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Abstract

Functional neuroimaging has been a mainstay of human neuroscience for the past 25 years. 

Interpretation of fMRI data has often occurred within knowledge frameworks crafted by experts, 

which have the potential to amplify biases that limit the replicability of findings. Here, we employ 

a computational approach to derive a data-driven framework for neurobiological domains that 

synthesizes the texts and data of nearly 20,000 human neuroimaging articles. Across multiple 

levels of domain specificity, the structure-function links within domains better replicate in held-out 

articles than those mapped from dominant frameworks in neuroscience and psychiatry. We further 

show that the data-driven framework partitions the literature into modular subfields, for which 

domains serve as generalizable prototypes of structure-function patterns in single articles. The 

approach to computational ontology we present here is the most comprehensive characterization 

of human brain circuits quantifiable with fMRI and may be extended to synthesize other scientific 

literatures.

Introduction

Scientific ontologies are popular tools for automated data synthesis,1,2 yet relatively 

few attempts have been made to engineer ontologies in a data-driven manner.3 Human 
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neuroimaging seeks to build a framework for understanding how mental processes 

interrelate with patterns of brain activity. The flow of inquiry, however, has been largely 

unidirectional – taking mental constructs defined decades earlier in psychology as the 

premise for brain mapping efforts. As a consequence, neuroimaging studies have often 

served to reinforce the differences between concepts that originated in psychology, rather 

than to define new concepts grounded in brain function.4 The lack of transparent, objective 

criteria for the structure of knowledge in human neuroscience will ultimately limit the 

replicability of findings and hinder progress.5 Indeed, meta-analyses summarizing results 

across task paradigms have in many cases shown that brain circuits measured at the 

resolution of fMRI are surprisingly more similar than different between psychological 

constructs.6,7,8 In turn, constructs accepted as “natural kinds” have been mapped to 

heterogeneous neural activation patterns across the literature.9,10,11 Nonetheless, these meta-

analyses have been limited to only addressing a subset of mental constructs or neural 

structures.

An empirical description of brain function is needed not only to guide the next generation of 

basic human neuroscience, but also as a biological foundation for classifying psychiatric 

disease. It is now well appreciated that the symptom-based mental illness diagnoses 

specified in the Diagnostic and Statistical Manual (DSM) are highly comorbid, biologically 

heterogeneous, and poorly predictive of treatment response.12,13 The field of biological 

psychiatry has attempted to address these shortcomings by reframing mental illnesses 

as variations in the function of basic brain systems. This has yielded one of the most 

conceptually dominant expert-driven frameworks for mapping circuits, behaviors, and other 

units of analysis – called the Research Domain Criteria (RDoC) project.12 At its present 

stage, the organizational principles of RDoC remain largely untested, the reproducibility of 

its circuit-function links is unknown, and the performance of this expert-driven framework 

relative to a fully data-driven one has not been investigated. To assess how well RDoC 

and the DSM explain structure-function relationships in the human brain, and to contrast 

these frameworks with a data-driven one, we conducted a comprehensive neuroimaging 

meta-analysis of 18,155 PET and fMRI articles.

By applying natural language processing (NLP) and machine learning techniques to the 

collective results of 25 years of human neuroimaging, we sought here to redefine mental 

constructs in relation to brain activation data, yielding an integrative data-driven framework. 

NLP is defined for our purposes as a collection of computational approaches for extracting 

terms from article texts and representing them quantitatively. Neurobiological domains 

were mapped from links between the terms for mental functions that occurred in article 

texts and from the brain coordinate data that studies reported. The resulting data-driven 

framework is evaluated by three ontological principles: reproducibility of circuit-function 

links, modularity of domains, and generalizability of domain-level information to single 

studies. These standards were applied further to assess meta-analytic mappings of the RDoC 

and DSM frameworks. The results demonstrate that the data-driven approach to ontology 

engineering summarizes scientific knowledge of human brain function in a manner that 

is more strongly predictive of results across the neuroimaging literature than the current 

leading frameworks in basic and clinical neuroscience.
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Results

Mapping a data-driven framework for neurobiological domains

In engineering a data-driven framework for human neuroscience, we sought to identify the 

most coherent set of mental functions (from article texts) for describing the most distinct 

functional brain circuits (from coordinate data). The functions and circuits together comprise 

what we refer to as neurobiological “domains” (Fig. 1a). Broadly, our approach entailed 

clustering brain structures into circuits based on the similarity of their co-occurring mental 

functions, then mapping functions back onto the circuits to maximize the reproducibility of 

their interrelations. The first step applies a mutual information metric which gives highest 

weight to the most specific term-structure associations, while the latter applies a correlation 

metric which gives weight to terms that co-occur consistently and frequently with brain 

structures, rendering them representative of the semantic content of the domain.

The corpus used to generate the data-driven framework included 18,155 studies with 

coordinate data. We define a “corpus” (plural “corpora”) as a collection of article full 

texts. Corpora were assembled from the BrainMap14 and Neurosynth15 databases and by 

web scraping (Extended Data Fig. 1a). The predominant imaging modalities included fMRI 

(88% of articles) and PET (3.6%), as summarized along with subject demographics for a 

subset of studies in Supplementary Table 1. We next mined the neuroimaging data, which 

included 605,292 spatial coordinates in the human brain. Coordinates were processed as 

described in the Online Methods, then mapped probabilistically in a one-to-many fashion 

onto 118 gray matter structures in a neuroanatomical atlas spanning the human cerebrum16 

and cerebellum.17 Each study was labeled with a given structure no more than once, 

resulting in a total of 625,714 neuroanatomical labels across studies. Data were randomized 

and split into a training set containing 70% of articles (n = 12,708) for generating the 

data-driven framework and fitting models, a validation set containing 20% of articles (n = 

3,631) for optimizing model hyperparameters, and a test set containing 10% of articles (n 
= 1,816) for evaluating domain performance. Splitting the data a priori enabled us to avoid 

biased estimation of the reproducibility of circuit-function links in subsequent analyses. 

For modularity and generalizability analyses, articles were divided into a discovery set 

equivalent to the training set (n = 12,708) and a replication set combining validation and test 

sets (n = 5,447).

To define the set of possible mental functions, we compiled a broad and diverse lexicon of 

1,683 words and phrases from public sources such as RDoC,12 the BrainMap Taxonomy,14 

and the Cognitive Atlas18 (Supplementary Table 2). Sources for the lexicon were required 

to be (a) comprehensive in their coverage of mental functions or illnesses, and (b) publicly 

available, facilitating accessibility and reproducibility of our analyses. The lexicon includes 

terms for mental constructs (e.g., “emotional memory”), processes (e.g., “retrieval”), 

percepts and stimuli (e.g., “face”), and task paradigms (e.g., “face identification task”). It 

omits neuroanatomical structures, which would otherwise be strongly related to the reported 

brain coordinate data. The mental function terms were extracted from the preprocessed full 

texts of articles in our corpus, which contained 128,170,267 total words and 4,831,488 

occurrences of terms from our lexicon. Our NLP approach was validated by comparing 
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extracted mental functions to annotations manually assigned in BrainMap (Online Methods), 

demonstrating both qualitative and quantitative similarities (Supplementary Figs. 1-2).

Candidate domains of the data-driven framework were generated through an unsupervised 

learning approach that drew on insights from information theory (Fig. 1a). To map 

links between the 1,683 terms for mental functions and 118 brain structures in our 

neuroanatomical atlas, we computed their co-occurrences across the training set. Co-

occurrence values were reweighted by pointwise mutual information (PMI), which captures 

the extent to which the joint probability of a term and a brain structure occurring in 

the same article deviates from the expected probability if the two occurred independently 

of one another. Because PMI is probability based, it results in high values for the most 

strongly associated functions and structures regardless of the raw number of times they were 

observed in the corpus. For instance, while “face identification task” is infrequent in article 

texts and few coordinates are mapped to the left amygdala, their co-occurrence has a high 

PMI value because they were both observed in the same small subset of articles. Circuits 

supporting distinctive sets of mental functions were then defined through k-means clustering 

of the brain structures by their PMI-weighted co-occurrences with mental function terms 

over a range of k values from 2 to 50.

Following this, we sought to identify the mental functions best representative of each circuit, 

which were selected in a manner that would reflect prevalence rates across the literature. 

We note that this was necessary because PMI gives high weight to connections that are 

specific and not necessarily common. While the pattern of structure-function connections is 

appropriate for grouping structures into circuits, a given connection may replicate only a few 

times in the literature. For the left amygdala, for instance, none of the top 25 terms with the 

strongest PMI weighting occurred in more than 0.2% of articles. We thus chose to instead 

assign the top 25 mental function terms to each circuit based on associations across the 

training set, computed as point-biserial correlations between binary term occurrences and 

the centroid of occurrences across structures in each circuit. For the circuit containing the 

left amygdala, the most strongly associated terms were “fear”, “emotion”, and “memory,” 

which occurred in 10.82%, 18.12%, and 17.74% of articles, respectively.

Next, the number of terms per data-driven domain was determined through a supervised 

learning strategy. While up to 25 terms were initially assigned to a given circuit, fewer 

terms may suffice in representing its functional repertoire. To identify the set of terms 

and structures with the strongest predictive relationships, the number of mental function 

terms per circuit was determined by how well term occurrences predicted and were 

predicted by occurrences of structures. For each circuit, logistic regression classifiers were 

fit on the training set to predict structure occurrences from term occurrences (i.e., forward 

inference models), and to predict term occurrences from structure occurrences (i.e., reverse 

inference models), over a range of 5 to 25 mental function terms. The number of mental 

function terms for each circuit was selected to maximize area under the receiver operating 

characteristic curve (ROC-AUC) averaged between the forward and reverse inference 

models in the validation set. Each domain was then named by the mental function term with 

highest degree centrality of its term-term co-occurrences. The resultant mappings between 

term lists and brain circuits can be examined interactively over k = 2 to 50 domains at 
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http://neuro-knowledge.org, and subsets are printed in Fig. 2 and Extended Data Figs. 2-3. 

Similar results were obtained using neural networks in place of logistic regression (Extended 

Data Fig. 4, Supplementary Figs. 3-4).

Evaluating data-driven domains by organizational principles

The data-driven domains were validated by three principles for human brain organization: 

reproducibility, modularity, and generalizability (Figs. 1b, 1d, 1e; see Online Methods for 

details). Reproducibility has been called into question by the finding that some structures 

are so widely activated across tasks as to unreliably predict mental state.15,19 To evaluate 

reproducibility (Fig. 1b), we computed the validation set ROC-AUC for logistic regression 

classifiers predicting structure occurrences combined within circuits (forward inference) 

and term occurrences combined within word lists (reverse inference). Second, modularity 

describes the extent to which domains are both internally homogeneous and distinctive 

from one another. Modularity is thought to constrain neural organization across scales 

ranging from cells studied in Caenorhabditis elegans20 to distributed networks in humans.21 

However, because task-based neuroimaging studies are limited in the number of mental 

states they can reasonably induce, it remains unclear whether task-related human brain 

activity has multiscale modularity. We assessed modularity in the validation set by first 

assigning each article to the domain with the most similar functions and structures (Fig. 

1c), then computing the ratio of mean Dice distance of articles between versus within 

domain partitions (Fig. 1d). Distance was computed over a vector including term and 

structure occurrences within each article. Finally, by the principle of generalizability, 

the circuit-function pattern for each domain is expected to be a representative prototype 

of the structures and functions reported in single articles. Previous meta-analyses have 

demonstrated that only a subset of psychological domains have generalizable representations 

in specialized brain regions.22,23 We computed generalizability as the similarity of function 

and structure occurrences in each article to the prototypical function-structure pattern of the 

domain to which it was assigned, again within the validation set (Fig. 1e). Across all three 

measures, solutions at every k outperformed the null.

To understand how domain specificity varies with k, we visualized a hierarchy linking the k 
= 6, 8, and 22 levels which performed well by our evaluation metrics (Fig. 2). Specifically, 

these levels occurred at maxima of the geometric mean of reproducibility, modularity, and 

generalizability. Inter-level links were weighted by the Dice similarity of mental functions 

and brain structures. As k increases across the hierarchy, domains at lower k fractionate 

into subcircuits with more finely specified mental functions. For instance, memory begins 

at k = 6 as a medial temporal circuit with affective and memory components, then is 

subdivided at k = 8 into a memory domain with a hippocampal circuit and an emotion 

domain with an amygdalar circuit. The k = 8 memory domain is then parcellated at k = 

22 into domains for recall and encoding processes, and for semantic and episodic forms. 

While nesting relationships emerge across k, we acknowledge that this was not guaranteed 

by our approach, which generates independent solutions at each k level. To quantify the 

stability of functional mappings across k, we tracked the proportion of overlapping terms 

associated with each structure (Supplementary Fig. 5). This illustrates an expected dip in 

stability for the hippocampus and amygdala at k = 8, when these structures remap into 
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respective memory and emotion domains. By contrast, stability is maintained at a high level 

for language structures, which have consistent mappings across the literature and uphold a 

similar level of term specificity across the hierarchy.

The results up to this point illustrate that our approach captures varying levels of 

neurobiological specificity. For subsequent analyses, to facilitate between-framework 

comparisons, we selected a representative k level. We emphasize that the utility of a given 

clustering solution depends on context,24 and as such, there is no “optimal” set of domains 

within the data-driven framework. The number of domains for follow-up analyses was 

chosen to balance interpretability with performance across our three evaluation metrics. The 

k = 6 solution was selected because it was not only the minimum value along the asymptote 

for mean ROC-AUC (Fig. 1b), but also the lowest of the top three k to maximize the 

geometric mean of reproducibility, modularity, and generalizability (Fig. 2a). As our intent 

here was to facilitate interpretation, we did not set out to statistically compare metrics across 

k.

Mapping the leading expert-determined knowledge frameworks

Expert-determined frameworks for basic brain function (i.e., RDoC) and psychiatric illness 

(i.e., the DSM) were mapped in a top-down fashion beginning with their terms for mental 

function and dysfunction. NLP was applied to translate the language of the frameworks 

into the language of the human neuroimaging literature, and the resulting term lists were 

subsequently mapped onto circuits of co-occurring brain structures (Fig. 3a). For RDoC, 

word embeddings were trained using GloVe25 on a corpus of 29,828 general neuroimaging 

articles (Extended Data Fig. 1b, Supplementary Table 3, top). For the DSM, embeddings 

were trained with the same parameters on a corpus of 26,070 psychiatric neuroimaging 

articles (Extended Data Fig. 1c, Supplementary Table 3, bottom). Candidate synonyms were 

identified among terms for mental function or dysfunction (Supplementary Table 2) by the 

cosine similarity of their embeddings to the centroid of seed embeddings in each domain. 

This approach yielded synonyms of the RDoC domains with higher semantic similarity to 

seed terms than a previously published NLP approach26 (Fig. 3b). Finally, we mapped brain 

circuits from each term list based on PMI-weighted co-occurrences with brain structures 

across the full corpus of articles with coordinates (n = 18,155 articles), restricting circuits to 

positive values with FDR < 0.01.

A comparison of the k = 6 data-driven domains with the expert-determined frameworks 

reveals notable differences in circuit-function mappings (Fig. 4). First, the data-driven 

framework offers novel combinations of emotional and cognitive terms in its domains for 

memory and cognition, which each relate to several domains in the RDoC framework. 

Likewise, the RDoC domain for social processes relates strongly to both memory and 

vision in the data-driven framework, indicating that further functional specification may be 

warranted in RDoC. While the reward domain of the data-driven framework is strongly 

related to the RDoC domain for positive valence at the FDR < 0.05 threshold, the reward 

circuitry is defined more specifically by frontomedial regions and the nucleus accumbens. 

Relations between the data-driven framework and the DSM are sparser, with four of the 

six data-driven domains exhibiting above-threshold similarity with seven of the nine DSM 
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domains. The memory domain in the data-driven framework is similar to the anxiety domain 

and the trauma and stressor domain (but not the bipolar domain or depressive domain with 

asymmetric fronto-subcortical circuitry). The developmental domain in the DSM maps onto 

two cortical domains of the data-driven framework, including the manipulation domain that 

also has high similarity with psychotic illness. To verify that inter-framework differences 

relied on the coordinate data of the data-driven domains, we repeated comparisons with a 

framework derived from terms alone (Extended Data Fig. 5). The term-based framework 

had higher similarity with both RDoC and the DSM, indicating that the coordinate data 

distinguish the data-driven framework to a meaningful degree.

Relating data-driven domains to leading knowledge frameworks

To assess the performance of the data-driven framework against that of the leading 

frameworks in neuroscience and psychiatry, we related the k = 6 solution to RDoC and 

the DSM across our measures of reproducibility, modularity, and generalizability. Each of 

these analyses was repeated with k = 9 data-driven domains to verify that differences from 

the nine DSM domains were not driven by domain number (Extended Data Fig. 6).

Establishing domains with reproducible circuit-function links is essential to advancing basic 

neuroscience and translating it into reliable neuropsychiatric biomarkers. We assessed the 

reproducibility of circuit-function links by the performance of logistic regression classifiers 

predicting the occurrence of mental function terms in article text from coordinate data 

mapped to the structures of our neuroanatomical atlas (Fig. 5). Test set ROC-AUC was 

higher across domains of the data-driven framework compared to RDoC and the DSM 

(Fig. 5h). Whereas all data-driven and RDoC domains achieved above-chance ROC-AUC 

(Figs. 5e-f), the psychotic domain of the DSM did not (Fig. 5g). These results suggest 

that orienting neurobiological and psychiatric frameworks to the circuits and term lists 

derived by a data-driven approach could improve the reproducibility of structure-function 

links. Further results supporting this conclusion were obtained when evaluating performance 

by F1 score (Supplementary Fig. 6), when using mental function terms to predict brain 

structures (Extended Data Fig. 7, Supplementary Fig. 7), and when substituting neural 

networks for logistic regression classifiers (Extended Data Figs. 8-9, Supplementary Figs. 

8-9, Supplementary Tables 4-5).

We next evaluated frameworks by modularity, which captures how well domains partition 

the literature into homogenous and distinct subfields. Articles were partitioned into the most 

similar domain within the discovery and replication sets (Figs. 6a-f, Extended Data Fig. 10). 

Consistent with high comorbidity rates27 and similar neural alterations28 between affective 

disorders, there is visible overlap among the bipolar, depressive, and anxiety domains of 

the DSM (Figs. 6c, f). Modularity was then assessed by the ratio of mean Dice distance 

of articles between versus within subfields (Figs. 6g-i). The domain-level results exceeded 

chance for all domains in both splits across the three frameworks. Macro-averaging across 

domains in each framework, we find that modularity is higher for the data-driven framework 

compared to RDoC (Fig. 6j). Surprisingly, modularity of the DSM domains exceeded that 

of the RDoC domains. Whereas the partitioning results support the movement underway to 

ground psychiatric diagnoses in brain circuits for transdiagnostic mental constructs,12,13,29 
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the between-framework comparisons caution against the assumption that expert-determined 

domains of brain function will lead to improved ontological modularity.

The third principle we assessed was generalizability, or how well domain prototypes 

describe the circuit-function links reported in single articles. Similarity to the prototype 

exceeded chance for both discovery and replication sets across all frameworks tested (Figs. 

6k-m), supporting the interpretation that they represent information which generalizes well 

within the subfields of human neuroscience. Yet, further gains in similarity to the prototype 

across domains were achieved by both the data-driven framework and RDoC relative to the 

DSM (Fig. 6n), highlighting the disconnect between current understanding of brain function 

and the way that mental disorders have historically been categorized. We anticipate that 

if mental disorders were redefined as disruptions in basic brain circuitry, their information 

content would better generalize within subfields of the human neuroscience literature.

Discussion

As human neuroscience expands beyond what any individual can reasonably interpret, 

the field demands computational approaches to ontology that have been developed in 

biomedical informatics.2 We demonstrate here that it is feasible to synthesize the results 

of thousands of articles through text mining and machine learning techniques, organizing 

the knowledge of the human neuroimaging discipline into domains jointly defined by 

mental constructs and brain circuitry. Our procedure for modeling domains of brain 

function can be readily adapted to summarize other neuroscience subfields, such as 

direct electrophysiological recordings, cellular-level imaging, or tract tracing experiments. 

Ontologies developed across levels of analysis could ultimately be synthesized into a 

hierarchical framework for knowledge of brain function, facilitating advances in basic 

neuroscience and translational research.

Neural circuitry need not align with human intuition for the structure of mental 

phenomena, and indeed, the brain-based mapping of mental functions we present here yields 

several results that are unexpected from the psychology literature. Before the advent of 

neuroimaging, psychology had maintained a circumplex model for emotion as a distinct 

processing domain with underlying axes for valence and arousal.30 RDoC reflects the 

influence of this model in its domain-level categorization of positive and negative affective 

valence. However, in the data-driven arrangement at the k = 6 level, affective processes are 

integrated into circuits for memory and reward, consistent with the theory of constructed 

emotion proposed more recently to account for neuroimaging findings.31 Likewise, the 

data-driven framework combines stimulus and response processing stages, which have long 

been dissociated in psychology,32 under a single manipulation domain. The frontoparietal 

circuit for this domain coincides with that found to underlie both attention and movement 

in human neuroimaging and primate electrophysiology.33 Perhaps most surprising, the 

cognition domain spans a combination of terms for cognitive control, salience, and emotion 

which is unrecognizable among the RDoC domains. However counterintuitive, this set of 

processes has been consistently associated with activation in medial frontal regions across 

fMRI studies,22 highlighting the need for a taxonomic structuring of mental constructs that 

is anchored in neurobiology.
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When boundaries between mental functions or disorders are drawn without respect to 

brain function, the resulting categories may be too narrow (i.e., over-specified) or too 

broad (i.e., under-specified) relative to their associated circuitry. This was a problem with 

the DSM criteria for psychiatric disorders, as evidenced by high comorbidity rates and 

internal heterogeneity, which ultimately led the National Institute of Mental Health to 

undertake the RDoC project.12 Yet, RDoC domains are seen here to display both over- and 

under-specification. Mental functions in negative valence, positive valence, and arousal and 

regulation domains of RDoC have similarly high mutual information with the frontomedial 

cortex and amygdala, suggesting over-specification of functions relative to circuitry. By 

contrast, the k = 6 solution of the data-driven framework combines affective valence and 

arousal with a temporo-amygdalar circuit under its memory domain, while it retains a 

distinct reward domain with a frontomedial-accumbens circuit. Conversely, there is evidence 

that a domain like negative valence in RDoC is under-specified, encompassing constructs 

that recombine basic elements of memory, reward, and cognitive systems. At the k = 6 

level of the data-driven framework, domains for memory, reward, and cognition were better 

predicted by their more narrowly defined circuits.

The comparative analyses undertaken here underscore the need for rigorous ontological 

standards in neuroscience and psychiatry, as well as for methods sufficiently flexible to 

hold such standards against ontologies built through varying approaches. Our assessments 

of reproducibility, modularity, and generalizability indicate that the data-driven framework 

meets criteria for predictive, discriminant, and convergent validity, respectively. RDoC 

likewise upheld these ontological standards, though gains in reproducibility and modularity 

were achieved with the data-driven organization of knowledge. The DSM, by contrast, 

failed to uniformly achieve predictive validity across its domains. In addition to testing 

frameworks in terms of ontological principles, standards for clinical utility should be 

established at the outset for biologically based frameworks intended to reclassify psychiatric 

diseases. Categories should not only minimize the comorbidities and internal heterogeneity 

observed for the symptom criteria,12 but also exhibit predictive value for clinical outcomes 

and treatment decisions. In this vein, RDoC has been applied to generate dimensional 

ratings of domains in electronic medical records that were not only associated with genes 

relevant to psychopathology,34 but also predictive of time to hospital readmission.26 We 

expect that a data-driven classification system for psychiatric disease would facilitate 

targeting of neuromodulatory treatments to the patients and stimulation sites most likely 

to respond. Indeed, reclassification of major depression into brain-based subtypes has 

improved prediction of rTMS response.35

Neuroimaging meta-analysis has the advantage of accounting for functional similarities 

and differences on the whole-brain scale in human subjects, but it is crucial to note that 

the organization of the data-driven framework may in part reflect the spatial and temporal 

limitations of MRI and PET. For instance, while the data-driven framework defines a single 

brain circuit for affective valence in its memory domain, neuronal population recordings in 

the rodent amygdala reveal functional divisions for positive and negative affective valence.36 

This result does not necessarily contradict the finding that the poles of affective valence 

are more similar than they are different on the level of six domains, but rather, illustrates 

how more refined mappings can be achieved through intracranial recording techniques. 
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A hierarchically organized ontology spanning levels of analysis is needed to reconcile 

the results of animal and human work. In addition to constraints on resolution, our meta-

analytic approach is limited to spatial mappings, whereas brain function has also been 

shown to vary across temporal processing stages. The vision and language domains of the 

k = 6 solution collapse across processing streams which have been shown to first extract 

and subsequently integrate the features of perceptual inputs.37,38,39 The neuroanatomical 

structures grouped together under any ontological domain should be seen not only to 

co-occur with semantically similar mental functions, but also to co-activate in temporal 

relation. This can be established through multimodal studies that combine techniques of 

relatively high spatial and temporal resolution, such as fMRI-electroencephalography. It can 

be accommodated ontologically through directed links between circuit components.

Another important limitation of our meta-analytic approach is the “resolution” of term 

and coordinate annotations, which were both assigned on the level of the article. This 

design decision enabled us to annotate a high volume of articles with mental functions 

and associated brain structures. By contrast, manually curated databases such as BrainMap 

contain fewer articles annotated more finely, at the level of the experiment. While our 

approach is susceptible to “blurring” of terms and coordinates co-reported within an article, 

we expect that with a large corpus, it will nonetheless detect relationships between terms 

and structures that are reported consistently together across studies. Our approach was 

developed with issues of domain resolution in mind and has the capacity to map finer-

grained associations of function and circuitry by increasing the k of clustering in the initial 

step. Fig. 2 illustrates a hierarchy linking domains at the k = 6, 8, and 22 levels as a proof of 

this concept.

Beyond the technical constraints imposed by MRI and PET, human neuroimaging is 

held back by conceptual impasses that limit how results are translated into scientific 

knowledge. Several of these are reflected in the data-driven framework presented here. 

First, the data-driven framework is premised on the widespread assumption that mental 

functions are localizable to non-overlapping sets of neural structures. However, as observed 

with the evidence for the construct theory of emotion,31 the circuitry that supports 

a phenomenologically constant mental function may vary between individuals, within 

an individual over time, and across environmental contexts. Second, from the reverse 

perspective, the data-driven framework assumes that every structure in the brain is 

responsible for a set of semantically related mental functions. Neuroimaging meta-analysis 

has revealed that a subset of regions such as the insula and anterior cingulate are activated 

across a wide range of task contexts.15,19 These regions have been proposed to function atop 

information processing hierarchies as hubs that switch between and integrate across brain 

networks.40,41 Intriguingly, the insula and anterior cingulate have been identified as sites of 

common vulnerability across psychotic and affective disorders,42 suggesting that a deeper 

understanding of their processing roles would have widespread clinical implications. Going 

forward, human neuroscience will require a knowledge framework which can accommodate 

qualifications for various classes of structure-function mappings.

Finally, we note that both the human neuroimaging literature and the data-driven framework 

derived from it are subject to biases in research practice. Researchers may be more inclined 
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to seek and report evidence for mental functions which have been previously well described 

in psychology, a form of confirmation bias, and to treat these mental functions as stable 

constructs, a form of reification bias. Region-of-interest analyses may similarly confirm 

false assumptions about how structures are defined and mapped to function. We expect 

that each of these biases are evident in the primary data for meta-analysis, including 

both the terms for mental functions and the brain coordinate data. That said, these 

biases would likewise affect the reasoning processes of researchers tasked with crafting 

knowledge frameworks through individual and group-based deliberation. The advantage of 

our meta-analytic approach is that mental constructs and brain circuits are jointly defined, 

mitigating reification and confirmation biases by defining mental functions in direct relation 

to neurobiological data and, in turn, by drawing bounds around neuroanatomical circuits 

in direct relation to function. Indeed, redefining domains with respect to mental function 

terms alone was found to yield domains with higher similarity to the expert-determined 

frameworks (Extended Data Fig. 5). Finally, our approach to systematic meta-analysis 

reduces the selection bias that affects neuroscientists manually reviewing the massive 

volume of published findings.

An area of contention in the present-day design of neuroimaging studies is whether to apply 

existing knowledge frameworks in a top-down manner, or to perform bottom-up analyses 

that seek to “carve nature at its joints.” The former type of study has been incentivized 

throughout the history of the National Institutes of Health, which once required grants to 

define patient cohorts by DSM criteria and currently offers grants for research premised in 

the RDoC domains. The advantage of directing research with a single knowledge framework 

is that data can be collected and described consistently, facilitating interpretation across 

studies. However, the present work suggests that constraining research by expert-determined 

frameworks may introduce biases which limit progress. We thus encourage future research 

that leverages bottom-up approaches to derive and evaluate novel frameworks for knowledge 

in human neuroimaging. For example, an ontology of self-regulation was derived by 

combining results across tasks, surveys, and real-world outcomes.43 Unconstrained analyses 

of primary neuroimaging data will be supported by the publication of multimodal task-based 

fMRI datasets like the Human Connectome Project, which has enabled the characterization 

of task-specific44 and task-general brain circuits.45

The data-driven framework is presented here as the first step in what we expect will be 

an iterative process of knowledge engineering in neuroscience. In future work, it will be 

important to verify the contents and boundaries of the data-driven domains across levels 

and modes of neuroscientific analysis. Alongside advances in neurobiology, innovations in 

ontology mapping should focus on developing more refined categories of brain function, on 

annotating their relations, and on specifying their dependencies. Moreover, they should build 

on efforts to reduce quantifiable biases that are underway in basic science,5 biomedical 

informatics,46 and computational linguistics.47 Neuroscience ontologies may even be 

leveraged for automated hypothesis generation and formal reasoning analyses if published 

in a structured form.48 Going forward, we expect that computational approaches to ontology 

will pave the way for a new science of synthesis able to accelerate progress across a wide 

range of disciplines.
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Methods

Neuroimaging Corpora

Three corpora of neuroimaging articles were curated from existing databases and by web 

scraping (Extended Data Fig. 1). All articles were manually inspected by E.B. to ensure they 

conducted neuroimaging of the human brain using MRI, PET, or other standard techniques. 

Metadata were gathered manually for a random subset of 250 articles in this corpus 

(Supplementary Table 1), demonstrating that functional neuroimaging was the predominant 

study modality (88% fMRI, 4.8% structural MRI, 3.6% PET). The samples had a mean of 

43.35 participants ± 88.27 SD, comprised of 18.86 women ± 28.64 SD and 19.26 men ± 

31.43 SD. Participants had a mean age of 30.25 years ± 13.35 SD. We note that analyses 

conducted on these corpora were not performed blind to framework (i.e., data-driven, RDoC, 

or DSM) or condition (e.g., discovery and replication split).

Neuroimaging Corpus with Coordinate Data—First, a corpus of brain activation 

coordinates and neuroimaging article full texts (n = 18,155; Extended Data Fig. 1a) was 

collected as the substrate for the data-driven framework and for coordinate-based analyses. 

Articles were included if they reported coordinates in the human brain in standard Montreal 

Neurological Institute (MNI) or Talairach space. Coordinates were gathered on the study 

level from BrainMap14 (n = 3,346), then Neurosynth15 (n = 12,676), and finally by 

deploying the Automated Coordinate Extractor (n = 2,133).49 Of the studies with brain 

coordinate data, 13 were excluded because article full texts could not be obtained by 

automated or manual download.

General Neuroimaging Corpus—A comprehensive corpus of neuroimaging article full 

texts (n = 29,828; Extended Data Fig. 1b) served as the basis for our computational 

linguistics approach to selecting mental function terms for RDoC (Fig. 3a). Articles were 

retrieved in response to a PubMed query (Supplementary Table 3, top) and combined with 

the first corpus. The query returned 31,136 articles, of which 10,713 did not have full texts 

available by automated scraping methods.

Psychiatric Neuroimaging Corpus—A corpus of human neuroimaging articles 

enriched with studies of psychiatric illness (n = 26,070; Extended Data Fig. 1c) served 

as the basis for selecting mental function and dysfunction terms for the DSM. Articles 

were retrieved from PubMed through a query for DSM-5 disorders (Supplementary Table 3, 

bottom) and combined with those from the first corpus. The query returned 15,914 articles, 

of which 1,960 did not have full texts available by scraping.

Coordinate Processing

Brain activation coordinates were converted to MNI space if reported in Talairach using 

the Lancaster transform.50 FSL atlasquery (version 5.0.10) was deployed within a Python 

(2.7.13) wrapper to map coordinates to 118 bilateral gray matter structures in probabilistic 

anatomical atlases of the human cerebrum16 and cerebellum.17 To ensure adequate 

coordinate data for each structure, our atlas combined substructures within the cerebellar 

lobules, crus, and vermis. Structures were retained if their probability of containing the 
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coordinate exceeded zero, resulting in one-to-many mappings from each coordinate to the 

brain. Differences in reporting practices were mitigated by binarizing the mappings for each 

study, meaning that a study could not report data in a given structure more than once.

Natural Language Processing

Text Preprocessing—Article full texts were extracted from PDF or HTML files 

downloaded through Stanford University subscription services, from PDF files available 

through the PMC Open Access Subset, or from XML files in the PMC Author Manuscript 

Collection. In order to tokenize articles, a lexicon was compiled from public sources 

(Supplementary Table 2). For RDoC and the data-driven framework, the lexicon was limited 

to terms describing mental processes and the paradigms used to study them. The lexicon 

for the DSM was extended to terms for psychopathology. Texts and the lexicon were 

preprocessed using NLTK (3.4.5). Preprocessing included case-folding, removal of stop 

words and punctuation, and lemmatization with WordNet (3.1). N-grams listed in the lexicon 

were combined with underscores in article texts.

Validation of Term Extraction—Our approach to extracting terms for mental functions 

from article full texts was validated by relating the extracted terms to the behavioral 

annotations manually assigned to articles in the BrainMap database. Both term and 

annotation occurrences were reweighted by term frequency-inverse document frequency 

(TF-IDF) so that associations would not reflect the length of texts or number of experiments. 

Pearson correlations were computed across the 3,346 articles in our corpus for which data 

had been obtained from BrainMap. The top three most strongly correlated terms are plotted 

for each subdomain in the BrainMap behavioral taxonomy (Supplementary Fig. 1). As an 

example, the extracted terms “movement,” “motor,” and “sensorimotor” were most strongly 

correlated with the execution subdomain of the action domain, meaning that they tended to 

occur in the full texts of articles which had been labeled manually with the execution label 

in BrainMap. For all terms shown, the correlations to subdomains were positive with FDR < 

0.001.

Second, we offer quantitative evidence that our extracted terms are highly similar in 

meaning to manual annotations (Supplementary Fig. 2). To quantify semantic similarity, we 

computed one minus the cosine distance between the centroid of GloVe25 embeddings for 

extracted mental function terms and for terms in the BrainMap annotations for behavioral 

domains. Because the cosine angle is not defined for all-zero vectors, articles were required 

to have at least one extracted term and one BrainMap annotation, leaving 2,842 for analysis. 

Centroids were computed as the TF-IDF weighted average of embeddings for terms that 

were either extracted or derived from BrainMap annotations. GloVe embeddings had been 

trained on the corpus of 29,828 neuroimaging articles, as described in the Word Embeddings 
section below. Permutation testing was performed by shuffling the annotation centroid over 

its embedding dimension (n = 100) for 1,000 iterations. Relative to scrambled embeddings, 

the semantic similarity between our extracted terms and the BrainMap annotations was 

higher than expected by chance (FDR < 0.001) for 89.97% of articles.
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Word Embeddings—To identify synonyms of seed terms in existing frameworks as 

shown in Fig. 3a, word embeddings were trained with GloVe25 on concatenated full texts in 

the general neuroimaging corpus (for RDoC) or the psychiatric neuroimaging corpus (for the 

DSM). The GloVe parameters were as follows: embedding dimension = 100, minimum word 

count = 5, window size = 15 words, iterations = 500.

Computational Ontology

Data-Driven Framework—The data-driven framework was built up from relationships 

between (1) activation coordinate data mapped to brain structures and (2) terms for mental 

functions in article full texts. To prevent over-estimation of classifier test set performance, 

the data-driven framework was generated in a training set that contained 70% of articles (n 
= 12,708). Co-occurrences were computed between brain structures (ns = 118) and terms for 

mental functions (nt = 1,683) across training set articles, with re-weighting by PMI to reduce 

the effects of structure and term frequency. PMI was computed as the logarithm of the 

observed co-occurrence value divided by the expected co-occurrence value. To avoid taking 

the logarithm of zero, terms and structures with no co-occurrences were assigned a value of 

zero. Circuits were then mapped by k-means clustering of brain structures by PMI-weighted 

links with mental function terms over a range of k values from 2 to 50. This range for 

the number of domains was deemed acceptable because the number we ultimately selected 

fell well within it and along a smooth curve for the selection criterion. Up to 25 terms for 

mental functions were assigned to each circuit by the point-biserial correlation (rpb) of the 

centroid of occurrences of the circuit’s structures with binary function term occurrences. 

This number of terms was chosen to yield term lists similar in length to those previously 

generated by an NLP approach to synonym detection for the RDoC framework.26 We did 

not find sufficient reason to expand the range given that our analyses yielded a number of 

terms within it for the majority of domains in the data-driven, RDoC, and DSM frameworks. 

The number of circuits and terms for each circuit was determined based on the validation set 

performance of classifiers described below under Classification Approaches: Data-Driven 
Mapping. The resulting circuits and lists of their associated terms are what we refer to as 

“domains.” Finally, each domain was named by the mental function in its list with highest 

degree centrality of term-term co-occurrences across training set articles.

To further validate our choice of k, several metrics were plotted across clustering solutions. 

First, the modularity (Fig. 1d) and generalizability (Fig. 1e) metrics described below were 

macro-averaged across domains at each k level. Whereas modularity tends to increase as 

k increases and domains reduce in size, generalizability decreases slightly. Our choice of 

k occurs at a nadir of modularity, and yet falls near the peak of generalizability. It is 

important to note that our approach yields domains at any level of k from 2 to 50 with 

reproducibility, modularity, and generalizability all higher than expected by chance. We next 

validated the stability of domain mappings by plotting the proportion of overlapping mental 

terms assigned to each brain structure between pairs of clustering solutions (Supplementary 

Fig. 5). The top five terms per structure were identified as those with the highest rpb for 

the corresponding domain, and proportions were computed from the overlap of those terms 

at level k and k + 1. The majority of brain structures were assigned a stable set of mental 

function terms. With brain structures organized by their domain assignment at the k = 6 
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level, it is apparent that stability is particularly high across structures in domains known to 

be well localized, such as language.

RDoC and DSM Frameworks—RDoC and the DSM were modeled by translating their 

terms for mental functions and disorders into the language of the human neuroimaging 

literature (Fig. 3a). RDoC seed terms were preprocessed from RDoC behaviors, self-report 

items, and paradigms grouped by domain; DSM seed terms were preprocessed from 

disorders grouped by the headings of Section II in Edition 5 (which we refer to as 

“domains”). Candidate synonyms from the lexicon (Supplementary Table 2) were identified 

by cosine similarity to the centroid of seed terms in each domain over a range of list 

lengths from 5 to 25 terms. The list that maximized cosine similarity to the centroid of 

seed terms was selected for each domain. For RDoC, the word embeddings used to compute 

similarity were trained using GloVe25 on a corpus of 29,828 article full texts (Extended 

Data Fig. 1b) that was curated by supplementing the original corpus with the results of a 

PubMed query for human neuroimaging studies (Supplementary Table 3, top). This yielded 

synonyms of the RDoC domains with higher semantic similarity to seed terms than a 

previously published NLP approach (Fig. 3b). For the DSM, embeddings were trained on a 

corpus of 26,070 psychiatric neuroimaging articles (Extended Data Fig. 1c) enriched with 

human neuroimaging studies of mental illness retrieved from PubMed (Supplementary Table 

3, bottom). Further, overlap between DSM disorders was reduced by requiring seed terms 

to be unique to domains and candidate synonyms to have a cosine similarity ≥ 0.5. DSM 

domains presented here were additionally required to contain terms that appeared in at least 

5% of articles in the corpus with coordinate data.

After identifying synonyms of the expert framework terms in the neuroimaging literature, 

co-occurrences were then mapped between brain structures and term lists. Co-occurrences 

were computed across the corpus of articles with coordinate data (n = 18,155) and weighted 

by positive PMI (PPMI). Brain circuits were defined for each domain by retaining structures 

for which the PPMI was greater than expected by chance (FDR < 0.01) determined by 

comparison to a null distribution generated over 10,000 iterations of shuffling term list 

occurrences across articles.

Framework Similarity—Domains of the data-driven framework were related to those of 

the RDoC and DSM frameworks by the Dice similarity of mental function terms and brain 

structures (Fig. 4). Dice similarity was computed from binarized vectors of the terms and 

structures contained in each domain.

A key distinction between the data-driven and expert-determined frameworks is that the 

former was jointly defined by mental functions and brain circuitry, while the latter were 

built on functions that were subsequently mapped to circuits. We would therefore expect 

that a data-driven framework derived from the mental functions in article texts would be 

more similar to the expert-determined frameworks. Indeed, this is shown to be the case 

in Extended Data Fig. 5 for term-based domains at the k = 6 level. Data-driven domains 

were first generated by clustering terms according to their PMI-weighted co-occurrences, 

then sorted by their rpb with the centroid of cluster term occurrences. The number of 

terms per domain was selected (as for RDoC and the DSM) over a range of 5 to 25 
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according to the semantic similarity of their embeddings with the centroid of those for 

“seed” terms that resulted from the initial clustering. The embeddings had been trained in 

the general neuroimaging corpus (Supplementary Fig. 1b) and were the same as those used 

in generating the RDoC framework. Domain terms were then mapped to brain circuits by 

FDR-thresholded PPMI. As in Fig. 4, data-driven domains were related to RDoC and DSM 

domains by the Dice similarity of their mental functions and brain structures (Extended Data 

Fig. 5a). The similarity of links between frameworks is consistently lower for the data-driven 

framework defined jointly by terms and brain coordinate data (Extended Data Fig. 5b) 

relative to the framework defined by terms alone (Extended Data Fig. 5c). The differences 

averaged across domains between data-driven ontologies are significant for similarity to 

both RDoC (Extended Data Fig. 5d) and DSM (Extended Data Fig. 5e) domains. These 

results underscore that incorporating brain activation data at the first stage of our approach 

enhances the substantive differences of the resulting domains relative to RDoC and the 

DSM.

Classification Approaches

Logistic Regression—Classifiers were designed to predict the locations of brain 

activation coordinates reported by articles from the terms for mental functions occurring 

in article full texts (i.e., forward inference), and in turn, to predict term occurrences from 

coordinate locations (i.e., reverse inference). Articles with coordinate data were split into 

sets for training (70%; n = 12,708), validation (20%; n = 3,631) and test (20%; n = 

1,816). Classifiers were fit using Scikit-learn (0.21.2) and stored with Pickleshare (0.7.5). 

All classifiers were fit in the training set with the following hyperparameters optimized 

over a grid search to maximize validation set ROC-AUC: regularization penalty (L1 or L2), 

regularization strength (0.001, 0.01, 0.1, 1, 10, 100, or 1,000), and intercept (included or 

not). The classifiers used in selecting the number of terms per data-driven domain (Fig. 1a, 

Step 3) were fit over 100 iterations, and those used in evaluating the number of circuits were 

fit over 500 iterations (Fig. 1a, Step 5). The test set was reserved for the final comparison 

of the data-driven framework with RDoC and the DSM, each of which scored article texts 

using a different list of terms for mental functions. The classifiers used in reproducibility 

analyses were optimized over the hyperparameter grid described above with training for 

1,000 iterations.

Neural Networks—All neural network classifiers were fit in PyTorch (1.0.0) with the 

Adam optimizer (β1 = 0.9, β2 = 0.999, ε = 10−8). The architecture always included 

8 fully connected (FC) layers. Batch normalization and a rectified linear unit (ReLU) 

activation function were applied to the first seven layers, with dropout during training. A 

sigmoid activation function was applied to the last layer for one-versus-all classification. 

The classifiers used in selecting the number of terms per data-driven domain were fit with 

learning rate = 0.001, weight decay = 0.001, neurons per layer = 100, dropout probability 

= 0.1, batch size = 1,024, epochs = 100. The classifiers used to select the number of 

data-driven domains (Extended Data Fig. 4a) were fit with the same hyperparameters over 

500 epochs. Classifiers used in the comparison between the data-driven, RDoC, and DSM 

frameworks (Extended Data Figs. 8-9, Supplementary Figs. 8-9) were optimized through a 

randomized grid search over 100 combinations of the following hyperparameters: learning 
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rate = 10−5 to 1 on a log scale, weight decay = 10−5 to 1 on a log scale, number of neurons 

per layer = 25 to 150 by 25, and dropout probability = 0.1 to 0.9 by 0.1. Each classifier was 

trained for 500 epochs in this grid search, and the optimal hyperparameter combination 

was selected to maximize ROC-AUC evaluated on the validation set. Classifiers were 

subsequently trained for 1,000 epochs with the selected hyperparameters. The test set was 

reserved for the final comparison of the data-driven framework with RDoC and the DSM. 

Performance in the test set was highly similar overall to that for logistic regression classifiers 

performing both reverse (Supplementary Table 4) and forward inference (Supplementary 

Table 5), motivating us to proceed with the logistic regression architecture and its results in 

subsequent analyses.

Data-Driven Mapping—The data-driven framework was built through the computational 

meta-analyses outlined in Fig. 1a, which involved evaluating classifier performance at two 

stages. First, after mapping brain circuits and associating them with terms for mental 

functions, performance determined the number of terms per circuit. Specifically, classifiers 

were trained over a range of term list lengths (5 to 25 terms) and number of circuits 

(2 to 50). Forward inference classifiers predicted occurrences of coordinates mapped to 

structures in each circuit from occurrences of terms in its corresponding list; reverse 

inference classifiers predicted term occurrences from structure occurrences. For each circuit, 

the number of terms was chosen to maximize the mean ROC-AUC of forward and reverse 

inference classifiers applied to the validation set.

Second, after assigning terms to each circuit, domain reproducibility at each k was assessed 

by classifier performance. Classifiers were trained again over k = 2 to 50 circuits, this time 

using occurrences grouped by term list and circuit. Forward inference classifiers predicted 

occurrences of structures summed by circuit from occurrences of terms summed by list 

across the full set of domains; reverse inference classifiers predicted term list occurrences 

from circuit occurrences, again across the full set of domains. Input and output data 

were binarized by mean values across articles. Specifically, binary scores for the mental 

functions listed under each domain were computed by mean-thresholding term occurrences, 

then mean-thresholding the sum of terms within each domain list. Our approach to mean-

thresholding was to count a term or structure occurrence as one if it occurred in a given 

article more frequently than in an average article, and to otherwise count it as zero.

Reproducibility—Test set performance was compared for classifiers that based their 

inputs or outputs on term lists for each domain of the data-driven framework, RDoC, 

and the DSM. Term lists were used to score article full texts through the following: 

(1) term occurrences were thresholded by their mean across articles, (2) binarized term 

occurrences were summed across terms in each list, (3) sums were thresholded by 

their mean across articles. Neural data for classification models included the binarized 

occurrences of coordinates within 118 brain structures. Reverse inference classifiers took 

brain structure occurrences as inputs to predict text scores as outputs (Fig. 5a); conversely, 

forward inference classifiers took text scores as inputs to predict brain structure occurrences 

as outputs (Extended Data Fig. 7a). Performance was assessed for each classifier based 

on overlap of bootstrap and null distributions for ROC-AUC computed in the test set of 
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articles. Bootstrap distributions were computed by resampling articles in the test set with 

replacement over 1,000 iterations. Null distributions were computed by shuffling true labels 

for term lists (Fig. 5) or brain structures (Extended Data Fig. 7) across articles, which we 

expect to be independent, again over 1,000 iterations.

Article Partitioning

The data-driven, RDoC, and DSM frameworks were applied to partition articles across the 

corpus into subfields of neuroscience. Articles were first split into a discovery set equivalent 

to the training set (n = 12,708) and a replication set that combined the validation and test 

sets (n = 5,447). Each domain was represented by a binary vector with one-valued cells 

for the terms and brain structures it entails. Likewise, each article was represented by a 

binary vector with one-valued cells for the terms that occurred in its full text and the brain 

structures that were mapped from its reported activation coordinates. Articles were assigned 

to the domain in each framework with the highest Dice similarity of its terms and structures.

Visualization

The Dice distance between articles in the discovery set (n = 12,708; Figs. 6a-c) and 

replication set (n = 5,447; Figs. 6d-f) was visualized with multidimensional scaling. 

Distances were computed between articles in the full corpus (n = 18,155) based on the 

binary vectors for the terms and structures they reported (Extended Data Figs. 10a-c). Metric 

multidimensional scaling was performed on the square distance matrix (18,155 x 18,155) 

with epsilon = 0.001 over 5,000 iterations. Subsets of the resulting multidimensional scaling 

matrix for articles in the discovery (12,708 x 2) and replication sets (5,447 x 2) were 

visualized with articles colored by their domain assignments in the data-driven framework 

(Figs. 6a, d), RDoC (Figs. 6b, e), and the DSM (Figs. 6c, f). For additional visualization 

by t-distributed stochastic neighbor embeddings (t-SNE), the 18,155 x 18,155 distance 

matrix was reduced by principal component analysis. The first 10 principal components 

(18,155 x 10) were taken as inputs to t-SNE, which was trained with perplexity = 25, early 

exaggeration = 15, learning rated = 500, and maximum iterations = 1,000 (Extended Data 

Figs. 10d-f).

Modularity—Within the discovery and replication sets, modularity of the partitions was 

assessed by the ratio of mean Dice distance of articles between versus within domain 

partitions (Figs. 6g-i). Dice distance was computed over the binary mental function term and 

brain structure occurrences in each article. Null distributions were computed by shuffling the 

distance matrix over 1,000 iterations. Bootstrap distributions were computed by resampling 

distances with replacement over 1,000 iterations (Fig. 6j).

Generalizability—Within the discovery and replication sets, generalizability of each 

domain to articles within its corresponding partition was assessed by Dice similarity of 

terms and structures (Figs. 6k-m). Null distributions were computed by shuffling terms and 

structures in each domain over 1,000 iterations. Bootstrap distributions were computed by 

resampling articles with replacement over 1,000 iterations (Fig. 6n).
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Control Experiments

Inclusion of Coordinate Data—We expect that to some degree, brain coordinate data 

are correlated with certain mental function terms, potentially limiting the extent to which 

the coordinate data contribute meaningful information to domain organization. To verify that 

jointly defining domains by the neural data and function terms yielded results that could 

not be obtained from the function terms alone, we visualized the latter term-based solution. 

Specifically, we remapped a six-domain framework by clustering the mental function terms 

in our lexicon. These term groupings were subsequently mapped onto brain circuits, by 

contrast to the joint mapping approach presented in Fig. 1. The term-based framework was 

qualitatively distinct from the jointly defined framework, including domains for emotion and 

inference while omitting the reward and manipulation domains (Extended Data Fig. 5a). 

Importantly, its domain contents were more similar to RDoC (p < 0.001; Extended Data Fig. 

5d) and the DSM (p = 0.04; Extended Data Fig. 5e) than those of the data-driven framework 

incorporating brain coordinate data. These results indicate that the brain coordinate data do 

indeed help to distinguish the content of data-driven framework from existing frameworks in 

neuroscience and psychiatry.

Number of Domains—Our evaluations of framework organization effectively controlled 

for domain number in comparisons with RDoC, which has six domains, as we had selected 

the k = 6 solution of the data-driven framework to present (Figs. 5-6). To control for 

domain number in comparisons with the DSM, which has nine domains, we repeated 

analyses using the k = 9 data-driven solution (Extended Data Fig. 6). As with the k = 6 

domain solution, the k = 9 solution of the data-driven framework outperforms RDoC and 

the DSM on reproducibility indexed by both reverse inference (Extended Data Fig. 6a) and 

forward inference (Extended Data Fig. 6d), RDoC on modularity of domain partitions of 

the discovery and replication sets (Extended Data Fig. 6i), and the DSM on generalizability 

of the domain prototypes to discovery and replication set articles (Extended Data Fig. 6j). 

There were no significant differences between k = 6 and k = 9 data-driven solutions on the 

reproducibility or generalizability measures. Modularity was significantly increased for the k 
= 9 solution relative to k = 6, consistent with the positive trend with k shown in Fig. 1d. The 

increase in modularity with k is expected, as at a higher number of domains, articles within 

each domain’s partition should be relatively more similar.

Statistics

Analyses were performed using Python (3.6.8) built-in modules and the following libraries: 

Matplotlib (3.1.1), Numpy (1.16.4), Pandas (0.24.2), Scikit-learn (0.21.2), Scipy (1.3.0), 

and Statsmodels (0.10.1). Unless stated otherwise, normality of distributions was not 

assumed. Statistical tests were nonparametric or derived from permutation testing or 

bootstrapping. Significance of framework evaluation metrics was determined by permutation 

tests estimating the probability of obtaining observed values by chance. Frameworks were 

compared by testing for a difference in means of bootstrap distributions. FDR estimates 

were computed by correcting p-values according to the Benjamini-Hochberg method.51
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Data Availability

Data not subject to restrictions can be accessed at http://github.com/ehbeam/neuro-

knowledge-engine. This repository contains data generated from the corpus of 18,155 

human neuroimaging articles, including matrices of the terms and brain structures reported 

in each document, as well as GloVe25 embeddings trained on the expanded neuroimaging 

and psychiatric corpora. Due to copyright restrictions, article PDF files and extracted texts 

have not been made publicly available. Article metadata including PMIDs are provided so 

that the corpus contents can be retrieved from PubMed. Subsets of the brain coordinate 

data were previously made available online by BrainMap (http://www.brainmap.org/

software.html) and Neurosynth (http://github.com/neurosynth/neurosynth-data).

Code Availability

The code used to generate and assess knowledge frameworks is available at http://

github.com/ehbeam/neuro-knowledge-engine. The code supporting the interactive viewer for 

the data-driven framework can be accessed at http://github.com/ehbeam/nke-viewer.
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Extended Data

Extended data Fig. 1. Corpora of human neuroimaging articles
a, Articles reporting locations of activity in the human brain in standard MNI or Talairach 

space. Article metadata and coordinates were curated first from BrainMap (n = 3,346), then 

from Neurosynth (n = 12,676), then by deploying the Automated Coordinate Extractor (n 
= 2,133). b, A comprehensive corpus of human neuroimaging articles served as the basis 

for a computational linguistics approach to selecting mental function terms for the RDoC 

framework. Articles were retrieved in response to a PubMed query (Supplementary Table 3, 

top) and combined with those reporting coordinate data. c, A corpus of human neuroimaging 

articles enriched with studies addressing psychiatric illness served as the basis for selecting 

mental function and dysfunction terms for the DSM framework. As before, articles were 

retrieved through a PubMed query (Supplementary Table 3, bottom) and combined with 

those reporting coordinate data.
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Extended data Fig. 2. Data-driven solutions for k = 2 to 5 using logistic regression classifiers to 
select function terms
Domains generated at lower values of k than selected through the optimization procedure 

detailed in Fig. 1a.
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Extended data Fig. 3. Data-driven solutions for k = 7 to 10 using logistic regression classifiers to 
select function terms
Domains generated at higher values of k than selected through the optimization procedure 

detailed in Fig. 1a. Additional framework solutions up to k = 50 are visualized at http://

neuro-knowledge.org.
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Extended data Fig. 4. Neural network approach to data-driven ontology generation
The procedure in Fig. 1a was repeated using neural network classifiers in place of logistic 

regression. Neural network classifiers were comprised of 8 fully connected layers and 

fit with learning rate = 0.001, weight decay = 0.001, neurons per layer = 100, dropout 

probability = 0.1 (last 3 layers), and batch size = 1,024. In Step 3, neural networks were 

trained over 100 epochs to predict term and structure occurrences within domains. In Step 

4, neural networks were trained over 500 epochs to predict domain term list and circuit 

occurrences. a, Validation set ROC-AUC plotted for forward inference, reverse inference, 

and their average. b, Data-driven solution for k = 6. Term size is scaled to frequency in the 

corpus of 18,155 articles with activation coordinate data. The number of terms per domain 

was selected in Step 3 to maximize neural network performance in the validation set. Brain 

maps show structures included in each circuit as a result of clustering by PMI-weighted co-

occurrences with function terms. c, Article partitioning based on maximal similarity to terms 

and structures in domain prototypes visualized by multidimensional scaling. d, Modularity 

was assessed by comparing the mean Dice distance of function and structure occurrences of 

articles between domains versus within domains. Observed values are colored by domain; 

null distributions in gray were computed by shuffling distance values across article partitions 

over 1,000 iterations. e, Generalizability was assessed by Dice similarity of each domain’s 
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“prototype” vector of function terms and brain structures with the occurrences of terms and 

structures in each article of the domain’s partition. Observed values are colored by domain; 

null distributions in gray were computed by shuffling terms and structures in each prototype 

over 1,000 iterations.

Extended data Fig. 5. Framework generated from mental function terms and subsequently 
mapped to brain circuits
To control for the contribution of brain coordinate data, the framework was rederived solely 

from mental function terms. Mental function terms were clustered by k-means according 

to PMI-weighted co-occurrences in the training set of 12,708 articles. The top 25 function 

terms were assigned to each domain by rpb of binarized occurrences with the centroid of 

occurrences across “seed” terms from clustering. The number of terms per domain and name 

for each domain were determined as before. Circuits were mapped from PPMI of brain 

structures with the centroid of domain terms (FDR < 0.01). a, Domains are visualized for 

k = 6, the same dimensionality as the data-driven framework in the main text. Term size is 

scaled to rpb with the centroid of seed terms. Term-based domains are linked to the RDoC 

and DSM domains illustrated in Fig. 4. Links between domains were computed across the 

corpus of 18,155 articles by Dice similarity of mental function terms and brain structures 

(FDR < 0.05 based on permutation testing over 10,000 iterations). The Dice similarity of 
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links with RDoC and DSM frameworks across the corpus is shown for b, the data-driven 

framework based on brain coordinates and mental function terms (as in Fig. 4), and c, 
the framework based only on terms. Dice similarity with d, RDoC and e, the DSM was 

macro-averaged across domains, and a one-sided bootstrap test assessed the difference in 

means between the data-driven frameworks. The term-based framework was more similar to 

RDoC than the framework also based on coordinates (99.9% CI = [0.022, 0.098]), and to 

the DSM (95% CI = [0.001, 0.034]). Bootstrap distributions were computed by resampling 

function terms and brain structures over 10,000 iterations.

Extended data Fig. 6. Between-framework comparisons with k = 9 data-driven domains
To control for dimensionality in comparisons with the DSM, analyses were repeated with 

the k = 9 solution of the data-driven framework. Differences between framework pairs were 

assessed by two-sided bootstrap tests. With k = 9 in place of k = 6 domains, no differences 

in the data-driven, RDoC, and DSM rankings were observed. a, Reverse inference ROC-

AUC in the test set was higher for the k = 9 data-driven framework than both RDoC (99.9% 

CI of the difference = [0.010, 0.066]) and the DSM (99.9% CI of the difference = [0.029, 

0.102]). b, ROC curves of the k = 9 reverse inference classifiers. c, ROC-AUC of the k = 

9 reverse inference classifiers. d, Forward inference ROC-AUC in the test set was higher 

for the k = 9 data-driven framework than both RDoC (99.9% CI of the difference = [0.027, 
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0.052]) and the DSM (99.9% CI of the difference = [0.061, 0.095]). e, ROC curves of the 

k = 9 forward inference classifiers. f, ROC-AUC of the k = 9 forward inference classifiers. 

Articles were partitioned into the the k = 9 data-driven domains within the g, discovery set 

(n = 12,708) and h, replication set (n = 5,447). i, Domain-averaged modularity (left panels) 

was higher for the k = 9 data-driven framework than for the k = 6 solution (99.9% CI of the 

difference = [0.007, 0.016] discovery, [0.009, 0.024] replication), RDoC (99.9% CI of the 

difference = [0.046, 0.053] discovery, [0.045, 0.059] replication), and the DSM (99.9% CI 

of the difference = [0.011, 0.022] discovery, [0.007, 0.026] replication). j, Domain-averaged 

generalizability (left panels) was higher for the k = 9 data-driven framework than for the 

DSM (99.9% CI of the difference = [0.043, 0.160] discovery, [0.039, 0.164] replication). 

Observed values for the k = 9 domains in the i-j right panels were compared against null 

distributions generated by shuffling over 1,000 iterations (* FDR < 0.001).

Extended data Fig. 7. Forward inference classification with logistic regression
a, Logistic regression classifiers were trained to predict whether coordinates were reported 

within brain structures based on the occurrences of mental function terms in full texts. 

Classifier features included term occurrences thresholded by mean frequency across the 

corpus, then the mean frequency of terms in each domain. Activation coordinate data were 

mapped to 118 structures in a whole-brain atlas. Training was performed in 70% of articles 
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(n = 12,708), hyperparameters were tuned on a validation set containing 20% of articles 

(n = 3,631), then classifiers were evaluated in a test set containing 10% of articles (n = 

1,816). Plots are colored by the domain to which structures were assigned in the data-driven 

framework, and by the domain with highest PPMI for the RDoC and DSM frameworks. Test 

set ROC curves are shown for b, the data-driven framework, c, RDoC, and d, the DSM. e-g, 
For each brain structure, the significance of the test set ROC-AUC was determined by a one-

sided permutation test comparing the observed value to a null distribution, and the p value 

was FDR-corrected for multiple comparisons (* FDR < 0.001). Observed test set values are 

shown with solid lines. Null distributions (gray) were computed by shuffling true labels over 

1,000 iterations. Bootstrap distributions (colored) were computed by resampling articles in 

the test set with replacement over 1,000 iterations. h, The difference in mean ROC-AUC was 

assessed for each framework pair by a two-sided bootstrap test. The data-driven framework 

had higher ROC-AUC than both RDoC (99.9% CI of the difference = [0.020, 0.049]) and 

the DSM (99.9% CI of the difference = [0.055, 0.091]). RDoC had higher ROC-AUC than 

the DSM (99.9% CI of the difference = [0.024, 0.058]). Solid lines denote means of the 

bootstrap distributions obtained by macro-averaging across brain structure classifiers. i-j, 
Difference in ROC-AUC between the data-driven and expert-determined frameworks. Maps 

were thresholded to show differences with FDR < 0.001 based on permutation testing.
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Extended data Fig. 8. Reverse inference classification with neural networks
Neural network classifiers were trained to perform reverse inference, using brain activation 

coordinates to predict occurrences of mental function terms grouped by domains shown 

in Extended Data Fig. 4. Classification models comprised 8 fully connected (FC) layers, 

all with ReLU activation functions except the output layer which was activated by a 

sigmoid. The optimal learning rate, weight decay, number of neurons per layer, and dropout 

probability were determined for each framework through a randomized grid search. ROC 

curves are shown for the test set performance of classifiers with mental function features 

defined by b, the data-driven framework, c, RDoC, and d, the DSM. e-g, For each domain, 

the significance of the test set ROC-AUC was determined by a one-sided permutation test 

comparing the observed value to a null distribution, and the p value was FDR-corrected for 

multiple comparisons (* FDR < 0.001). Observed values in the test set are shown with solid 

lines. Null distributions (gray) were computed by shuffling true labels for term list scores 

over 1,000 iterations; the 99.9% confidence interval is shaded, and distribution means are 

shown with dashed lines. Bootstrap distributions of ROC-AUC (colored) were computed by 

resampling articles in the test set with replacement over 1,000 iterations. h, Differences in 

bootstrap distribution means were assessed for each framework pair. While there were no 

differences between frameworks at the 99.9% confidence level, the data-driven framework 
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had higher ROC-AUC than RDoC at the 99% confidence level (99% CI of the difference = 

[0.007, 0.050]), and higher ROC-AUC than the DSM at the 95% confidence level (95% CI 

of the difference = [0.0003, 0.049]). Solid lines denote bootstrap distribution means.

Extended data Fig. 9. Forward inference classification with neural networks
a, Neural network classifiers were trained to perform forward inference, using function term 

occurrences grouped by the domains in Extended Data Fig. 4 to predict brain activation 

coordinates. Forward inference classifiers were optimized over a grid search with the same 

hyperparameter values as reverse inference classifiers in Extended Data Fig. 8. ROC curves 

are shown for test set performance of classifiers with mental function features defined by 

b, the data-driven framework, c, RDoC, and d, the DSM. Plots are colored by the domain 

assignment for structures in the data-driven framework, and by the domain with the highest 

PPMI for the structure in RDoC and DSM frameworks. e-g, For each brain structure, the 

significance of the test set ROC-AUC was determined by a one-sided permutation test 

comparing the observed value to a null distribution, and the p value was FDR-corrected for 

multiple comparisons (* FDR < 0.001). Observed values in the test set are shown with solid 

lines. Null distributions (gray) were computed by shuffling true labels for term list scores 

over 1,000 iterations; the 99.9% confidence interval is shaded, and distribution means are 

shown with dashed lines. Bootstrap distributions of ROC-AUC (colored) were computed 

Beam et al. Page 30

Nat Neurosci. Author manuscript; available in PMC 2022 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by resampling articles in the test set with replacement over 1,000 iterations. h, Differences 

in bootstrap distribution means were assessed for each framework pair. The data-driven 

framework had higher ROC-AUC than both RDoC (99.9% CI of the difference = [0.014, 

0.046]) and the DSM (99.9% CI of the difference = [0.049, 0.086]). RDoC had higher 

ROC-AUC than the DSM (99.9% CI of the difference = [0.018, 0.058]). Solid lines denote 

bootstrap distribution means. i-j, Difference in ROC-AUC scores between the data-driven 

and expert-determined frameworks. Maps were thresholded to show differences with FDR < 

0.001 based on permutation testing.

Extended data Fig. 10. Additional visualizations of article partitioning by domains
Dice distance between articles is shown for binarized vectors of the mental function terms 

that occurred in the full text and the brain structures to which reported coordinate data 

were mapped. Articles were split into sets for discovery (n =12,708) and replication (n 
= 5,447), then matched to domains based on the Dice similarity of their term-structure 

vectors. Domain assignments are represented by the color coding scheme established in 

Fig. 4 for a, the data-driven framework, b, RDoC, and c, the DSM. Shaded areas represent 

the lower triangle of distances between articles within each domain partition. d-f, Dice 

distance between articles visualized with t-SNE. Distances were computed between the 

terms and structures of articles in the full corpus (n = 18,155), and dimensionality of 
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the 18,155 x 18,155 matrix was reduced by principal component analysis. The first 10 

principal components (18,155 x 10) were taken as inputs to t-SNE (perplexity = 25, 

early exaggeration = 15, learning rate = 500, and maximum iterations = 1,000). Articles 

are visualized separately for the discovery and replication sets, with colors and shapes 

corresponding to domain assignments in each framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Approach to data-driven ontology.
a, A framework for domains of brain function was generated in the training set. First, 118 

brain structures were clustered by k-means according to co-occurrences with 1,683 terms for 

mental functions. The co-occurrence matrix was weighted by pointwise mutual information 

(PMI). Second, the top 25 mental function terms were assigned to each circuit based on 

the point-biserial correlation (rpb) of binarized occurrences with the centroid of structure 

occurrences. Third, the number of terms was selected to maximize average ROC-AUC 

of logistic regression classifiers predicting structure occurrences from term occurrences 

(forward inference) and term occurrences from structure occurrences (reverse inference) 

over lists of 5 to 25 terms. Fourth, each domain was named by the mental function term with 

highest degree centrality of co-occurrences with other terms in the domain. Fifth, domains 

were validated by ontological principles such as reproducibility, the average ROC-AUC for 

forward and reverse inference classifiers. Forward classifiers predicted whether coordinates 

occurred within circuits from term occurrences summed across lists, and reverse classifiers 

predicted mean-thresholded occurrences of terms in the lists from coordinates within 

circuits. b, Validation set ROC-AUC across k for forward inference, reverse inference, 

and their average. c, To assess modularity and generalizability, articles were assigned to 

domains based on Dice similarity of mental function terms and brain coordinate data. d, 
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Modularity was computed as the mean ratio of Dice distances for articles between domain 

partitions versus within a domain partition. e, Generalizability was computed as the Dice 

similarity of each domain to its assigned articles. Markers are outlined in black for k = 

6, which was selected for follow-up analyses. Performance at every k exceeded chance 

by reproducibility, modularity, and generalizability. Shaded areas around markers represent 

99.9% confidence intervals computed by resampling validation set articles with replacement 

over 1,000 iterations. Dashed lines represent the mean of null distributions generated by 

shuffling true labels for validation set articles over 1,000 iterations, and the surrounding 

shaded areas are 99.9% confidence intervals.
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Fig. 2 ∣. Top-performing solutions of the data-driven framework.
a, Solutions at the k = 6, 8, and 22 levels had the three highest values of a multi-objective 

function summarizing the reproducibility, modularity, and generalizability metrics. At a 

given k, each metric was computed by macro-averaging results across domains. In the 

case of reproducibility, ROC-AUC results were then averaged across forward and reverse 

inference classifiers. Finally, the geometric mean was taken across metrics to avoid over- 

and underweighting due to differences in scale. Shaded areas around markers represent 

99.9% confidence intervals computed by resampling validation set articles with replacement 

over 1,000 iterations. Dashed lines represent the mean of null distributions generated by 

shuffling true labels for validation set articles over 1,000 iterations, and the surrounding 

shaded areas are 99.9% confidence intervals. b, For the selected solutions, values of each 

metric after macro-averaging across domains are shown. † Greater than RDoC, ‡ greater than 

the DSM, based on two-sided differences in bootstrap means tested for each framework pair 

(FDR < 0.001). c, Domains were linked across levels by the Dice similarity of their mental 

function terms and brain structures. Links were thresholded by Dice similarity > 0 and FDR 

< 0.001. The hierarchy can be viewed online at http://neuro-knowledge.org with the ability 

to magnify brain circuit maps and word clouds.
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Fig. 3 ∣. Approach to mapping expert-determined frameworks for brain function (RDoC) and 
mental illness (DSM).
a, Seed terms from RDoC and the DSM were translated into the language of the human 

neuroimaging literature through a computational linguistics approach. Term embeddings 

of length 100 were trained using GloVe.25 For RDoC, embeddings were trained on a 

general human neuroimaging corpus of 29,828 articles (Extended Data Fig. 1b). For the 

DSM, embeddings were trained on a psychiatric human neuroimaging corpus of 26,070 

articles (Extended Data Fig. 1c). Candidate synonyms included mental functions in the 

case of RDoC and both mental functions and psychopathology in the case of the DSM 

(Supplementary Table 2). In the first step, synonyms were identified for each domain by 

the cosine similarity of their embeddings with the centroid of the domain’s seed term 

embeddings. Second, the number of terms for each domain was selected to maximize 

cosine similarity. Third, the mental function term lists for each domain were mapped onto 

brain circuits based on positive pointwise mutual information (PPMI) of term and structure 

co-occurrences across the 18,155 articles with activation coordinate data (Extended Data 

Fig. 1a). Structures were included in a circuit if the FDR of the observed PPMI was <0.01, 

determined by comparison to a null distribution generated by shuffling term list features 

over 10,000 iterations. b, Semantic similarity to seed terms in the RDoC framework for 

our term lists generated using GloVe (colored) compared to a baseline from the literature 

(dark gray). The baseline model includes term lists generated by McCoy et al. through 

latent semantic analysis followed by filtering.26 Bootstrap distributions for each domain 

were generated by resampling the 100-n embedding dimension with replacement over 

10,000 iterations, then assessed for a one-sided difference in means (* FDR < 0.01, ** 

FDR < 0.001). Solid lines denote observed similarity values. No comparison is shown for 

sensorimotor systems, which was added to RDoC following the McCoy et al. publication. 

Null distributions were generated for the GloVe term lists by shuffling embeddings over 

10,000 iterations. Gray dashed lines denote null distribution means.
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Fig. 4 ∣. Data-driven framework of brain functions related to expert-determined frameworks for 
brain function (RDoC) and mental illness (DSM).
Links are scaled to the Dice similarity of mental function terms and brain structures in each 

domain (FDR < 0.05 based on permutation testing over 10,000 iterations). Term size is 

scaled to frequency in the corpus of 18,155 articles with activation coordinate data. a, The 

RDoC framework was modeled in a top-down manner from terms to brain circuits (Fig. 3a). 

b, A data-driven framework for domains of brain function was engineered in a bottom-up 

manner beginning with circuits (Fig. 1a). c, The DSM framework for mental disorders was 

modeled in a top-down manner by a procedure analogous to that for RDoC (Fig. 3a).
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Fig. 5 ∣. Mental functions defined in a data-driven manner have more reproducible links with 
locations of brain activity.
a, Logistic regression classifiers were trained to predict the occurrence of terms for mental 

functions in neuroimaging article full texts from the brain activation coordinates that articles 

reported. Inputs (X) included activation coordinate data mapped to ns = 118 brain structures 

in a whole-brain neuroanatomical atlas, where x(i) is a vector of length ns for each article 

i. Labels (y(i)) were term occurrences thresholded by mean frequency across the corpus, 

then the mean frequency of terms in each domain, of length nd depending on the number of 

domains in the framework. Weights for the inputs (β) were fit by training classifiers using 

a sigmoid function (σ) over 1,000 iterations with hyperparameters selected through a grid 

search over the following values: penalty of L1 or L2; regularization strength (λ) of 0.001, 

0.01, 0.1, 1, 10, 100 or 1,000; intercept (b) included or not. Training was performed in 

70% of articles (n = 12,708), hyperparameters were tuned in 20% of articles (n = 3,631), 

and classifiers were evaluated in a test set containing 10% of articles (n = 1,816). ROC 

curves are shown for the test set performance of classifiers with mental function features 

defined by b, the data-driven framework, c, RDoC, and d, the DSM. For each domain in 

e, the data-driven framework, f, RDoC, and g, the DSM, the significance of the test set 

ROC-AUC was determined by a one-sided permutation test comparing the observed value 

to a null distribution, and the p value was FDR-corrected for multiple comparisons (* FDR 

< 0.001). Observed values in the test set are shown with solid lines. Null distributions 

(gray) were computed by shuffling true labels for term list scores over 1,000 iterations; the 
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99.9% confidence interval is shaded, and distribution means are shown with dashed lines. 

Bootstrap distributions of ROC-AUC (colored) were computed by resampling articles in the 

test set with replacement over 1,000 iterations. h, The difference in mean ROC-AUC was 

assessed for each framework pair by a two-sided bootstrap test. The data-driven framework 

had higher ROC-AUC than both RDoC (99.9% CI of the difference = [0.019, 0.073]) and 

the DSM (99.9% CI of the difference = [0.032, 0.111]). Solid lines denote means of the 

bootstrap distributions obtained by macro-averaging across domain classifiers.
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Fig. 6 ∣. The data-driven framework partitions the neuroimaging literature into modular 
subfields, for which domains are generalizable representations of brain circuits and mental 
functions.
Articles were matched to domains based on the Dice similarity of mental function terms and 

brain structures. Multidimensional scaling was applied to Dice distances between articles 

in the full corpus and visualized separately for the discovery set (for a, the data-driven, b, 
RDoC, and c, the DSM) and the replication set (for d, the data-driven, e, RDoC, and f, the 

DSM). Domain assignment is indicated by marker color and shape. Modularity of the article 

partitioning was assessed by comparing the mean Dice distance of function and structure 

occurrences of articles between versus within domains of g, the data-driven framework, 

h, RDoC, and i, the DSM. Observed values are colored by domain; null distributions 

in gray were computed by shuffling distance values across article partitions. j, Bootstrap 

distributions of modularity macro-averaged across the framework domains were assessed for 

differences in means between frameworks (* FDR < 0.001). Relative to RDoC, modularity 

was higher for both the data-driven framework (99.9% CI of the difference = [0.035, 

0.042] discovery, [0.031, 0.044] replication) and the DSM (99.9% CI of the difference 

= [0.027, 0.039] discovery, [0.029, 0.045] replication). Generalizability was assessed by 

computing the Dice similarity of each domain’s “prototype” vector of function terms and 

brain structures with the terms and structures occurring in each article of the domain’s 

partition within k, the data-driven framework, l, RDoC, and m, the DSM. Observed values 

are colored by domain; null distributions in gray were computed by shuffling terms and 

structures in each prototype. n, Bootstrap distributions of generalizability macro-averaged 

across domains were assessed for two-sided differences in means between frameworks 
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(* FDR < 0.001). Relative to the DSM, generalizability was higher for both the data-

driven framework (99.9% CI of the difference = [0.055, 0.176] discovery, [0.051, 0.179] 

replication) and RDoC (99.9% CI of the difference = [0.043, 0.157] discovery, [0.012, 

0.157] replication). All bootstrap and null distributions shown were generated over 1,000 

iterations.
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