, moist air around homeother-

mic organisms [27], or the ability of earthworms and benthic

diatoms to self-impose selection pressure through changes in

structure and chemical composition of their local environment

[28,29], to development of complex behavioural patterns like

human communication and cultural systems [30–33].

It is important to note, however, that while any modifi-

cation to the environment is part of niche construction, only

those that have an impact on the scales of development,
ecology or evolution ought to be considered as meaningful

for NCT. For instance, one might argue that to induce a

layer of moist air is not a process powerful enough to have

a significant impact on the relevant scales. Advocates of

NCT generally argue that the extent to which one should

cast a given kind of modification of the environment as

relevant niche construction is ultimately an empirical matter.

2.2. Developmental niche construction
The developmental niche, as a temporal subset of the selective

niche, comprises the set of environmental parameters that

enable the development of organisms over ontogeny [5]. It is

a reliably inherited, intricate structure of physical, social and

epistemic resources that enables the reconstruction of the

species-typical developmental trajectory (i.e. the adaptive life

cycle), as well as the production of adaptive phenotypic vari-

ations [34]. By providing reliably inheritable and contextually

flexible inputs for developmental plasticity, for instance by

canalizing certain forms of phenotypic accommodation, DNC

scaffolds phenotypes at mechanistic and ontogenetic scales [5].

Exogenetic factors may comprise complex behavioural pat-

terns like parental care, stimulation of offspring and social

learning, and function as crucial resources for normal develop-

ment ([5,31,35–37], cf. the earlier concept of ‘ontogenetic niche’

[38]). Other exogenetic resources in the developmental niche

include myriad social and transgenerational relationships,

e.g. cooperative breeding [39], shared patterned cultural prac-

tices [40,41] and regimes of attention [42]. Crucially, these

factors enable organisms to acquire the expectations (and, in

humans, the norms) that regulate communities, and to learn

the practices that have adapted to the particular niche through

cultural evolution and culture–gene coevolution [37].

2.3. Standard critiques of NCT
Proponents of the MS are critical of NCT. Part of their motiv-

ation is that they understand causation in evolution as

unidirectional. On this account, evolutionary processes begin

with environmental (biotic and abiotic) selection pressures,

and culminate in genotypic changes that secure adapted

phenotypes. Although MS acknowledges some cases of reci-

procal causation in evolution (e.g. sexual selection), it casts

environmental modifications stemming from organismic

activity as being the same in kind as those that stem from

random natural environmental changes, i.e. they do not

count as evolutionary processes properly speaking [6,7].

With standard evolutionary processes (e.g. natural selec-

tion), traits that enhance fitness are systematically retained,

and those that do not are lost. This explains the appearance of

adaptive design. With niche construction, it is unclear whether

or not niches adapt the environment to the organism in a sys-

tematic way, because constructed environments can lead both

to increase and decrease of reproductive success [6]. Moreover,

the standard model of evolution allows scientists to make pre-

dictions about the effects of natural selection on design, and

on the optimization of inclusive fitness [43]. Because of the

lack of systematicity of niche construction effects, NCT might

not be able to generate predictions about adaptation.

Perhaps the most extensive critique of NCT was offered by

Richard Dawkins ([44], cf. [45]). He dismisses NCT’s claim of

cyclical causality between the genome and environmental

modifications induced by organisms. On his account, most of

the effects of organismic activity of the environment are just
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‘too loose and vague to count as . . . true niche construction’

[44]. For instance, beaver kits (and grandkits) may gain repro-

ductive success from a well-constructed dam, and this might

encourage the preservation of alleles underlying the behaviour

of dam construction. Effects on other species, however, are not

directly relevant to the beaver’s, and should, therefore, be con-

sidered as mere by-products. One ought not to confusedly cast

the dam as an adaptation and the dam as a by-product, or con-

fuse ‘beaver dams with the beaver’s dungs’ [46]. The scope of

NCT, however, goes beyond the adaptations\by-products

dichotomy to emphasize the underestimated role of the latter

in evolutionary feedbacks.

The variational approach explored in the remainder of this

paper puts into perspective the relevance of the distinction

between adaptations and by-products. Consequences of an

organism’s activity, in either case, can be framed as contribut-

ing to the attainment of maximum statistical attunement with

the environment, which we cast below as the minimization of

variational free energy.
0685
3. Variational free energy and the dynamics
of life

In this section, we present the conceptual foundations and

motivation for the variational (free-energy) principle in

relation to biological self-organization (see §4.1. for a formal

description). The main ideas discussed here are the statistical

conception of the phenotype, and the dynamics underwriting

its organization.
3.1. A statistical conception of the phenotype
The variational free-energy principle (FEP) has been applied

fruitfully to yield a statistical conception of the dynamics of

life [47]. The key idea behind this principle is that the bounded

set of characteristic states in which an organism maintains

itself most of the time, and in which it is most likely to find

itself, can be interpreted as the set of its phenotypic states, i.e.

its specific repertoire of functional or adaptive states, its physi-

ology and morphology, and its sensorimotor patterns. Since

these characteristic states are visited more frequently than

others, they are associated with a higher probability than

other states (e.g. a fish is more likely to find itself in water

than anywhere else). This statistical conception of the pheno-

type is supported by simulation studies of the emergence of

biological self-organization and morphogenesis [47,48], and

further evidence comes from the study of early myelopoiesis

in real biological systems (e.g. [49]).

Phenotypic states subsume all states of an agent, from

quickly fluctuating ones (e.g. its temperature or visually

evoked responses), to slowly fluctuating states that constrain

fast dynamics (e.g. its morphology, structure and neuronal

connectivity). Later, we will consider this distinction in terms

of the distinction between stable and unstable dynamics in

synergetics [50], where the latter (unstable, slow) modes corre-

spond to order parameters, and will be associated with ‘traits’ of

phenotypes, which can include states of the niche. Thus, the

conception of the phenotype that interests us here can be

framed in terms of a joint phenotypic space that includes states

internal (e.g. phenotypic states) and external (e.g. phenotypic

traits) to the organism, biotic and abiotic.
3.2. Motivation and problem
Organisms are open systems. Yet, they maintain their organiz-

ation over time in the face of environmental perturbations.

Therefore, one must assume (a priori) that they manage to

limit the entropy of their states [51]. Technically, entropy

(as an information theoretic quantity) is the long-term average

of self-information or ‘surprisal’. Surprisal reflects the likeli-

hood of an outcome—it is the negative log probability of any

sensory state being encountered. Organisms that maintain

their continued existence spend most of their time in attract-

ing states, and will, therefore, have a low average surprisal

and low entropy. Note that one could also define entropy

(as a thermodynamic quantity) in the following way. Under

ergodic assumptions (that is, under the assumption that the

system has properties that can be measured more than

once), surprisal is equivalent to a thermodynamic potential

energy [52]. Although the stationary distributions involved

do not necessarily have a Boltzmann–Gibbs form, recent

developments finesse the difficulties in identifying potential

functions that play the role of an adaptive landscape: see

[53] for a technical discussion. Only the information theoretic

definition concerns us directly in this paper.

Because surprisal depends on hidden causes in the

environment, the organism (e.g. its brain) cannot directly
assess it. Here is where the variational free energy comes in.

Mathematically, it constitutes an upper bound on surprisal,

and thereby implicitly bounds its average, namely, entropy.

Variational free-energy reports a deviation from, and is

conditioned on, a set of priors, which are operationalized in

a hierarchical, probabilistic generative model of the hidden

causes of sensory inputs (observations) [20]. Priors are

probability distributions or Bayesian beliefs that provide con-

straints on lower levels, in hierarchical models. Because they

are themselves parametrized, they can be optimized via hyper-

parameters that depend upon the sensory observations (refer

figure 1 and §4.1 below for technical details).

A generative model is a mapping from sensory obser-

vations, action policies, to external (hidden) causes. These

causes constitute the generative process, which describes the

transitions among hidden causes in the world (including the

organism’s own actions) that generate sensory inputs [55].

The generative model is conditioned on the prior (Bayesian)

beliefs of the organism. These beliefs are parametrized by a

density that is encoded by the internal states of the organism

(e.g. brain states). See figure 1 for a discussion. This density rep-

resents the ‘best guess’ of the organism as to the causes of its

sensations. Updates of the generative model conform to the

principles of variational inference. This involves approximat-

ing the generative process by optimizing parameters of the

internal density, with respect to the free energy bound on Baye-

sian model evidence (sometimes referred to as an evidence

bound). This bound means that if one changes some prob-

ability distribution (i.e. beliefs) over the causes of observed

data to minimize variational free energy, one is effectively

maximizing model evidence [52].

Thus, although it cannot track surprisal directly, the

organism can track a proxy quantity (an upper bound),

the variational free energy. By minimizing free energy (or

maximizing model evidence), the organism can estimate

surprise, and thereby avoid deleterious phase transitions

and maintain its phenotypic organization. Hence, the long-

term, evolutionary (distal) imperative for the organism to
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Figure 1. Markov blankets. These schematics illustrate the partition of states into internal and hidden or external states that are separated by a Markov blanket
(b) comprising sensory and active states. (a) A schematic that captures the relations of reciprocal causation between the organism and its environmental niche [54].
Changes in states of the organism over time are a function of the immediate state of the organism (m) and its environment (h), and, reciprocally, changes in the
states of the organism’s environmental niche over time are a function of the current state of the environment and the organism. The form of this dynamical coupling
can now be specified by appeal to the FEP. This introduces a separation of organismic and environmental states (i.e. internal and external states) via an intervening
Markov blanket of active (a) and sensory states (s). Once the Markov blanket is in place, the non-equilibrium steady-state dynamics are prescribed by the Fokker
Planck equation that can be expressed in terms of gradient flows on variational free energy. (b) This partition (and flows) as it would be applied to action and
perception in the brain, where active and internal states minimize a free-energy functional of internal and blanket states. The ensuing self-organization of internal
states then corresponds to perception, while action couples brain states back to external states. However, because of the antisymmetry of the conditional depen-
dencies implicit in the Markov blanket, we can also express external dynamics as a gradient flow of a free-energy functional of external and blanket states. (c) Shows
exactly the same dependencies but rearranged so that the internal states are associated with the intracellular states of a cell, while the sensory states become the
surface states of the cell membrane overlying active states (e.g. the actin filaments of the cytoskeleton). For simplicity, we have admitted the solenoidal flow in this
figure. For a more complete account, see [47]. (Online version in colour.)
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minimize entropy translates into the short-term (proximal)

imperative to avoid surprisal by minimizing free energy

(see §4.2. for the mathematical details).

3.3. Maximizing model evidence through action and
perception

Active inference is the self-evidencing process by which the

organism garners and produces evidence for the generative

model that it instantiates by existing. At the scale of organisms

interacting with their niche, active inference is realized in pat-

terns of action and perception. Action allows the organism to

gather more precise (Bayesian) model evidence: sensory

samples reduce uncertainty with respect to the causes of sen-

sory states. In turn, the role of perception, sometimes called

‘perceptual inference’, is to update the system’s priors while

informing action. This process amounts to minimizing the
surprisal expected following an action, where expected surprisal

is also known as uncertainty. In other words, all action is—at

one level—in the game of resolving uncertainty and minimiz-

ing surprisal. Given the statistical conception of the phenotype

described above, the upshot is that we can interpret active

inference as the generalized homeostasis and allostasis of an

organism [21,56].

Relating these ideas to the core of our discussion,

variational free energy is minimized at all scales of self-

organization; from the ensemble behaviour of macromolecules

to evolutionary dynamics [57]. It is a purely information

theoretic construct that generalizes thermodynamic free

energy. It can provide an upper bound on the (log)

evidence for the exchange of a structure like a cell with its

environment. This evidence can either be interpreted as self-

information (a.k.a. surprisal), such that the time integral of

self-information becomes the entropy of environmental
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exchange. By interpreting the evidence in relation to a genera-

tive model, one can associate the biophysical states of any

living system (cell, brain, phenotype, species, etc.) with the

sufficient statistics of the generative model.

The variational free energy is then a functional of the

environmental (e.g. sensory) input to the system and the prob-

ability distribution over causes of that input parametrized by

the system’s internal states (e.g. intracellular concentrations,

neuronal connectivity, anatomical infrastructure, etc.). Cru-

cially, the generative process generating the input may be

formally distinct from the generative model of that process.

This construction means that the same free-energy functional

is minimized at different spatial and temporal scales, depend-

ing on how the system is defined. This minimization describes,

for example, the chemotactic behaviour of Escherichia coli,
learning in our brains, institutional organization, etc.: see

[47,52] for a detailed discussion and [48] for a worked example

in morphogenesis.

From the perspective of the organism, minimizing free

energy through active inference may feel like constructing

‘designed’ environments [58]. From the niche’s perspective

encoding the traces of organismic activity, it is just ‘learning’

about the phenotypes that inhabit it: both niche and phenotype

are self-evidencing. Mathematically, action on the environment

is the same as the niche sensing an organism. This is key to our

treatment in what follows. If both the niche and organism are

ergodic, then they must both conform to the free-energy prin-

ciple. This implicit symmetry or circular causality means that

free-energy bounding dynamics are also a special case of gen-

eralized synchrony, e.g. two swinging pendulums attached to a

beam that synchronize over time, or between a phenotype (e.g.

me) and (e.g. my) niche, which is usually constituted by other

sentient systems (e.g. like me). This synchrony is what we

associate with (developmental) niche construction dynamics

generating ecological inheritance.
4. A variational approach to niche construction
This section summarizes the conceptual and mathematical

analysis that underlies the variational principles supporting

the modelling heuristics for the variational framework of

niche construction.

4.1. Niche construction, variational free energy and
generalized synchrony

This section summarizes the conceptual and mathematical

analysis that underlies the variational principles we are pursu-

ing. The FEP furnishes an interpretation of an agent’s internal

dynamics as a gradient flow on a free-energy functional of sen-

sory states and an approximate posterior based on a generative

model of external dynamics (and how they map to sensory

states). This means that the internal states of an agent acquire

a Bayesian mechanics via an implicit (generative) model of its

environment. This interpretation rests on a distinction between

states that are external and internal to a given agent. This (stat-

istical) separation requires the existence of something called a

Markov blanket—that itself can be divided into active and sen-

sory states [47,59,60]. The only requirement (that licenses a

distinction between internal and external states) is that internal

states cannot directly influence sensory states—and external

states cannot directly influence active states (figure 1).
The key move now is to appreciate that the same Bayesian

interpretation can be applied to the external states. This follows

from the antisymmetry of the conditional dependencies that

define the Markov blanket. In other words, we can relabel

internal states as external states and relabel sensory states as

active states. In so doing, the conditional independencies

remain unchanged (figure 1). This means that there must be

a description of niche dynamics, where the environment

models how the agent’s internal dynamics are generating its

active states. From the perspective of the environment, the

agent’s active states now become sensory states and sensory

states become active states. The crucial observation here is

that the agent and eco-niche share the same Markov blanket

and, therefore, mathematically speaking, must be inferring
each other.

On this view, one can now consider the ultimate (non-

equilibrium) steady state of reciprocal exchange between

the agent and its environment. We know that the dynamics

of both external and internal states can be cast as gradient

flows on the respective free energies of the agent and

environment. So, under what conditions would their free

energies be minimized? The following lemma suggests that

this non-equilibrium steady state corresponds to a generalized

synchrony between the agent and niche.

Lemma 4.1. (generalized synchrony). If the internal and

external states of a random dynamical system exhibit general-

ized synchrony, then their variational free energy is jointly

minimized with respect to internal and external states.

ChðhÞ ¼ m
CsðsÞ ¼ a

�
) @hFðh, aÞ ¼ 0

@mFðm, sÞ ¼ 0

� �
) h ¼ arg min Fðh, aÞ

m ¼ arg min Fðm, sÞ

� �

hðbÞ W E pðhjbÞ½h�
mðbÞ W E pðmjbÞ½m�

:

ð4:1Þ

Here, b W ða, sÞ are blanket states that comprise action and sen-
sory states, respectively, while the external and internal states are

denoted by ðh,mÞ. Generalized synchronization implies a syn-

chronization manifold: M ¼ fðh,mjbÞ:CðhjbÞ ¼ ðmjbÞg, which

has been conditioned on the blanket state. The existence of

this (conditional) manifold is assured because for every given

blanket state, there is an expected external and internal state.

The equations above imply that the existence of a synchroniza-

tion manifold renders the expected states minimizers of their

respective variational free energies.

Proof (heuristic): for simplicity, we will deal with the case of

identical synchronization. Identical synchronization implies

that there is an identity mapping between the external and

internal states and their influences on each other [61,62].

This can be expressed as a synchronization in which the

sensory states of the agent (i.e. active states of the envi-

ronment) become the active states of the agent (i.e. the

sensory states of the environment) and both are perfectly cor-

related. The synchronization manifold can be regarded as a

surface that would be traced out if we plotted the states of

the agent and environment against each other (figure 2

for example).

The free-energy principle says that the flow of internal can

be expressed as a gradient flow on a free-energy functional of

posterior beliefs about external states, qmðhjsÞ encoded by



first-level expectations (hidden states)

second-level expectations (hidden states)

singing together

time (s)
fr

eq
ue

nc
y 

(H
z)

1 2 3 4 5 6 7
time (s)

1 2 3 4 5 6 7
2500

3000

3500

4000

4500

5000

fr
eq

ue
nc

y 
(H

z)

2500

3000

3500

4000

4500

5000

–50

0

50

100
first-level expectations (hidden states)

0 1 2 3 4 5 6 7 8
–40

–20

0

20

40

60

80

–50

0

50

100

–40

–20

0

20

40

60

80

time (s)
0 1 2 3 4 5 6 7 8

time (s)

0 1 2 3 4 5 6 7 8
time (s)

0 1 2 3 4 5 6 7 8
time (s)

second-level expectations (hidden states)

singing alone

–20

–10

0

10

20

30

40

50

60

se
co

nd
-l

ev
el

 e
xp

ec
ta

ti
on

s 
(s

ec
on

d 
bi

rd
)

synchronization
manifold 

–20 –10 0 10 20 30 40 50 60
–30

–20

–10

0

10

20

30

40

50

second-level expectations (first bird)
–20 –10 0 10 20 30 40 50 60

second-level expectations (first bird)

se
co

nd
-l

ev
el

 e
xp

ec
ta

tio
ns

 (
se

co
nd

 b
ir

d)

Figure 2. A duet for one. In this simulation of free-energy minimization, two birds with the same generative models—but different initial expectations—sing for
2 s and then listen for any response. In the right panels (singing alone), the birds cannot hear each other (because they are too far apart) and the successive epochs
of songs diverge due to the sensitivity to initial conditions implicit in their (chaotic) generative models. The upper panels show the sonogram heard by the first bird.
Because this bird can only hear itself, the sonogram reflects the proprioceptive predictions based upon posterior expectations in the HVC ( first-level expectations) and
area X (second-level expectations). These anatomical designations are based upon the hierarchical generative model illustrated with the insets (left). The posterior
expectations for the first bird are shown in red as a function of time—and the equivalent expectations for the second bird are shown in blue. However, when the
two birds can hear each other (singing together), the posterior expectations are encoded by internal states show identical synchrony at both the sensory and
extrasensory levels—as shown in the middle panels. Note that the sonogram is now continuous over successive 2 s epochs, because the first bird can hear
itself and the second bird. The ensuing synchronization manifold is shown in the lower panels. These plot the second-level (area X) expectations in the
second bird against the equivalent expectations in the first. The left panel shows chaotic and uncoupled dynamics when the birds cannot hear each other,
while the right panel shows the generalized (identical) synchrony that emerges when the birds exchange sensory signals. The different colours correspond to
the three hidden states for each bird. The synchronization manifold for identical synchronization corresponds to the (broken) diagonal line. See [63] for details.
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internal states, and vice versa for the external states:

_h
_m

� �
¼ fhðh, aÞ

fmðm, sÞ

� �
¼ �Ghh � rhFðh, aÞ
�Gmm � rmFðm, sÞ

� �

Fðh, aÞ ¼ Eq½ln qhðmjaÞ � ln pðm, aÞ�
Fðm, sÞ ¼ Eq½ln qmðhjsÞ � ln pðh, sÞ�

¼ Eq½�ln pðh, sÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Energy

�H½qmðhjsÞ�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Entropy

¼ D½qmðhjsÞjjpðhjsÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KL divergence

� ln pðsÞ|fflfflffl{zfflfflffl}
Log evidence

� � ln pðsÞ

¼ D½qmðhjsÞjjpðhÞ�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Complexity

�Eq½ln pðsjhÞ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Accuracy

: ð4:2Þ

The free energy has been written here (for internal states) in

several ways that provide a useful interpretation. The first
decomposes the free energy into an energy and entropy term

by analogy with statistical thermodynamics. The second

rearrangement is more common in Bayesian statistics and

machine learning. It shows that when the posterior beliefs are

the true posterior density pðhjsÞ, their KL divergence disap-

pears and the free energy becomes negative log evidence

Fðm, sÞ � �ln pðsÞ, namely the negative log probability of sen-

sory states, under the generative model of hidden causes and

sensed consequences: pðh, sÞ. This is why the variational free

energy is sometimes called an evidence bound—because it is

always greater than negative log evidence [64,65]. The final

rearrangement shows that minimizing free energy is effectively

the same as finding accurate explanations that are minimally

complex; i.e. that conform to Ockham’s principle.

Under identical synchronization, M ¼ fðh,m, a, sÞ:h ¼ m,

a ¼ sg the gradient flows in equation (4.2) are identical
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everywhere. This implies that the underlying free-energy gradi-

ents are isomorphic on either side of the Markov blanket. In

turn, this means that the generative model entertained by the

agent about its environment is exactly the same as the genera-

tive model entertained by the environment about the agent.

Furthermore, both agent and environment generate sensory

and active states that are congruent with their shared generative

model. This implies that the posterior beliefs (i.e. densities) must

be veridical:

qmðhjsÞ ¼ pðhjsÞ ¼ qhðmjaÞ ¼ pðmjaÞ: ð4:3Þ

Substituting this into the expressions for free energy above

shows that the divergence term disappears, and the free

energy attains its lower bound.

Fðh, aÞ ¼ � ln pðaÞ
Fðm, sÞ ¼ � ln pðsÞ

�
) @hFðh, aÞ ¼ 0

@mFðm, sÞ ¼ 0

� �
: ð4:4Þ

In other words, the generative model of both agent and

niche are the veridical explanations of their respective sensory

fluctuations and the variational free energies of both are jointly

minimized with respect to the posterior beliefs parametrized by

their respective states.

Remark 4.1. For simplicity, we have just dealt with the situ-

ation of identical synchrony. Clearly, there will be formal

asymmetries in the external structure of the environment

and the internal structure of the agent. The above arguments

must, therefore, be generalized (heuristically), such that the

synchronization between internal and external states is gener-

alized. Usually, in dynamical systems theory, generalized

synchronization is considered in the light of skew product

systems (i.e. master–slave systems) [61]. The twist here is

that there is a bidirectional coupling that is actively main-

tained. This active maintenance rests upon a corollary of

generalized synchrony; namely, that there is a generalized

synchrony between the active and sensory states from the

point of view of both the agent and niche. In other words,

for generalized synchrony to emerge (i.e. for the minimiz-

ation of joint free energy) it is necessary that both systems

supply the right sort of sensory impressions that enable

them to implicitly infer each other.
4.2. Minimal simulation of organism – niche synchrony
Clearly, the above construction starts to look like a model of

communication. Indeed, the notion of generalized synchrony

across a shared Markov blanket has been used previously to

model communication in computational neuroscience—and

resolve the problem of neuronal hermeneutics (i.e. inferring

what was meant by reference to a shared narrative). Figure 2

illustrates the generalized (identical) synchrony that emerges

when two synthetic songbirds can hear each other singing [63].

In the present setting, this can be regarded as a minimal

simulation of the coupling between an agent and its niche,

where the niche is another agent. Niche construction, in a

broad sense, involves the modification of both biotic and abio-

tic ‘agents’. As discussed above, those modifications amount

to learning via sensory and active (active inference) exchanges,

also in a broad sense, among agents populating the niche.

This perspective on mutual influence—that is an emergent

property of minimizing ( joint) free energy—can be applied to

multiple agents. A nice example of this is the joint free-energy
minimization exhibited by simulations of cells that have a

common (generative) model of their place within a tissue or

organ; see [48,60] for details. In short, the same form of gener-

alized synchrony (to a point attractor) can be used to model

morphogenesis, where the environment is constituted by

other agents with Markov blankets (i.e. other cells), who

share the same generative model. This example is particularly

interesting, because the evidence for the shared model now

becomes the lower bound for the joint free energy [48].

The mathematical image of generalized synchrony, cast in

terms of variational free-energy minimization, resonates

nicely with earlier formulations of self-organization in cyber-

netics; namely, the good regulator theorem [66]. Here, the

good regulator theorem applies not just to the regulator

(agent) but also the (environmental) system that is being

regulated (i.e. niche), conferring them both the status of

agent. Clearly, to become a good model of one’s niche, one

needs to infer its causal structure.

In terms of the Bayesian mechanics above, this corresponds

to a slow gradient flow on variational free energy averaged

over time (in a path integral sense) [67,68]. In other words,

there are certain states within and beyond the Markov blanket

that constitute order parameters [50,69], or parameters of the

generative model that are subject to the same free-energy mini-

mizing pressures as fast fluctuations normally interpreted in

terms of inference. The distinction between phenotypic states
and traits maps to the distinction between the internal states

that fluctuate quickly and slowly, where it is tempting

to associate phenotypic traits with the order parameters of

synergetics [50,70]—evolving over very slow (somatic or devel-

opmental) timescales. In relation to the statistical conception of

the phenotype described earlier (cf. §3.1.), and the organism–

niche synchrony described above, we can associate some of

these phenotypic traits to order parameters that pertain to

the material setting of the physical environment. These

undergo even slower fluctuations caused, notably, by the

niche construction.

We introduce the distinction between fast inference and

slow learning because simulations suggest that important

asymmetries in the way that the agent learns about the environ-

ment—and the environment learns about the agent—can have

profound effects on niche construction. In brief, if the (implicit)

generative model of the environment holds very precise beliefs

about certain dynamics, then the organism will come to learn

the environment more quickly than the environment will

learn about the agent. Conversely, when action upon the

environment effectively teaches the environment about the

agent—and the environment holds imprecise beliefs about

the agent—the environment will yield to the agent’s beliefs

more readily (cf. results summarized in figure 3 [71]).

The asymmetry in learning between organisms and their

environment will be central to our discussion of ecological

inheritance in §5.2. In brief, the asymmetry in learning rate

between the environment and organisms allows material

features of the environment to ‘retain’ regularities in behav-

ioural patterns of groups of organisms unfolding over long

timescales (e.g. cultural practices). These are ‘encoded’ through

fast inference and niche construction by individual organisms.

These may be viewed as order parameters encoded in the

material features of the environmental, which are part of the

joint phenotypic space (including slowly fluctuating traits,

and quickly fluctuating states), and which are passed on

through ecological inheritance.
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Figure 3. Learning and communication. (a) Shows epoch by epoch changes in the posterior expectations (lines) of an order parameter of the first bird (blue) and
second bird (green) determining the (chaotic) structure of the songs of the sort shown in figure 2. The shaded areas correspond to 90% ( prior) Bayesian confidence
intervals. The broken lines (and intervals) report the results of the same simulation, but when the birds could not hear each other. (b) Shows the synchronization of
extrasensory (higher) posterior expectations for the first (i) and subsequent (ii) exchanges, respectively. This synchronization is shown by plotting a mixture of
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a linear mapping. In this example of perceptual learning via free-energy minimization, the second (green) bird had more precise beliefs about its order parameter
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and non-self; i.e. beyond self-organization. See Friston & Frith [71] for details.
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In the present example of the two birds singing to each

other, the (order) parameters of the two respective generative

models were optimized with respect to their respective

variational free energies. Crucially, one bird had relatively

precise beliefs about the autonomous dynamics generating

birdsong, while the other had less precise beliefs. The first

bird, therefore, essentially learned from the second. On the

current argument, we can associate the agent and environ-

ment with either bird, to introduce the notion that the

environment may learn about the agent or the agent can

learn about the environment, or that both can occur at the

same time. The simulations of generalized synchrony (using

birdsong) reported in this paper can be reproduced using

the academic software available from http://www.fil.ion.

ucl.ac.uk/spm/software/. Typing DEM at the MATLAB

prompt will invoke a graphical user interface. The simu-

lations can be reproduced by selecting Birdsong duet button.

This allows users to examine the code (DEM_demo_duet.m)

and subroutines—and customize them at their discretion.
Here, the ensemble that realizes the generalized syn-

chrony consists in the entire population (the two birds)

along with their local environment (for each bird, the other

bird). In the simulation, the free energy of one bird is a func-

tional of (sensory) signals from the environment (the other

bird), while the free energy of the environment depends

upon (action) signals from the bird. In principle, this equips

the bird–environment system, or niche, with a measure of

complementarity in relation to the phenotypes it hosts. Because

the free energies of each bird and their respective environ-

ment (the other bird) are extensive quantities (i.e. they can

be added together), we have, in principle, a way of scoring

the coevolutionary complementarity among the various

biotic and abiotic agents of a niche, which is simply the

sum of their respective variational free energies. Increase in

complementarity correlates with decrease in free energy. Cru-

cially, this measure transcends any particular context, and can

be compared quantitatively at different spatio-temporal

scales (e.g. between two agents, two groups, two species).

http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/
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This concludes our formal analysis. For further details, see

[47] and [72] for a complementary treatment of self-organized

criticality (i.e. critical slowing), variational free-energy

minimization and generalized synchrony. We now turn the

key role of precision estimation in determining the level of

symmetry of exchange between agents and environment.

4.3. Niche construction and synchrony: a mechanism for
meta-learning

The FEP understands precision estimation (the estimation of

the reliability of sensory information) as a meta-learning mech-

anism, because it allows the organism to know what worth

learning [73]. Learning precision is a crucial part of the attune-

ment to causal regularities in the environment. For instance,

humans have evolved a host of phenotypic expressions, from

highly visible white sclera and gaze tracking abilities, to cul-

tural ‘prestige cues’, which optimize the process of learning

from whom and what to learn [37].

Constructed aspects of the niche can play an important

role in learning, and estimating precision. Consider ‘desire

paths’ in humans [74]. Such paths can be the by-products

of people cutting through the grass rather than following

the paved road. Over time, a dirt trail might form, thereby

attracting additional pedestrians and reinforcing the trail in

a looping manner, which will further steer future interactions

between the users and their niche.

In this example, niche construction is mostly implicit:

pedestrians need not be aware that they are constructing a

path, or aware of how their action on the environment can

benefit them, or impact others. They merely act in accordance

both with local constraints, and with respect to their expec-

tations (e.g. the desire to reach the extremity of the park).

This highlights the fact that in general, we can expect physical

changes produced through active inference to be consistent

with, or complement the organisms’ expectations.

Lasting physical changes to the environment produced via

niche construction function as high fidelity, precise sources of

information. By actively engaging their environment, organ-

isms—and indeed, entire populations—fit their niches to

their prior expectations, e.g. in desire paths. Information rel-

evant to the generation of adaptive responses is encoded in

the physical environment (cf. [18]), thereby directing the learn-

ing of causal regularities, and aiding the organism in managing

uncertainty (cf. [75–78]) (e.g. there is a high probability that I

end up faster to the other extremity of the park if I follow

this trail). Salient aspects of the niche modulate the attention

of organisms and direct active inference [42,79,80] by ground-

ing learning in the socio-material fabric: constructed aspects

of the niche function as meta-learning mechanisms and

encode salience.

We use ‘salience’ here in a very particular and formal way

that is consistent with the active inference scheme. Salience is

the information gain, reduction of uncertainty, Bayesian sur-

prise, or epistemic value that constitutes an important part of

expected free energy. In brief, certain environmental cues

(e.g. signs and semiotics) attain salience or epistemic affor-

dance because they indicate the actions that will minimize

expected free energy or, more simply, resolve uncertainty

(see [81] for details). This facilitates substantially the

modelling of the environment by the organism.

An important function of environment-based meta-learning

is that it enables organisms to reduce cognitive demands, and in
a sense ‘upload’ the computational burden of salience esti-

mation to the environment itself. Hence, it is no stretch to say

that learning what is salient or has epistemic affordance does

not rest solely upon the learning of brain, or body-based

priors, but also on carving out a specifically constructed niche

through the traces left by reiterated action (of self and others,

past and present). This could be an implicit strategy by which

organisms save on metabolic resources. In the parlance of

free-energy minimization, uploading information into the

niche translates to minimizing complexity and associated ther-

modynamic costs of computation via the Jarzynski inequality

[82,83]. Heuristically, it eases the decision-making process by

reducing uncertainty as well as the need for metabolically

expensive, internal (neural) information processing. Uploading

also enables the reduction of model complexity over time by

constraining the hypothesis space that the organism has to

model, narrowing the range of possible priors, and thereby

increasing thermodynamic efficiency [84].
5. Applications and predictions
In this section, we discuss the variational approach to niche

construction in relation to situated learning in developmental

psychology and ecological inheritance. We revisit the standard

critiques of NCT under the lens of the variational approach.

5.1. Variational niche construction and situated learning
The idea of the niche as supporting learning is consonant with

new perspectives on niche construction in developmental psy-

chology, especially with the situated learning paradigm (e.g.

[26]). As Flynn and colleagues point out, ‘the niche into

which we are born . . . in part, dictates what we learn’ [26].

One of the functions of the developmental niche is to support

situated learning, defined as the process by which an organism

comes to acquire the knowledge necessary to integrate a

‘community of practice’ [85].

This requires of organisms that they engage conventiona-

lized patterns of collective activity, grounded in material

artefacts and other physical aspects of the niche, which

have been transmitted to allow for the progressive integration

of the organism as a legitimate member of the community

[42,85]. From the point of view of NCT, the engagement of

the constructed environment inherited from the community

of practice enables situated learning, and influences the selec-

tion of norms, habits, and values modulating attention

([26,41], cf. the concept of regime of attention [79]).

By providing opportunities for learning how to learn, the

developmental niche does not merely indicate what infor-

mation ought to be learned, but also how best to learn it

[26]. As a meta-learning device, the information encoded in

the material states of the local environment function to

guide active inference by weighting sensory inputs according

to their reliability, or salience, and constitute a more general

device that allow organisms to learn how to learn, by guiding

action–perception cycles (active inference).

5.2. An example of niche constructions as
meta-learning and ecological inheritance

A good example of simple DNC and situated learning is the

process of learning technical skills, for instance the learning

of nut cracking skills by young bearded capuchin monkeys
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(Sapajus libidinosus) in Boa-Vista forest (Brazil) [16]. Bearded

capuchin monkeys feed on palm nuts, which they must

crack using stones as hammers, and other stones or logs as

anvils [86]. To learn nut cracking for youngsters is no small

business, as it requires all sorts of complex actions, e.g. prop-

erly placing the nut on the anvil, maintaining the nut stable

throughout the striking action, learning the adequate kind

of striking action that keeps the nut in place while also

have enough velocity to crack open the nut, etc.

Youngsters spend a great deal of time watching and imi-

tating adults’ nut cracking prowess with smaller stones and

nut pieces [16]. Adults, in turn, leave material behind them,

and, importantly, different sorts of reliable ecological traces

like oily residues on the stone anvil site, and pieces of shell,

as well as the hammer stones used for nut cracking, which

further attract and direct youngsters’ interest to the specifics

of the nut cracking site.

These alterations to the environment last for years, even

when exposed to inclement climates. Although the learning

of the nut cracking technique is partly mediated by attending

to adults and imitating them, this, in itself, is not sufficient for

the learning. Rather, it is the high fidelity, lasting changes to

the niche and the technical artefacts left behind by adults that

indirectly biases learning over short and long timescales,

thus supporting persistent practice over the course of

development [16].

Lasting changes made to the developmental niche enable

the acquisition of complex nut cracking skills in youngster

Capuchin monkeys, and supports the passing on of tra-

ditions, defined as the renewed learning of behavioural

patterns by each new generation [36,87]. Crucially, this

depends upon the changes to the niche which extend the

reach of knowledge transmission through the inheritance of

salient information over intergenerational timescales.

In turn, such information transmission depends on two

interrelated processes associated to DNC and SNC: (i) the

construction, engagement, and re-engagement of the develop-

mental niche, along with the information it comprises; (ii) the

slow learning fast inference differential between the environ-

ment, and the organism (cf. §4.2.). Engaging the niche leads

to the accumulation, e.g. of oily residues and nutshells,

which increases the precision of the environment understood

as the propensity to influence learning. A precise environment

is likely to be passed on to the next generation, and thereby can

extend the reach of information transmission.

The sort of (non-genetic) niche inheritance that we describe

here is a form of ecological inheritance, which rests on the inter-

play of two kinds of resources: (i) algorithmic information, and

(ii) material and energetic resources [88]. Algorithmic infor-

mation consists of ‘know-how’-like information encoded by

structural and functional features of the niche (typically, genetic

information or direct knowledge transmission) [25], which is

passed on through standard niche inheritance. Material and

energetic resources typically correspond to abiota (e.g. material

resources like oily residue). Taken in the context of evolutionary

biology (and ecology cf. [89]), algorithmic information is defined

as anything that can reduce organisms’ uncertainty with regard

to possible fitness advantage afforded by the selective environ-

ment [90,91]. It eases the exploitation of the environment, and

in so doing, can causally influence reproductive success [91].

Crucially, on that view, abiota passed on through ecological

inheritance can be a source of algorithmic information, e.g.

knowing how to exploit food resources based on the traces left
by the activity of members of—current and—previous

generations. Following the variational free-energy perspective,

we can further define algorithmic information as salient

information that secures the optimization (e.g. learning and

phenotypic plasticity) of the phenotype throughout develop-

ment; a meta-learning device that members of previous

generations craft through reiterated active inference.

The challenge with algorithmic information is that while its

transmission is costly, it is nonetheless a necessary resource

[91]. The reproduction of the adaptive life cycle that is secured

through development involves myriad environmental manip-

ulations (e.g. building nests, beaver dams and knocking palm

nuts), which often require organisms to know-how to engage

their environment early in development. Organisms can be

informed a priori, for instance, through algorithmic information

that is bound up with their genetic makeup, but also by having

access to external channels of algorithmic information. The

inheritance of algorithmic information supposes that previous

generations themselves had access to algorithmic information

having enabled them, in the first place, to exploit the resources

of their environment, so as to be efficient enough to afford

passing on this information. The inheritance of algorithmic

information is a costly business, as it necessitates of previous

generation that they invest metabolic resources for its

physical acquisition, storage and use, and transmission [91].

From the point of view of the variational approach,

however, algorithmic information, understood as salient infor-

mation, comes at low cost, as it carries the cognitive burden of

precision estimation in development (cf. end of §4.3.), which is

one of the main mechanism underwriting organisms’ homeo-

stasis (cf. §3.3). Therefore, because the material and energetic

carriers of algorithmic information enable cheaper sensory

information processing, algorithmic information can compen-

sate for its cost of transmission. As salient information, it

could be modelled as environmental precision, and its role in

learning could be explored in simulations similar to the one

presented in §4.2. It can be approached quantitatively as infor-

mation gain cf. §3.3., 4.1.). One could, for instance, test

the function of algorithmic information by comparing the

changes in variational free energy over time between different

organism–niche joint phenotypic spaces, in which agents’

differential saliences could vary within and across trials. Vari-

ations within trials would represent learning in development

(DNC scale), and variation across trials would represent the

inheritance of more or less precise algorithmic information

(SNC scale).

5.3. Critiques revisited and predictions for future
research

We conclude our discussion by considering the challenges to

NCT presented earlier in light of the variational approach to

niche construction (see figure 4 for a visual summary). We

examine some of the predictions of the variational approach

to niche construction with regard to (i) the generation of non-

random, organism-dependent biases on selection pressures;

(ii) the consolidation of organism–niche complementarity

across temporal scales; and (iii) the cross-generational niche

stabilization of environmental conditions.

(i) As a corollary of active inference, niche construction has

a systematic causal influence on fitness, on average and

over time, as it optimizes the attunement of the
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organism with its local environment. This is especially

important in organisms for which fitness depends on

the ability to navigate and attune to complex social

environments, and participate in immersive patterned

cultural practices, such as humans [37]. Niche construc-

tion induces changes to the environment that are not

(necessarily) random. On the contrary, many of these

changes (although they may be implicit) are continuous

with the organism’s expectations (the set of priors

embodied by the organism), as they result from active

inference, which is controlled by these expectations.

We can further predict that some of these changes will

be deeply continuous with the environmental selection

pressures themselves, as these are ‘expected’ by the phe-

notype of the organism. This is so because natural

selection retains sets of priors best adapted to pressures

in first place ([20–24] also see electronic supplementary

material), which active inference brings forth.

(ii) Active inference allows the organism to specify (often

implicitly) those features of the environment that will

be adaptive given the demands of their phenotype, i.e.

they can specify those features of the niche, the learning

of which makes them an accurate model of their environ-

ment. On a developmental timescale, this rests on the

meta-learning function of niche construction, which

guides optimization, or phenotypic plasticity. On the

scale of phylogeny, it rests on the inheritance of con-

straints passed on across generations in the form of

species relevant information (salience), which will

further guide the optimization in development.
Therefore, we can expect the DNC–SNC tandem

to tend, over time and on average, to consolidate

organism–niche complementarity across timescales.

(iii) The optimization of organism–niche complementarity

entails the cross-generational stabilization of the features

of the niche, which can be framed as the consolidation of

salience: the more agents implicitly engage a material

locus of information, the more likely this locus is to

further attract engagement, and consequently, the

more salience it can acquire. Because of the nature of

active inference, organisms tend to learn from (adapt

their model to) highly salient environments, potentially

deploying culturally patterned practices built around

these. Interestingly, we can speculate that an environ-

ment that acquires too much salience will become

maladaptive, as the attunement dynamics taking place

in development require that both the organism and the

environment share a certain propensity to learn from

one another (c.f. figure 4).

6. Concluding remarks
The FEP has motivated the production of much research over

the last 10 years. While this work has led to novel theoretical

developments, ecologically valid empirical work is forthcom-

ing still. The approach we propose in this paper faces the

same limits. So far, it can only be used to make predictions,

one of these being that free energy can be cast as an ecological

quantity reporting organism–niche complementarity. Much
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work is still to be done to demonstrate the validity of the

variational approach to niche construction. Nonetheless,

simulation studies can be used to explore the ecological

phase space and to generate predictions about adaptive

solutions to ecological problems, framed as free-energy

bounding problems. Scientists can proceed on the basis of

such predictions and compare these computational models

with empirical data. We can further draw from this approach

an important conceptual point, which can inform theorizing

and empirical work: over time, part of the architecture of

priors embodied by members of a population (brain- and

body-based priors) becomes encoded in the socio-material

setting of the niche. The organism then models an environ-

ment which, in turn, models it back, and thereby living

systems end up expecting a world that reflects their own

expectations. This, however, points to another limit of the vari-

ational approach. Thus far, it has only focused on positive

feedbacks involved in niche construction, in relation to the

adaptation of individual species. Future research should con-

sider the integration of negative feedbacks caused by niche

construction, and how those play out in the dynamical relation

between natural selection and niche construction, and their con-

sequence in eco-evolution. Moreover, future research should

consider the possible limitations of the variational approach

with regard to the complexity of ecological inheritance. For

instance, modelling the full scope of ecological inheritance
might become quickly intractable due to the complexity of the

formalism of the variational approach.
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