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Abstract

Background: Inner ear evoked potentials are small amplitude (<1 μVpk) signals that
require a low noise signal acquisition protocol for successful extraction; an existing such
technique is Electrocochleography (ECOG). A novel variant of ECOG called
Electrovestibulography (EVestG) is currently investigated by our group, which captures
vestibular responses to a whole body tilt. The objective is to design and implement a
bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise
performance compared to low noise, general purpose devices available commercially.

Method: A high gain configuration is required (>85 dB) for such small signal recordings;
thus, background power line interference (PLI) can have adverse effects. Active electrode
shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were
investigated for PLI suppression. A parallel pre-amplifier design approach was investigated
to realize low voltage, and current noise figures for the bio-signal amplifier.

Results: In comparison to the currently used device, PLI is significantly suppressed by the
designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier
generated noise was measured to be 4.8 nV=

ffiffiffiffiffi
Hz

p
@ 1 kHz (0.45 μVRMS with bandwidth

10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV=ffiffiffiffiffiffi
Hz

p
@ 1 kHz (0.76 μVRMS). A low noise (<1 nV=

ffiffiffiffiffi
Hz

p
) radio frequency interference filter

was realized to minimize noise contribution from the pre-amplifier, while maintaining the
required bandwidth in high impedance measurements. Validation of the prototype
device was conducted for actual ECOG recordings on humans that showed an
increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG
recordings using a synthetic ear model that showed a ~4% improvement
(p < 0.01) over the currently used amplifier.

Conclusion: This paper presents the design and evaluation of an ultra-low noise
and miniaturized bio-signal amplifier tailored for EVestG and ECOG. The increase in
SNR for the implemented amplifier will reduce variability associated with bio-features
extracted from such recordings; hence sensitivity and specificity measures associated with
disease classification are expected to increase. Furthermore, immunity to PLI has enabled
EVestG and ECOG recordings to be carried out in a non-shielded clinical environment.

Keywords: Active shielding, Bio-signal amplifier, Electrocochleography,
Electrovestibulography, Parallel amplifier, Power line interference, RFI filtering, Right leg
driver, Ultra-low noise
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Introduction
Development of low noise bio-signal acquisition devices have evolved substantially

since the inception of the amplified electrocardiogram in the late 1940’s [1], due to the

demand for high resolution electrophysiological measurements and increased patients’

safety [2]. One such method that demands a high resolution signal acquisition protocol

is Electrocochleography (ECOG), a specialized technique that captures electrical activ-

ity from the cochlea, where the signal of interest can range from 0.1-2 μV for the extra-

tympanic approach [3]. In this work the averaged electrocochleograph waveform is

referred to as the ‘averaged field potential’ (AFP) that includes the summing potential

(SP), and the whole nerve-action potential (AP) (see Figure 1). Bio-features identified in

the AFP has enabled ECOG to be a useful clinical tool for diagnosis and monitoring of

a balance disorder called Ménière’s Disease [3,4].

Our group is developing a novel technique called Electrovestibulography (EVestG)

[5], a variant of ECOG, to be used as a diagnostic assistive tool for a subset of neuro-

logical disorders such as Depression, Parkinson’s Disease, and Schizophrenia [6,7]. In

comparison to ECOG, EVestG captures electrical activity predominantly from the ves-

tibular labyrinth during movements (which is analogues to the sound stimulus used in

ECOG), while using a similar recoding topology (described in II). Research over the last

decade shows that bio-features extracted from vestibular FP’s has potential to be used

for classifying healthy subjects from patient groups [5]. The vestibular FP is assumed to

be smaller (<1 μVpk) than the cochlea FP as the recorded response is not from stimulat-

ing the whole (or a tonal range of ) auditory system in a synchronous response [3],

rather, from detecting the spontaneous (or driven) response of smaller groups of “syn-

chronously” firing otoacoustic hair cells. EVestG recordings are currently obtained

using a commercially available, bench-top, low noise bio-signal amplifier in a sound at-

tenuated electrically shielded chamber to reduce background interference. However, it

is desired to implement a miniaturized ultra-low noise amplifier to reduce noise contri-

butions from the recorder, and make EVestG a portable technology to be used in a

clinical setting without the shielded chamber. The current apparatus has two major

limitations. First, the system is susceptible to power line interference (PLI) at high gain
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Figure 1 Typical ECOG response.
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(>85 dB) recordings, making it impossible to carry out recordings outside the shielded

chamber. Second, the general purpose amplifier is not optimized for ECOG/EVestG re-

cordings, hence limits high signal-to-noise-ratio (SNR) recordings that can be achieved

if unique differences associated with the recording topology were identified and

accounted for (detailed next).

Many groups have implemented low noise, bio-signal amplifiers with particular appli-

cations in neural recordings [8-13] using CMOS processes. Their common motivation

was to develop the bio-signal amplifier to attain: low noise and low power characteris-

tics, consume a small footprint, and to be integrated in multi-electrode systems. How-

ever, the referred to input (RTI) noise figure for these amplifiers [8-13] are >1.94

μVRMS (for varying low pass cut off frequencies in the range 5 kHz to 9 kHz), and with

varying mid-band gain values in the range 40-60 dB. For EVestG recordings we strictly

require an ultra-low noise (<1 μVRMS) bio-signal amplifier with bandwidth 10 Hz-

10 kHz, since amplifier generated noise ultimately dictates the lowest amplitude signal

attainable. Furthermore, current noise generated by the amplifier is required to be

small ∼fA=
ffiffiffiffiffiffi
Hz

p
range

� �
to account for high input impedance scenario’s (not addressed

in amplifier designs listed above).
Background
ECOG/EVestG recordings are obtained by placing a specialized ear electrode proximal

to the tympanic membrane (TM) via the ear canal, and a reference electrode on the

earlobe. The difference between EVestG and ECOG recording topologies is that, the

reference electrode is typically placed on the contralateral earlobe for ECOG [3], and

on the ipsilateral earlobe for EVestG [5]. Noise associated with ECOG recordings are

reduced by averaging FP’s resulting from auditory clicks, where all noise sources uncor-

related with the sound stimulus would diminish, leaving behind the AFP. EVestG in

contrast, records spontaneous and driven vestibular FP’s, both at rest and when evoked

by the vestibular stimulus through a whole body tilt [5]. These spontaneous FP’s occur

at unknown times and time intervals, hence are extracted by a proprietary software al-

gorithm called the Neural Event Extraction Routine (NEER) [14]. The algorithm’s FP

detection accuracy is found to be largely dependent on three main types of interference

present in the recording [15]: 1) biological signal interference within the bandwidth

40-500 Hz that is comprised predominantly of muscle activity [5]), 2) power line inter-

ference (PLI) (predominantly odd harmonics), and 3) system generated noise (where

effects are significant for frequencies above 500 Hz).

In common electrophysiological measurement techniques such as, electrocardiog-

raphy (ECG), electromyography (EMG), and electroencephalography (EEG), typically

identical electrodes are used for the differential electrode pair. In contrast the differen-

tial electrodes used for ECOG and EVestG are physically different, since the active elec-

trode is a specialized one inserted in the ear canal, which is different from the

reference electrode placed on the ear lobe. This mismatch of electrodes results in mis-

matched input impedances and cause common mode signals to be converted to differ-

ential mode, thus reducing CMRR of the system and increasing susceptibility to PLI

[16,17]. As a preliminary step towards designing an appropriate amplifier configuration,

the existing impedance mismatch was verified experimentally by immersing identical
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electrodes 1 cm apart in conductive gel filled in a 1 inch3 plastic cube. Figure 2 shows

mismatched impedance values verses frequency for the two types of electrodes used;

the solid green curve represents the reference electrode (ear lobe electrode), and the

dashed line represents the ear electrode (each measurement was repeated 4 times and

averaged; the worst case coefficient of variance (CV) for measurements was 5.2%), that

would lead to large common mode signals. To attenuate common mode signals, suc-

cessful digital filtering (post processing) approaches have been reported for ECG appli-

cations [18,19]. However, post processing alone does not suffice for large gain (>85 dB)

applications, since saturation of the recording device can often occur due to PLI.

Therefore, a driven right leg circuit (RLD) popularly used in electrophysiological mea-

surements [1,16,18,20] was investigated in the prototype design (in section III) to

minimize PLI from the source.

Noise added by the recording apparatus (system noise) has a substantial effect on low

amplitude recordings. Figure 3 illustrates a power spectrum of a 5 minute long ECOG

recording, where the horizontal dashed line is indicative of system noise (a collection

of noise generated by the amplifier, electrodes, and the electrode/skin interface

[19,21,22]), and the low frequency (<1 kHz) component (solid line) corresponds to bio-

logical activity. The current OEM amplifier measures to have a 0Ω load noise floor of

7:8 nV=
ffiffiffiffiffiffi
Hz

p
when tested at the connector box located approximately 1 m away from

the device, which is also required to be minimized. Hence, detailed in this paper is the

design, implementation, and validation of an ultra-low voltage and current noise ampli-

fier tailored for ECOG and EVestG based on identified differences associated with

recordings using commercially available components.
Materials and methods
The proposed amplifier design consists of three major components to overcome the is-

sues addressed above. They are:
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Figure 2 Impedance plots for the 2 electrode types used, and typical skin impedance measured
from a test subject connected for EVestG recordings.



Figure 3 Power spectrum density of a 5 min long ECOG recording. The power axis is referenced to
1 Vrms.
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1. Power-line Interference rejection using a driven right leg (RLD) topology

2. Active Shielding

3. Ultra-low noise Preamplifier design

In subsequent sections the requirements for these features are detailed, followed by

validation testing.

A)The patient-amplifier interface model with RLD
Fig
Figures 4 and 5 illustrates circuit models [16,20,23-25], when a person is connected

with electrodes for an ECOG recording. Figure 5 shows inputs to the amplifier with

intrinsic impedances from electrodes/leads and skin, and power line displacement

currents and their pathways. For our scenario CSUP (Figure 5) is negligible since the
ure 4 Right leg driver circuit. The cross section of the ear was adapted from [25] with permission.
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amplifier is battery powered. CE1 and CE2, are parasitic capacitances, that arise due

to the shield conductor around the differential electrodes; however, PLI coupling

from CC1 and CC2 to the inner conductors are reduced due to this shield. By

employing active driven shields, the parasitic capacitances CE1 and CE2 will be

minimized (detailed in part III B), thus displacement currents idC1, idC2, and idSUP
are negligible. However, it must be noted that neglecting these displacement

currents do not affect the common mode voltage (VC) derived in subsequent

equations, since it is based on the total displacement current id2 as derived in (3).

Since displacement currents flowing in and out of the body must equate:
id ¼ id1 þ id2 ð1Þ
where id2 is flowing from the body to the common (COMM) electrode. The current div-

ision between CISO and Cb is used to express id2 as follows:

id2 ¼ CISO

CISO þ Cb
id ð2Þ

Then the common mode voltage VC is
VC ¼ id2⋅ZRLD ð3Þ
where ZRLD is the impedance between the VC node and circuit ground. If the COMM

electrode was connected to circuit ground, then:

ZRLD ¼ Z3 þ RE3: ð4aÞ
Figure 4 shows the COMM electrode driven by the RLD circuit (shown separately
from Figure 5 for clarity). The RLD circuit consists of an inverting amplifier with

gain G ¼ Rf
Rk

� �
with a corner frequency set at 1.5 kHz. The RLD circuit is driven by

the signal common to both the differential electrodes (known as the common mode

voltage). By driving the COMM electrode with an inverted VC with gain (G + 1),

the effective impedance ZRLD simplifies to
ure 5 Circuit model for power line interference for ECOG recordings.
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ZRLD ¼ Z3 þ RE3ð Þ
Gþ 1ð Þ ð4bÞ

From (2), (4b), and (3), VC can then be expressed, for the Sa position in Figure 4, as:
Fig
VC ¼ id2⋅
Z3 þ RE3

Gþ 1

� �
¼ CISO

CISO þ Cb
id⋅

Z3 þ RE3

Gþ 1

� �
ð5aÞ

For the case when the Ro resistor is outside the feedback loop (Sb position, see
Figure 4), the impedance of Ro will also be added to the effective impedance ZRLD;

hence
VC ¼ CISO

CISO þ Cb
id⋅

Z3 þ RE3 þ Ro

Gþ 1

� �
; ð5bÞ

and from (2) and (3), if the 3rd electrode is grounded

VC ¼ CISO

CISO þ Cb
id⋅ Z3 þ RE3ð Þ: ð5cÞ

From the three Equations (5a, b and c), it is seen that the lowest VC value is
attained from (5a) since the term R0 is not incorporated in the Equation.

B Active Shielding

Shielded electrode leads are used to reduce PLI coupling [23,25,26]. Typically shield

connectors are tied to ground, but results in parasitic capacitances (CE1 and CE2 of

Figure 5) between the center conductor and shield (labeled as “Shield” in Figure 6).

In high resolution, large bandwidth bio-signal recordings, this parasitic capacitance

degrades the recorded signal due to two phenomena. First, with increased frequency

the input impedance seen from the electrode (Zin) is reduced. Hence the signal

amplitude at the amplifier input Vin attenuates due to voltage division shown in

Equation (6), where Zin(ω) = RE2 + 1/jωCE2, and ZE2 is the impedance between the

electrode surface contact and circuit ground.

V in ωð Þ ¼ V source⋅
Zin ωð Þ

Zin ωð Þ þ ZE2
ð6Þ

Secondly, the parasitic capacitances between the differential pair (CE1 and CE2) may
differ (Figure 5), resulting in an impedance imbalance at the inputs and degrade

CMRR at high frequencies.
ure 6 Electrical model of electrode Shield.
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Active shielding is therefore employed, which is derived from the input signal and

drives the shield conductor. Driving the shield (using high speed op-amps with

Gain-bandwidth-product of 18 MHz) with this signal maintains a near-zero

potential across the lead conductor and shield. Therefore any current conducted by

these capacitances (CE1, CE2) will be reduced; thereby contributing to high input

impedance.

C Ultra-Low Noise Preamplifier Design

The design requirement was to implement a < 5 nV=
ffiffiffiffiffiffi
Hz

p
amplifier with very low

current noise ∼fA=
ffiffiffiffiffiffi
Hz

p
region

� �
. The noise model of a generic amplifier can be

represented as shown in Figure 7 [27] (note that the noise sources shown represent

voltage and current noise densities). Then the total RTI noise power spectrum

density (PSD) Φtotal can be depicted as follows:

Φtotal fð Þ ¼ E2
n fð Þ þ E2

Zin fð Þ þ Z2
in fð Þ		 		⋅I2n fð Þ ð7Þ

Here, the thermal noise of Zin is E
2
Zin fð Þ ¼ 4kBT⋅Re Zin fð Þ½ � [28] (kB is the
Fig
Boltzmann constant, and T is the temperature in Kelvin), and Z2
in fð Þ		 		⋅I2n fð Þ is the

voltage noise due to the current source in conjunction with the input impedance

Zin. The noise component E2Zin fð Þ is contact dependent; the quantities E2n fð Þ and I2n
fð Þ are voltage noise and current noise sources of the pre-amplifier model respectively.

The RTI noise (RMS) value can then be calculated as follows:
RTI NoiseRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫f2f1Φtotal fð Þ df

q
ð8Þ

In (8), f1 and f2 are high pass and low pass cut off frequencies of the analyzed signal
respectively.

Currently available low noise operation amplifiers (OP amps) with bipolar

transistors at the input stage can achieve very low voltage noise ∼1 nV=
ffiffiffiffiffiffi
Hz

p� �
, at

the cost of large current noise ∼pA=
ffiffiffiffiffiffi
Hz

p
regime

� �
[27], and precision FET input

amplifiers can achieve very low current noise ∼fA=
ffiffiffiffiffiffi
Hz

p
regime

� �
, but with larger

voltage noise > 4 nV=
ffiffiffiffiffiffi
Hz

p� �
. A low current noise amplifier design is necessary in

such bio-signal recordings since high input impedances (Zin) are common (see skin

impedance plot in Figure 2). Therefore to achieve both low E2
n fð Þ and I2n fð Þ,
ure 7 Amplifier noise model.
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a parallel amplifier approach inspired by [27,29] was attempted. If parallel amplifica-

tion is used, the voltage noise introduced by the combined system will be reduced

to En=
ffiffiffiffi
N

p
since the noise introduced by each amplifier is uncorrelated (N is the

number of amplifiers in parallel).

However, there are consequences to parallelization that affect the performance of

the overall amplifier. Three of them are: 1) the current noise will increase by In⋅ffiffiffiffi
N

p
; 2) the input resistance reduces by Rin

N , and 3) input capacitance increases by

Cin ⋅N. Maintaining input impedance as large as possible is necessary to minimize

signal distortion due to loading effects [30]. In addition, the input capacitance

increase reduces the overall amplifier bandwidth, where the low pass cut off

frequency will be dictated by fLP = 1/[2π(RLoad ⋅Cin)] (RLoad is the load resistance).

The designed preamplifier module (see Figure 8) is comprised of the following; a high

impedance ultra-low current noise buffer stage G ¼ 0 dB and En ¼ 4
ffiffiffi
2

p
nV=

ffiffiffiffiffiffi
Hz

p� �
,

a low noise RFI filter stage En ¼ 1 nV=
ffiffiffiffiffiffi
Hz

p� �
, followed by a low voltage noise gain

stage G ¼ 32 dB and En ¼ 1 nV=
ffiffiffiffiffiffi
Hz

p� �
(detailed in the next subsection). It is advan-

tageous to implement the input stage with gain >0 dB for improved noise perform-

ance; however, tolerance levels of resistor components are required to be in the

0.0001% regime to maintain >100 dB of CMRR [31]. As a compromise between noise

performance and CMRR, a unity gain parallel pre amplifier approach was used, where

the grayed out buffers are parallelized as shown in Figure 8. The simulated amplifier

characteristics, with increased N, are summarized in Table 1. To investigate the con-

tribution of current noise, Zin = 1 MΩ is used to mimic poor skin contact. The ther-

mal noise generated by the 1 MΩ resistance is calculated from the Nyquist equation

to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT⋅ 1MΩ½ �p ¼ 129 nV=

ffiffiffiffiffiffi
Hz

p
: The total noise Φtotal(1 kHz) is calculated

from (7).

For N = 1 to 3, Φtotal(1 MΩ) is constant since the contribution of current noise is

insignificant due to small In. Note that Φtotal(no load) for the case Zin = 0 Ω does

not decrease by the factor
ffiffiffiffi
N

p
because the entire pre-amplifier is not parallelized;

only the buffered high input impedance stage is parallelized (Figure 8). In our de-

sign, for a load of 1 MΩ, the amplifier bandwidth decreases to 8.8 kHz for N = 2,
ure 8 Parallel amplifier block diagram.



Table 1 Noise Performance with Increased Parallelization

Φtotal(1 kHz) 0 Ω load Φtotal(1 kHz) 1 MΩ load ln Cin Rin Bandwidth for
1 MΩ load

N = 1 6:4 nV=
ffiffiffiffiffi
Hz

p
129 nV=

ffiffiffiffiffi
Hz

p
2 fA=

ffiffiffiffiffi
Hz

p
9 pF ~10 TΩ 17.7 kHz

N = 2 4:9 nV=
ffiffiffiffiffiffi
Hz

p
129 nV=

ffiffiffiffiffiffi
Hz

p
2:8 fA=

ffiffiffiffiffiffi
Hz

p
18 pF ~5 TΩ 8.8 kHz

N = 3 4:3 nV=
ffiffiffiffiffi
Hz

p
129 nV=

ffiffiffiffiffi
Hz

p
3:5 fA=

ffiffiffiffiffi
Hz

p
27 pF ~3 TΩ 5.9 kHz

Fig
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and further reduces as N = 3. Hence increasing N beyond 2 was not considered.

The implemented pre-amplifier had N = 2 with characteristics highlighted (bolded).

In bio-signal amplifier design applications RFI filtering is commonly employed at

the input stage to attenuate HF content ahead of the instrumentation amplifier [32]

(see Figure 9). RFI suppression minimizes DC output offset errors that can occur

due to strong RF signal rectification in the instrumentation amplifier. The employed

RC network is realized such that the common mode signal cut off frequency is

higher than the differential mode cut off frequency as shown in (9a,b) [32], which

minimizes CMRR degradation due to small variations in mismatched input imped-

ances (RA and RB).
FcutCM ¼ 1
2πRCc

ð9aÞ

FcutDiff ¼ 1
2πR 2CD þ Ccð Þ ð9bÞ

where R is the skin impedance (RA or RB) + RF
However, large mismatched differential inputs seen in ECOG/EVestG recordings

(Figure 2) would lead to mismatched corner frequencies for the RFI filter if the

traditional method is used; thus resulting in degraded CMRR and reduced signal

bandwidth.

In commonly used bio-signal measurements, such as ECG/EEG/EMG, bandwidth

reduction from the RFI filter due to large input impedances is negligible since the

required signal bandwidth is <1 kHz. In contrast, the signal bandwidth of EVestG

recordings spans up to 10 kHz, hence will be affected by bandwidth reduction.

Secondly, with the traditional method (see Figure 9), CD and CC capacitors need to
ure 9 Traditional RFI filter network.
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be in the ~ pF range to maintain high impedance at the electrode terminals, there-

fore large resistors (>5 kΩ) are required to realize the desired corner frequencies

from (9a, b). The thermal noise of ∼9 nV=
ffiffiffiffiffiffi
Hz

p
from a 5 kΩ resistor is clearly

unacceptable for this work, since the stringent low noise requirements wouldn’t be

achievable if the traditional RFI filter network was employed. With the aid of the

proposed RFI filter topology (see Figure 8) the following were achieved:

� Large mismatched input impedances will have no effect on the RFI corner

frequencies.

� It is possible to set RF at 56 Ω, that has an insignificantly small thermal noise

0:96 nV=
ffiffiffiffiffiffi
Hz

p� �
contribution, since there is no strict restriction on the values

CD and CC to satisfy the required RC value. The capacitances CD and CC were

therefore set at 1 nF and 5.6 nF respectively to obtain a ~200 kHz cut off

frequency, while accounting for ~50 Ω output impedance on each side of the

paralleled high impedance buffers.

D Overall Amplifier Design

The overall amplifier block diagram, with the customized features described above,

is shown in Figure 10. To maximize low noise performance, the pre-amplifier stage

requires a large gain; however large DC offsets (~100 mV) often occur between the

differential pair in bio-signal measurements due to the ‘half cell potential’ [30,33]

that develops across the electrode and electrolyte interface. Hence a compromise

between noise performance and stability must be met. After extensive test

recordings, the pre-amplifier gain stage was set at 32 dB that maintained stability

and low noise performance during recordings. After the pre-amplification, a 1st

order Butterworth high pass (HP) filter is employed to decouple frequency

content below 1.6 Hz.

EVestG requires minimal phase distortion from the recording device, within the

frequency band up to 9 kHz, since the NEER algorithm’s FP detection is based on

phase changes across multiple scales obtained by a wavelet decomposition [5].

Hence an 11 kHz 4th order Bessel Filter was employed as the primary low pass (LP)

filter, which has maximally flat group delay characteristics.

Even though efforts were made to reduce power line harmonics with active

shielding and driven right leg circuits, often large 50/60 Hz components are seen
Figure 10 Overall circuit block diagram.
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that can result in output saturation. Therefore a hardware notch filter at 50/60 Hz

with a 20 dB depth and quality factor of 20 was employed. The output stage

consists of a HP filter that decouples DC offsets introduces by active components

in the circuit, and a variable gain stage (0 dB-20 dB). Table 2 summarizes

parameters of the designed and implemented circuit.

E Experimental Setup

A CED 1401 analog-to-digital converter was used for all data acquisitions with

sampling rate of 44 kHz. The prototype amplifier circuit ground was tied to the

CED 1401 ground terminal, which was powered by a medical grade isolation

transformer (POA MG240-1500-2-2010), thereby maintaining patient isolation

from mains power. A CED-1902 amplifier with 1 Hz-10 kHz Bandwidth currently

used for EVestG, was used to evaluate performance of the prototype amplifier.

Power-line interference analysis was performed on the RTI signal, and referenced to 1

VRMS for computing the power spectrum in the dB scale. Noise figure comparisons

are shown in two units: μVRMS: which is the RMS value of the recorded signal within

the bandwidth 10 Hz-10 kHz, and with units nV=
ffiffiffiffiffiffi
Hz

p
: which is the power spectral

density value at 1 kHz.

F Electrocochleography (ECOG) Recording Setup

A conventional ECOG electrode setup was used [32], where a disposable TM-

ECochGtrode (Bio-Logic) ear electrode is placed proximal to the TM, a reference

electrode (ELS254S) placed on the contralateral earlobe, and the common electrode

(ELS258S) placed on the forehead (Figure 5). A click stimulus was applied to the

ipsilateral ear at 5.4 Hz with alternating polarity. The pulse width was set at 100 μs;

with click intensity set to a loud but not uncomfortable level for the subject as it is

common practice for ECOG recordings. Test subjects were volunteers (age 29 ±4, 3

males) with no record of hearing loss. Five minute recordings were taken while the

subject was seated in a chair in an anechoic chamber. Ten millisecond windows of

data from the start of each click (positive and negative separately) are extracted and

averaged to reveal the AFP plot. Then, the action potential (AP) magnitude is

measured (Figure 1).
ble 2 Overall circuit parameters

Parameter Measured

put voltage noise density 4:8 nV=
ffiffiffiffiffi
Hz

p

put current noise density �2:8 fA=
ffiffiffiffiffi
Hz

p

Input Impedance *5 TΩ | 18 pF

THD (@1 kHz, 0.2 V) 0.0012%

CMRR (@100Hz) 115 dB

Mid-band gain 89 dB

Bandwidth 5 Hz-10 kHz

ax input voltage swing ±180 mV

Power supply ±9 V Batteries

Total current 64.2 mA

rinted circuit board size 9.9 cm X 5.4 cm

Patient isolation *2 pF (from mains ground)

alues obtained from datasheets and simulations.
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G Electrovestibulography (EVestG) Validation Setup

Vestibular FP’s occur at unknown times and time intervals; hence qualitative

analysis of the accuracy of captured FP’s from a human recording cannot be

obtained for EVestG. One possible method of analysis is to obtain an additional

trans-tympanic recording alongside the regular EVestG recording and compare the

accuracy of captured FP’s. However, this would be an invasive approach. Instead, an

artificial ear (middle ear and inner ear) [15] constructed to simulate electrical activity

was used to compare the performance of the prototype amplifier for EVestG recordings.

With the artificial ear, various sources of noise present in actual recordings can be

applied at realistic proportions and be picked up by electrodes placed on the simulator.

Cochlear AFP’s recorded in our recent work, and AFP shapes shown in [4,34] were used

as a guide to generate the synthetic FP used. The FP detection accuracy of NEER was

then evaluated for the prototype amplifier, and compared with that of the OEM

amplifier in identical recording conditions.

Experimental results

A Driven Right Leg Circuit (RLD)
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The prototype amplifier common (COMM) electrode is driven by the RLD circuit

where Rf and Cf values set the LP corner frequency at 1.5 kHz, and G ¼ Rf

Rk
¼ 88

was experimentally chosen since it produced the optimum CMRR from low

frequencies (50 Hz) through to higher order harmonics (650 Hz) that are present in

recordings. For ECOG recordings, the effect of PLI was tested for three cases of

connecting the COMM electrode (see Figure 11a); RLD with switch on ‘Sa’ position,

RLD with switch on ‘Sb’ position, and when the COMM electrode was grounded

(node COMM_C in Figure 4). Recordings for each variant were 60s long, and were

from the same subject obtained during one session with the same connected

electrode leads. The prominent harmonics seen are the first harmonic (50 Hz), 3rd

harmonic (150 Hz), and the 9th harmonic (450 Hz), hence the remaining

harmonics were excluded from the figure. Results show that the RLD topology with
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the lowest impedance pathway (‘Sa’ position in Figure 4) is the most effective at

suppressing power-line interference, while both RLD topologies are better compared

to the grounded case (5c). By employing an RLD topology VC is attenuated for (5a)

and (5b) in comparison to (5c), which increases overall CMRR of the system.

B Active Shielding

To evaluate PLI suppression as a result of active shielding, the RLD was bypassed,

and the recordings were taken outside the anechoic chamber to enhance PLI. Five

recordings of each case were obtained for 30 seconds and averaged. Power

harmonics beyond 650 Hz are not visible since they are buried in the noise floor.

We see that power line harmonics are reduced by at least 15 dB at frequencies

(50 Hz, 150 Hz and 450 Hz) when active shielding was employed (Figure 11b).

C Overall Performance of the Proposed Amplifier in Comparison to OEM System

1. Power Line Interference Suppression
A large PLI scenario (that can occur during EVestG recordings) was mimicked

by turning on the mains power driven lights inside the anechoic chamber, and a

test subject was connected with electrodes for the EVestG topology. Sixty

second recordings were taken from each amplifier for the same subject with no

skin preparation to simulate poor contact, hence accounting for large

impedances and impedance mismatches. The power spectrum results are shown

in Figure 11c, where the prototype amplifier demonstrates PLI suppression

of ~20 dB in comparison to the OEM amplifier (labeled CED) spanning up to

950 Hz. When the reference and common electrode sites were thoroughly

exfoliated (Figure 11d), PLI suppression for both amplifiers is improved (due to

reduced input impedance, hence reduced impedance mismatch), yet the

prototype amplifier demonstrates better immunity as can be seen in Figure 11d.

2. Low Noise Performance

Noise performance of the CED amplifier and prototype amplifier were measured

with respect to known input impedances (Figure 12). The prototype amplifier

and CED amplifier were measured to have a “0Ω load” noise floor of 4:8 nV=ffiffiffiffiffiffi
Hz

p
0:45 μV RMSÞð , and 7:8 nV=

ffiffiffiffiffiffi
Hz

p
0:76 μV RMSÞð respectively. The noise

performance by impedances above 200 kΩ was not compared since the CED

amplifier bandwidth is reduced below 1 kHz due to parasitic input capacitances

at the input stage (see section III C).

3. ECOG Comparison

To evaluate SNR of the developed amplifier, ECOG recordings were obtained from a

volunteer using both amplifiers in one session, while the sound stimulus was

maintained at the same level. Two noise statistics were identified and compared: PLI

(see Figure 13a), and the voltage noise spectrum (RTI) of the two recordings

(Figure 13b). Towards low frequencies the curves overlap, which shows that the

biological activity is similar in energy (as expected) for both recordings; however,

beyond 1 kHz the spectral curves diverge. The CED plot plateaus at ∼10 nV=
ffiffiffiffiffiffi
Hz

p
;

while the prototype amplifier plateaus below 6 nV=
ffiffiffiffiffiffi
Hz

p
at high frequencies, which

is indicative of the reduction in noise for the prototype amplifier due to the lower

system noise. SNR calculations (where signal is the AP amplitude of the cochlear

AFP) show that the prototype amplifier recordings were ~5 dB larger (p < 0.05) in

comparison to recordings obtained from the CED amplifier.
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4. EVestG Comparison

The prototype amplifier and CED amplifier were evaluated in the artificial

gelatin setup [15], where the vestibular FP was buried in biological signal activity

(EMG, ECG and EEG) at SNR values−6 to−30 dB in decrements of 6 dB. The

biological signal energy was maintained at 5 μVRMS that approximates

background bio-signal activity captured in actual EVestG recordings. The

performance of each amplifier is summarized in Figure 14, which illustrates the

FP detection accuracy Vs SNR.

The prototype amplifier showed a mean increase in FP detection of 2.7 ± 1.1%

compared to the CED amplifier (p < 0.01). The FP amplitude−18 dB below
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background biological activity would be ~0.6 μVrms in amplitude; in comparison,

the prototype amplifier generated noise is 0.45 μVRMS and the CED amplifier

generated noise is 0.76 μVRMS, which is comparable to the FP amplitude.

Therefore the overall increase in FP detection in the prototype can be attributed

to the lower noise performance, and PLI suppression in comparison to the CED

amplifier.
Discussion
This work details the design and validation of an ultra-low noise bio-signal amplifier

tailored for ECOG and EVestG. Recordings obtained from volunteers show that the

RLD circuitry with active ground, and active shielding, effectively attenuates PLI in high

bandwidth bio-signal measurements. PLI was shown to be suppressed more effectively

in both shielded and non-shielded environments for the prototype amplifier compared

to the OEM amplifier, which would enable recordings to be carried out in a non-

shielded clinical setting; an essential component to making EVestG a portable technol-

ogy. The RLD circuitry effectively reduces the COMM electrode impedance to circuit

ground; yet the high level of isolation (~2 pF) between circuit ground and Earth ground

limits the mains current flow through the leads (to <0.3 μA in the event that the live

voltage 240 V, 50 Hz appears), and effectively protects the subject.

Implementing ultra low voltage noise amplifiers 1 nV=
ffiffiffiffiffiffi
Hz

p� �
is rather trivial given

that on chip instrumentation amplifiers are available commercially; however, due to the

large input impedances that can occur in EVestG/ECOG recordings, ultra-low current

noise characteristics are also required. In an attempt to design the amplifier with volt-

age noise < 5 nV=
ffiffiffiffiffiffi
Hz

p
and current noise in the ∼2 fA=

ffiffiffiffiffiffi
Hz

p
range, a unique parallel

pre-amplifier approach was investigated and validated. The traditional method of using

RFI filtering cannot be employed in such low-noise applications due to the large series

resistances required. The drawback of the implemented RFI filter topology is that, the

buffered input stage is susceptible to RFI that could lead to DC offset errors from the

differential pair. However repercussions due to this phenomenon were not seen

throughout extensive recordings conducted.
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In early stages of the design, the preamplifier was configured to have a large (40 dB) gain

to maximize noise performance. The amplifier functioned as expected for EMG, ECG, and

EOG (electrooculogram) recordings, however displayed instability during ECOG and

EVestG recordings. This issue was identified to be caused by mismatched electrodes that

lead to mismatched DC potentials (>180 mV) appearing on each electrode (a result of the

electrodes’ half cell potential [30,33]), causing amplifier saturation. As a result, the preampli-

fier gain was reduced to 32 dB to avoid instability at the cost of a reduction in noise per-

formance from 4:6 nV=
ffiffiffiffiffiffi
Hz

p
to 4:9 nV=

ffiffiffiffiffiffi
Hz

p
(in simulation). These mismatched DC

potentials between leads indicate that separately driving each lead wire shield would be

more effective in reducing parasitic capacitances CE1 and CE2. Therefore individual active

shields were employed.

μV amplitude ECOG electrical activity obtained from the prototype amplifier show signifi-

cantly higher (p < 0.05) SNR as a result of improved noise performance and improved PLI

suppression; furthermore, FP detection accuracy of the NEER algorithm was also shown to

increase (p < 0.01) for prototype amplifier recordings in identical test scenarios compared to

the OEM amplifier (due to the reduction in system noise from 7:8 nV=
ffiffiffiffiffiffi
Hz

p
to 4:8 nV=ffiffiffiffiffiffi

Hz
p

). The increased FP detection accuracy has significant implications for EVestG; it will

incur a reduction in variability associated with bio-features extracted, which is expected to

result in increased sensitivity and specificity measures used for disease classification.

Table 3 compares key features of state-of-the-art (CMOS) low noise bio-signal amplifiers,

the CED amplifier, and the prototype amplifier. CMOS devices listed, have noise perform-

ance > 16 nV=
ffiffiffiffiffiffi
Hz

p
(> 2-fold worse than the CED amplifier noise performance) which is

inadequate for EVestG, since FP detection accuracy will be further degraded rendering the

methodology ineffective for disease classification. However, for the increase in noise per-

formance of ~5-fold, compared to CMOS devices, the prototype amplifier sacrifices power

consumption and footprint requirements by factors ~104 and ~5x104 respectively. These

substantially large power and footprint requirements however are tractable, since only two

such channels are required for a complete EVestG system; in comparison, CMOS devices

listed are for multi array (hundreds of channels) applications, which require low power and

footprint characteristics per channel to accommodate the entire array. As a result of the

high power and footprint requirements, implementation of an ultra-low noise, multi-

channel recording device with the prototype amplifier is currently not feasible. However,

the prototype amplifier has other applications in low noise recordings such as high reso-

lution ECG [35]. An example would be ventricular tachycardia, a life threatening condition,

described to have low amplitude and high frequency content at the end of the QRS complex

and the ST segment [36]. Accurately extracting such features require a low noise, high

bandwidth amplifier, such as the prototype device presented in this manuscript. Once the

prototype amplifier is validated on a large (n > 20) patient group population, a miniaturized

single chip design will be investigated in collaboration with Texas Instruments that will re-

duce power and footprint requirements.

Outcomes of this work and previous work [15] suggest that amplifier generated noise

is only one aspect that contributes to degrading the quality of the recording. Noise due

to electrodes and biological interference also need to be minimized to maximally utilize

low noise characteristics of the designed prototype amplifier, which will be investigated

to improve the quality of EVestG recordings.



Table 3 Performance comparisons against other systems

Parameters [8] [9] [10] [11] [12] [13] CED ampifier This work

Supply voltage/Current ±2.5 V/16 μA ±2.8 V/2.7 μA 1.8 V/4.7 μA 3.3 V/8 μA 1.8 V/4.4 μA 1.5 V ±15 V/ - ±9 V/64.2 mA

Gain 39.5 dB 40.8 dB 49.5 dB 39.6 dB 39.4 dB 10-62 dB 88.4 dB (configured) 89 dB

Bandwidth 7.2 kHz 45 Hz-5.3 kHz 9.1 kHz 8.2 kHz 7.2 kHz 10 kHz 10.1 kHz 11 kHz

Voltage noise density (RTI) ∼26nV=
ffiffiffiffiffi
Hz

p
∼42nV=

ffiffiffiffiffi
Hz

p
∼58nV=

ffiffiffiffiffi
Hz

p
∼21:4nV=

ffiffiffiffiffi
Hz

p
∼41:2nV=

ffiffiffiffiffi
Hz

p
< 16nV=

ffiffiffiffiffi
Hz

p
7:8nV=

ffiffiffiffiffi
Hz

p
4:8nV=

ffiffiffiffiffiffi
Hz

p

CMRR ≥83 dB ≥66 dB ≥52.7 dB ≥76 dB 70.1 dB >90.7 dB 117.6 dB (@100 Hz) 115 dB (@100 Hz)

Area 0.16 mm2 0.16 mm2 0.05 mm2 3 mm x 3 mm 0.06 mm2 0.06 mm2 24 cm X24cm 9.9 cm X 5.4 cm
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Conclusion
ECOG and EVestG are electrophysiological measurement techniques that record activ-

ity in the μV range, where susceptibility to various sources of noise severely degrade

SNR. In this paper, an ultra-low noise, and miniaturized bio-signal amplifier tailored for

vestibular and cochlear evoked potentials was designed and evaluated. Based on human

recordings and test-bench evaluations conducted, the prototype amplifier demonstrated

to surpass performance of the current OEM device, and state-of-the-art devices, in

terms of PLI suppression and noise performance for ECOG and EVestG recordings.
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