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Abstract
The borderline between virulence and efficacy in live attenuated vaccine
strains is often blurred and this is also the case for the Bacillus
Calmette–Guérin (BCG), the only currently licensed anti-tuberculosis
vaccine used on a large, global scale, which was obtained almost 100
years ago. While BCG is more than 99% identical at the genome level to 

, the causative pathogen of humanMycobacterium tuberculosis
tuberculosis, some important differences in virulence factors cause
naturally irreversible attenuation and safety of this vaccine in the
immunocompetent host. Some of these virulence factors are involved in
persistence capacities of the vaccine strains and also represent strong
immunogens, responsible for inducing different host signaling pathways,
which have to be taken into consideration for the development of revised
and new vaccine strains. Here we discuss a number of selected
mycobacterial features in relation to their biological functions and potential
impact on virulence and vaccine efficacy.
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Introduction
Tuberculosis (TB) remains among the top 10 causes of death  
worldwide1. In 2017, an estimated 10 million people developed 
new TB disease, of which 90% were aged 15 or older1. This  
lacking control of TB in a large number of people empha-
sizes the complex disease TB represents, involving a highly  
persistent bacterium, Mycobacterium tuberculosis, and the  
variable abilities of individual human immune systems to cope 
with this infection. As TB disease may also occur in certain 
individuals who have been vaccinated during early childhood 
with the widely used attenuated Mycobacterium bovis Bacillus  
Calmette–Guérin (BCG) vaccine, this situation also points to 
the shortcomings of BCG, the only licensed vaccine against TB  
today. BCG provides protection against severe, disseminated  
TB in children, but protection often fades in adolescence and 
fails to protect against pulmonary TB. The reported efficacy of  
BCG against adult pulmonary TB varies hugely (0–80%) and  
seems to depend on many factors, including social conditions, 
co-infection with helminths, and other variables2–5. BCG can  
generally be regarded as safe, although individuals with 
immune deficiencies can develop disseminated BCG disease2. 
Thus, despite the millions of childhood TB cases prevented by  
large-scale BCG vaccination strategies, there is a need for a 
more effective vaccine that can interrupt the vicious infection  
cycle of M. tuberculosis, which is driven by adolescent and 
adult patients with pulmonary TB disease. In this review, we 
will thus focus on selected mycobacterial virulence factors that  
play a role as potent immunogens as well as potential targets for  
the attenuation of novel vaccine strains.

Virulence factors in Mycobacterium tuberculosis
An accurate definition of mycobacterial virulence is quite  
difficult to find, as many factors may influence the survival of  
M. tuberculosis in specific environmental conditions. Apart 
from essential genes that are needed by M. tuberculosis for its  
survival in commonly used mycobacterial growth media6,7, 
its survival in the hostile environment inside host phagocytes  
requires additional skills from the bacterium. An overview of 
such in vivo-required genes was obtained by using libraries 
of transposon mutants of M. tuberculosis strains in murine  
infection models, unraveling between 200 and 500 genes  
essential for the growth of M. tuberculosis in vivo8,9. Among 
these genes, several were also identified as important virulence  
determinants of M. tuberculosis by comparative analyses of  
attenuated and virulent tubercle bacilli, including genes  
encoding proteins involved in secretion systems, persistence 
mechanisms, or lipid metabolism10–17, as further discussed  
below.

ESX/ESAT-6/type VII secretion systems
ESX secretion systems are specialized bacterial secretion  
systems needed for the transport of substrates through the  
complex, thick mycobacterial cell envelope, which is composed 
of an inner phospholipid bilayer and an outer membrane (also  
called the mycomembrane) largely composed of mycolic 
acids, at the inner side covalently attached to arabinogalactan,  
which is in turn attached to a layer of peptidoglycan embedded 
in the periplasm, separating the inner and outer membrane18,19.  
Variable numbers of these secretion systems are present in  

mycobacteria and other actinobacteria, such as Streptomyces or 
Corynebacteria, and more distantly related ESX-like systems 
are also found in Gram-positive bacteria, such as Staphylococcus 
aureus18,20. In mycobacteria, five distinct ESX secretion systems  
are known to date, ESX-1 to ESX-5, of which at least three,  
ESX-1, ESX-3, and ESX-5, are needed for full virulence in 
M. tuberculosis. The roles of ESX-2 and ESX-4 are not yet  
understood18. ESAT-6 (6 kDa early secretory antigenic target/ 
EsxA) as the first identified effector protein has led to the  
nomenclature of the secretion systems as ESX or ESAT-6  
secretion systems, though, of the five ESX secretion systems 
known to date, only ESX-1 is known to specifically secrete  
ESAT-618. Another commonly used name for ESX systems is 
type VII secretion (T7S) systems, in analogy to the well-studied  
secretion systems in Gram-negative bacteria21.

The ESX-1 secretion system within the region of difference 
1 (RD1)
ESX-1, the first-described ESX secretion system, was discov-
ered by comparative genomics approaches between virulent  
M. bovis and/or M. tuberculosis and attenuated mycobacte-
rial strains, such as BCG and Mycobacterium microti10,22,23. 
Indeed, both BCG and M. microti are attenuated members of 
the M. tuberculosis complex (MTBC) that have been widely 
used for human vaccination24,25, and, interestingly, both vaccine  
strains lack overlapping portions of the genomic region of  
difference 1 (RD1), encoding the ESX-1 secretion system.

The ESX-1 secretion system is a protein complex localized in 
the mycobacterial plasma membrane. The complex is composed  
of the ESX conserved components EccB, EccD, and EccE 
and the ATP-dependent translocase EccC26,27. The structural  
organization of the ESX-1 secretion machinery might closely  
resemble that of the ESX-5 system of Mycobacterium xenopi,  
for which cryoelectron-microscopy-based single particle  
analysis has revealed a hexameric organization28. Intriguingly, 
a hexameric structure was also demonstrated for the ESX-3  
system of Mycobacterium smegmatis, which consists of four 
protein components: EccB3, EccC3, EccD3, and EccE3 in  
a 1:1:2:1 stoichiometry29. The main effector protein ESAT-6 is  
likely secreted by ESX-1 as a heterodimer together with 
EsxB/CFP-10 (10 kDa culture filtrate protein) in a 1:1 ratio30,  
although under certain circumstances the two protein partners  
might also be secreted at other ratios16,27. As another particularity 
of the ESX-1 machinery, the secretion of ESAT-6/CFP-10 is  
dependent on ESX-1-associated proteins EspC and EspA, which 
in turn seem dependent on the ATPase EccA located in the cytosol  
and EspD for stabilization19,31–33. The functions of EspA and  
EspC are unknown, but EspC was speculated to form tunnel- 
like filaments, allowing the secretion of effector proteins through 
the outer membrane34. Interestingly, the ESX-1-associated  
EspA, EspC, and EspD are encoded in genomic islands that 
seem to have been acquired by independent horizontal gene  
transfer events in several groups of pathogenic mycobacteria 
at different genomic locations35. EspA and EspC do show  
some sequence similarity to EspE, EspF, and EspH, which are  
proteins that are encoded together with the putative chaperone  
EspG at the 5′ end of the esx-1 locus. While the deletion of  
EspF and EspG did not impact the secretion of ESAT-6 and  

Page 3 of 14

F1000Research 2019, 8(F1000 Faculty Rev):2025 Last updated: 29 NOV 2019



CFP-10, the lack of these proteins attenuated the mutant  
M. tuberculosis strain36. In other experiments, the retained  
ESAT-6 secretion activity in EspF and EspG deletion mutants 
was confirmed by using an intraphagocytic release assay37. 
In addition, espE is one of the esx-1 genes repeatedly  
identified by large-scale transposon screens as being important 
for virulence8,9. There are several other ESX-1-associated  
proteins encoded by the esx-1 locus. Sala and co-workers  
recently reported that EspL is essential for ESX-1-mediated 
secretion and proposed a model in which EspL associates with  
EspD to act as a chaperone for EspF, the dimer EspH/EspE, 
and the dimer EspC/EspA. The latter are needed for the  
secretion of ESAT-6/CFP-1033. EspB is another substrate of 
ESX-1 and has been described to form folds similar to another 
type of ESX effector protein, namely PE/PPE proteins, contain-
ing a similar N-terminal region to PE/PPE. It has been shown 
that EspB is processed by the protease MycP1 during secretion, 
and its role in the pathogenicity of M. tuberculosis is not yet  
understood19,38.

The PE/PPE protein families and the ESX-5 secretion 
system
The effector proteins ESAT-6 and CFP-10 secreted by ESX-1 
belong to the so-called WXG100 protein family, named after 
the characteristic WxG hairpin motif39, which is present in the  
secreted, small Esx proteins of the different ESX systems40.  
Other important effectors of the ESX secretion apparatus  
which often also carry a WxG motif belong to the large PE/PPE 
protein families, which are not specific to ESX-141. PE/PPE 
are polymorphic proteins that share an N-terminal Pro–Glu 
(PE) or Pro–PE (PPE) signature and similarities in structural  
folding42,43. The majority of PE/PPE proteins is secreted by the 
ESX-5 secretion system, which thus controls the export of a  
multiplicity of immunogens and potential virulence factors14. 
The ESX-5 secretion system is the most recently evolved ESX  
system and is harbored only by slow-growing mycobacteria44,45. 
The esx-5 locus includes five genes encoding secreted PE/PPE  
proteins, named PPE25 (Rv1787), PE18 (Rv1788), PPE26 
(Rv1789), PPE27 (Rv1790), and PE19 (Rv1791), which seem 
to be the result of gene duplication events of a PE/PPE encoding  
gene pair, as shown by their high sequence similarity. In  
addition, many other PE/PPE proteins, which are not directly 
encoded within the esx-5 locus, are also exported via the  
ESX-5 apparatus43,46. The ESX-5-encoded PE/PPE proteins 
have been found to be highly immunogenic43,46 and to represent  
potential virulence factors, as shown by the attenuation of 
an M. tuberculosis deletion mutant lacking the five esx-5- 
associated pe/ppe genes14. In the M. tuberculosis H37Rv  
reference strain, the PPE25, PPE26, and PPE27 proteins belong 
to the 24-membered PPE-GxxSVPxxW subgroup of PPE  
proteins47, which share the particular GxxSVPxxW sequence 
motif. Another prominent member of this subgroup is the PPE18 
protein (also known as Rv1196 or Mtb39A), which together 
with PepA (also known as Rv0125 or Mtb32A) and the adjuvant  
AS01E constitutes the novel M72/AS01E vaccine candidate,  
currently in clinical evaluation48–51. Moreover, another member 
of the PPE-GxxSVPxxW subgroup is PPE38 (Rv2352c), which  
was shown to be needed for the export of certain subclasses  

of PE and PPE proteins in addition to the ESX-5 system17.  
Indeed, it was found that export of PE_PGRS proteins that are 
encoded by genes with polymorphic GC-rich sequences, as  
well as PPE proteins with major polymorphic tandem repeats 
(PPE-MPTR subgroup), requires the presence of ESX-5 and a  
functional PPE38 protein. Certain lineages of M. tuberculosis 
strains, such as most of the members of the M. tuberculosis  
lineage 2 (Beijing) strains, lack parts of the genetic region  
encoding PPE38 and are thus unable to secrete a large number 
of PE_PGRS and PPE-MPTR proteins17. As phenotypic  
consequences of such secretion defects, a gain of virulence in 
certain M. tuberculosis strains has been observed in murine  
infection models17. However, the mechanism by which the  
secretion of PE_PGRS and PPE_MPTR proteins may inter-
fere with virulence remains unknown. It has also been observed  
that M. bovis and the M. bovis-derived BCG vaccine strains 
lack PPE38 due to the deletion of the RD5 region and therefore 
do not export the plethora of PE_PGRS and PPE_MPTR  
proteins52. While genetic introduction of a ppe38 gene copy into 
the genome of BCG resulted in recombinant BCG38 showing 
a re-established secretion phenotype, no significant differences  
in vaccine efficacy between wild-type BCG and BCG38 have 
been found in murine infection systems52. However, the finding 
that the BCG strains currently used in human vaccination do 
not export certain PE and PPE proteins remains an important  
discovery for vaccine developers, particularly as certain booster 
vaccines use PPE proteins as their targets, for which it is uncer-
tain whether they were properly exported by BCG and exposed 
to the immune system during primary vaccination48,53–55. Thus,  
the elucidation of the function of PE and PPE proteins and their 
contribution to virulence and immunogenicity remains one  
main research priority in TB research.

Lipid surface factors
The outer membrane of mycobacteria is largely composed of 
mycolic acids and, additionally, it contains several types of  
non-covalently associated lipids, which, owing to their location, 
are important players in host–pathogen interaction56,57. Complex 
lipids synthesized by M. tuberculosis include lipoarabinomannan  
(LAM), phosphatidylinositol mannosides (PIMs), trehalose mon-
omycolates and dimycolates (TMM, TDM/cord factor), diacyl  
and polyacyl trehaloses (DAT, PAT), phthiocerol dimycocerosates 
(PDM, DIM, or PDIM), and sulfolipids (SLs)56,57.

PDIMs, for example, have been identified as potent virulence  
factors of M. tuberculosis, as they are required for the induction 
of phagosomal rupture in the host phagocyte13 in conjunction  
with the ESX-1 system15 (Figure 1). Moreover, a recent 
study suggested that M. tuberculosis abundantly releases  
1-tuberculosinyladenosine (1-TdAb), a secreted lipid that acts as 
an antacid and lysosomotropic agent58. Additionally, compara-
tive genomics between pathogenic M. tuberculosis and tubercle 
bacilli with smooth colony morphology, named M. canettii, have  
uncovered a recombination event in the pks5 genomic region 
that has apparently led to the loss of lipooligosaccharides  
(LOS) in the outer membrane of M. tuberculosis during the  
evolution of the MTBC59. This loss of LOS production, which is 
associated with the appearance of the rough colony morphology 
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Figure 1. A) Cartoon of the CCF4-based fluorescence resonance energy transfer (FRET) assay in phagocytes infected with ESX-1 and 
phthiocerol dimycocerosate (PDIM) proficient Mycobacterium tuberculosis (Mtb) (after60). CCF4-AM (Life Technologies) represents a lipophilic, 
esterified form of the CCF4 substrate, which allows it to readily enter host cells. Endogenous cytoplasmic esterases rapidly convert CCF4-AM 
into a negatively charged form, which is trapped in the cytosol. Following excitation at 409 nm, a green fluorescence FRET signal (520 nm) is 
emitted that is changed into a blue fluorescent signal when phagosomal rupture is induced by Mtb via its ESX-1 system in cooperation with 
the virulence lipid PDIM. By this cytosolic contact, mycobacterial β-lactamase (shown as encircled yellow dots linked to the bacterium) gets 
in contact with the CCF4 and cleaves it, thereby leading to emission of blue fluorescence at ~450 nm (after60). B) Example of results from 15 
showing the ratios of fluorescence intensities MFI 447 nm/MFI 520 nm of signals obtained by the above-described FRET assay, implicating 
Mtb ESX-1 and PDIM deletion mutants and complemented strains 6 days after infection of THP-1 cells. Image taken from 15.

in the MTBC members, is thus thought to have contributed to 
increased fitness and virulence in MTBC members compared to 
early branching M. canettii strains59,61.

The antigen 85 complex
The antigen 85 (Ag85) protein complex consists of a set of  
secreted fibronectin-binding proteins (Fbps), which are essential 
for maintaining the integrity of the mycobacterial cell envelope. 
Namely, Ag85 complex is involved in catalyzing the attachment 
of mycolic acids to arabinogalactan and the biosynthesis of  
cord factor. While there are four fbp genes (fbpA–D) present 
in the genome of M. tuberculosis H37Rv62, only three of them,  
Ag85A–C (FbpA, Rv3804c; FbpB, Rv1886c; and FbpC, 
Rv0129c), have shown mycoloyltransferase activity in comple-
mentation experiments63. The same three Ag85A–C proteins 
also display an Arg–Arg (RR) secretion signal for the twin 
arginine translocation (TAT) pathway, known to transport folded  
proteins through the bacterial inner membrane64. Moreover, the 
Ag85 complex is involved in the invasion of host cells, binding to  
fibronectin (Fn), tropoelastin, and elastin, essential parts of the 
extracellular matrix, and, in persistence, preventing maturation of 
the phagosome65–67.

The strong immunogenicity of the Ag85 proteins has made 
them privileged targets for vaccine development. Ag85A, for  
example, was often used as an expression construct for booster 
vaccines based on attenuated viral vectors such as modified 
vaccinia virus Ankara (MVA) or adenovirus68,69, although an  
Ag85A-based booster strategy did not enhance protection in a  
clinical trial over the protection conferred by BCG70. Ag85B 
was also used as a potential vaccine enhancer. Indeed, a recom-
binant BCG strain that over-expressed Ag85B induced increased  
protection in preclinical animal models71 and was also tested 
in initial clinical trials72. Most interestingly, an increased  
secretion of Ag85B was also observed in the MTBVAC vaccine 
candidate, which is currently in clinical evaluation73,74. This  
attenuated M. tuberculosis strain, in which the phoP and the 
fadD26 genes were deleted in order to attenuate the strain75,  
shows enhanced secretion of Ag85B, which is due to an  
unexpected PhoP-regulatory loop involving a small ncRNA that  
modulates the secretion of TAT-secreted proteins, such as Ag85 
proteins76. In agreement, intraphagocytic release of Ag85B 
was found to be strongly enhanced in an M. tuberculosis 
PhoP deletion mutant in a dedicated study37 (Figure 2). This  
example underlines once more that active export and secretion  

Page 5 of 14

F1000Research 2019, 8(F1000 Faculty Rev):2025 Last updated: 29 NOV 2019



Figure 2. A) Cartoon of an intraphagocytic antigen release assay, which uses major histocompatibility complex (MHC)-II-mediated signaling 
to antigen-specific T-cell hybridoma for the evaluation of secretion of selected proteins as shown for the examples depicted in panels B and 
C (after37). B) Correlation of EsxB (also known as CFP-10) versus EsxA (also known as ESAT-6) intraphagocyte secretion profiles across a 
panel of various Mycobacterium tuberculosis (Mtb) wild-type and mutant strains, reused with permission from 37. C) Example of ESX-1 or twin 
arginine translocation (TAT) signals obtained by intraphagocytic antigen release assays for Mtb H37Rv and Mtb H37Ra, wild-type, and mutant 
strains (image taken from 37), which differ in the gene encoding the PhoP two-component virulence regulator77 and hence in the secretion 
profiles of substrates that are secreted by the TAT pathway. The TAT system is regulated by PhoP via a small RNA (Mcr7), as described in 76. 
Ag, antigen; CFP-10, 10 kDa Culture Filtrate Protein; ELISA, enzyme-linked immunosorbent assay; ESAT-6, 6 kDa early secretory antigenic 

of mycobacterial antigens outside the bacterial cell are cru-
cial for the appropriate recognition of these antigens by the host 
immune system, a phenomenon that was also observed for ESX  
antigens37,77,78. This observation also explains in part why  
heat-killed mycobacterial vaccines have much less immunisation-  
and protection-capacity than do live attenuated strains, which 
secrete a wide panel of protective antigens79,80.

Virulence factors expressed during latency/latency antigens
M. tuberculosis is able to switch to a dormant state/latency 
during stress conditions. In order to design a vaccine also  
providing protection against latent M. tuberculosis infection  
(LTBI), antigens expressed during latency need to be considered 
or antigen presentation during latency needs to be stimulated4,81. 
Zhang et al. recently reported that EspI, a protein encoded by  
esx-1, is indeed not essential for ESX-1 secretion during 
active infection but is responsible for down-regulating ESX-1  
secretion during low-energy states in the bacilli. This gives  
important implications for the role of EspI in latency. An EspI 
knock-out mutant in long-term infection might be rendered 
incapable of tuning down the secretion of highly immunogenic  
ESAT-6 under stress conditions, which might result in a stronger 
immune response against dormant M. tuberculosis82.

Host–pathogen interaction, virulence, and 
immunogenicity
Most successful vaccines act against infectious agents which can  
be defeated by humoral immune responses, while it has been  

proven difficult to design successful vaccines that rely on  
cellular immune responses, such as in TB4. It is undisputed that 
in TB the CD4+ Th1 response is the major factor conferring  
protection1,83–85. Only fairly recently has evidence emerged 
that other immune cell subsets such as CD8+ T cells, NK cells, 
Th17 cells, or B cells may provide an important contribution 
to protection4,86–90. Other factors are well known to play a destruc-
tive role, such as Th2 cells and T-regulatory cells/secreted 
IL-10. Moreover, active TB disease appears to be associated 
with strong recruitment of neutrophils and type I interferon 
(IFN) signaling, though the role of type I IFNs in TB remains  
disputed4,91–94. The innate immune response has a crucial role in 
protection, especially in early infection control95,96.

ESAT-6 causes phagosomal rupture in the infected host  
cells, permitting cytosolic contact of the mycobacteria or their  
secreted products18,60,97. The results of this process are varied  
and may also have consequences for infection control.

Mycobacterial dsDNA that is likely released because of phagosomal  
rupture into the cytosol is sensed by absent in melanoma 2  
(AIM2), which induces the NLRP3 inflammasome to activate  
caspase-1, which in turn induces the cleavage of pro-IL-1β 
and pro-IL-18 to active, pro-inflammatory IL-1β and IL-1818,98.  
Moreover, the link between cytosolic access of mycobacteria 
and type I IFN signaling has clearly been established. dsDNA  
in the cytosol activates cyclic GMP-AMP synthase (cGAS), lead-
ing to the signaling of the second messenger cGAMP, which  
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activates the STING pathway (stimulator of IFN genes). The 
latter is located at the endoplasmic reticulum and triggers  
Tank-binding kinase 1 (TBK-1), which activates IFN regulatory 
factor 3 (IRF3), leading to the production of IFN-β (Figure 3). 
Importantly, cGAMP also activates neighboring cells for the  
production of type I IFN, augmenting the production of IL-10 
and IL-1Ra in these bystander host cells, leading to increased 
host cell necrosis and tissue damage18,94,99–101. On the other hand,  
Banks et al. recently reported a protective bactericidal effect  
of IFN-β, activating nitric oxide (NO) production, which has  
been shown to act in a bactericidal and anti-inflammatory  
manner, leading to killing of the bacilli and preventing tissue  
damage94. Banks et al. suggest a scenario in which M. tuberculo-
sis inhibits possibly beneficial autocrine IFN-β signaling while 
allowing possibly detrimental paracrine IFN-β signaling, while  
non-pathogenic mycobacteria such as M. smegmatis cannot 
inhibit autocrine IFN-β signaling, which is why the beneficial  
properties of autocrine type I IFN signaling predominate94,102. 
It is probable that the role for type I IFN will not be black and  
white in TB but ambivalent, for example, depending on the  
timing of signaling during infection (early, late) or the mode  
of signaling (autocrine, paracrine).

It has been shown that virulent M. tuberculosis H37Rv  
induces necrosis of infected host cells, leading to damage to 
the mitochondrial inner and outer membrane, and it has been 
proposed that this could be mediated by ESAT-6, which also  
leads to the induction of type I IFN by sensing of mitochondrial 
DNA, while non-virulent H37Ra causes damage only to the 
outer membrane of host mitochondria, not leading to necrosis103.  
Necrosis is an uncontrolled process of cell death and a destruc-
tive process in mycobacterial infection. Meanwhile, apoptosis  
represents a highly controlled process of cell death. Parts of 
the apoptotic cell as well as mycobacteria disassemble, safely  
packaged in apoptotic bodies, and are eventually taken up via  
efferocytosis by phagocytes. This process prevents tissue damage 

and spread of the bacilli and may enhance the activation 
of naïve professional antigen-presenting cells (APCs), especially 
dendritic cells (DCs), taking up mycobacterial components.  
However, this may also lead to infection. The “fate” of the  
phagocyte is largely dependent on the cocktail of cytokines  
present, Th1 cytokines being correlates of protection. A Th1-
dominated cytokine cocktail produces classically activated  
macrophages (CAM, M1) and the production of NO, promot-
ing killing of the bacilli and augmenting the Th1 response, 
while a Th2-dominated cocktail produces alternatively activated  
macrophages (AAM, M2) that express arginase-1, are impaired 
in bacterial killing, and augment Th2 responses104. Moreover, 
Th1 cytokines stimulate autophagy while Th2 cytokines 
inhibit autophagy103,105–107. Autophagy has been described as an  
essential process in the control and clearance of mycobacte-
rial infection, as mice lacking the essential autophagy factor  
Atg5 are highly susceptible to infection108,109. However, 
this process may also be entirely due to excess neutrophilic  
recruitment and resulting tissue damage in ∆Atg5 mice, not 
to a lack in autophagy, as another study with mice deficient 
in several players of the autophagy pathway in macrophages, 
other than Atg5, did not show any higher susceptibility to  
M. tuberculosis18,110. In the latter study, autophagy in macro-
phages appeared to be insignificant for the outcome of infection 
with M. tuberculosis. However, this finding might have been  
influenced by the fact that macrophages are not the most  
important effectors of autophagy compared to DCs, as DCs 
are needed for the priming of naïve Th1 cells, which eventually 
produce IFN-γ to activate phagocytes for the clearance of the  
bacilli110. Evidence has pointed towards a scenario in which  
ESAT-6 inhibits autophagy at the step of phagosome–lysosome 
fusion, resulting in reduced secretion of IL-12 in DCs needed 
for the induction of Th1, which could be restored by rapamy-
cin therapy111,112. However, cytosolic access of mycobacteria 
may also stimulate autophagy via marking of mycobacterial  
compounds in the cytosol with ubiquitin for selective autophagy 

Figure 3. Cartoon showing the impact of the presence of a functional ESX-1 machinery and the outer membrane lipid phthiocerol 
dimycocerosate (PDIM) on phagosomal rupture for wild-type and recombinant Bacille Calmette–Guérin (BCG) strains, taking into account the 
results of several recent studies15,86,113. The enhanced activation of cytosolic DNA-mediated innate immune signaling of selected recombinant 
BCG strains is shown. Cytosolic contact via the cooperation between the ESX-1 secretion system and PDIM is achieved only when both 
components ESX-1 and PDIM are combined and results in the enhancement of induced CD4+ and CD8+ T responses, which is correlated 
with improved protection against a challenge in various preclinical mouse models of infection86,113,114. AIM2, absent in melanoma 2; cGAS, 
cyclic GMP-AMP synthase; IFN, interferon; IL, interleukin; IRF, interferon regulatory factor; STING, stimulator of interferon genes; TBK-1, 
TANK-binding kinase 1.
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or via the AIM2/inflammasome pathway, as seen with the vaccine  
candidate VPM-1002115. Moreover, cytosolic contact of  
mycobacteria via the AIM2/inflammasome/IL-18 pathway has 
been reported as an essential mechanism for the production of  
IFN-γ by M. tuberculosis-independent memory CD8+ T cells 
and NK cells, thus emerging as an important, immediate, and  
unexpected source of Th1 cytokines86.

A recombinant BCG expressing the ESX-1 from M. tuberculosis 
provided improved protection over BCG but, as a downside, 
was also more virulent in murine models and therefore not an  
easily usable vaccine candidate10,114. Following this observa-
tion, the idea to recombine BCG with the ESX-1 of less-virulent  
mycobacteria such as M. marinum was proposed, which  
resulted in the construction of a recombinant BCG expressing  
ESX-1Mmar, which confers improved protection compared to 
BCG in different murine models. This candidate vaccine induced 
higher levels of CD4+/CD8+ T-cell responses, likely through 
the establishment of cytosolic contact via the heterogeneous  
ESX-1Mmar system, which induces innate and adaptive signaling 
events that are not induced by standard BCG strains113 (Figure 3), 
while remaining at a similar safety level as parental BCG.

The picture of how exactly ESAT-6 influences intracellular 
signaling remains an unsolved puzzle. In the context of  
M. tuberculosis infection, ESAT-6 represents a harmful virulence 
factor, but, in the context of vaccination with recombinant  
BCG, ESAT-6 acts as a potent immunogen and initiator of  
important, additional signaling pathways114,116.

For the ESX-5-associated PE/PPE proteins, strong immuno-
genicity has been demonstrated in murine models, inducing 
CD4+ and CD8+ T-cell responses. Importantly, this could also be  
induced via cross-reactivity by non-ESX-5-associated PE/
PPE proteins in a knock-out mutant not expressing the ESX-5- 
associated PE/PPE, thanks to the redundancy of PE/PPE  
proteins in the mycobacterial genome and the conservation of 
the essential ESX-5 secretion system needed for the secretion 
of a multiplicity of PE/PPE proteins43,46. The exact function of  
PE/PPE proteins remains largely unknown, but they have been 
proposed to be involved in mycobacterial capsule/cell-wall  
integrity, nutrient uptake, antigenic variation, immunodomi-
nance, mycobacterial growth in macrophages, and inhibition 
of phagosome maturation through the induction of phagosomal  
rupture14,43,117,118. Thus, certain PE/PPE proteins might have 
an impact on intracellular signaling that is similar to that of  
ESAT-6/CFP-10 discussed above, while other features such 
as nutrient uptake may not be such an important factor for  
immunogenicity but an interesting target to be considered for the 
attenuation of possible vaccine candidates.

Lipid surface factors such as pathogen-associated molecular  
patterns play a crucial role during the early phase of infection,  
aiding the establishment and persistence of infection. They 
interact with various types of pathogen recognition receptors  
(PRRs) on phagocytes, which can lead to the priming of  
phagocytes, the production of chemokines/cytokines for the  
recruitment of other players of the immune system, and the  
production of antimicrobial products or can reversely hamper 

activation of the phagocyte and mediate the silent entry of 
the bacilli119,120. One of the most thoroughly studied lipid  
surface factors is cord factor/TDM, which was first described in 
the 1950s121. TDM stimulates PRRs, inducing the production 
of cytokines and NO, influencing granuloma formation, and  
playing an important role as an adjuvant; however, it may also 
be involved in the delay of phagosome maturation57,122,123. Cord  
factor is abundantly present in all mycobacteria, although  
subtle differences in mycolate structure seem to play a role 
in the virulence and pathogenicity of varying mycobacterial  
species57. Other lipid surface factors such as DAT and PAT are  
associated only with mycobacteria belonging to the MTBC and 
SL is present only in M. tuberculosis strains124. Synthesis of  
DAT, PAT, and SL needs specific polyketide synthase  
systems (PKSs). DAT and PAT are associated with the delay of  
phagosome maturation, and SL has been described as a TLR-2  
antagonist, which makes PKSs suitable targets for possible  
attenuation and drugs57,125,126. Other surface lipids have been lost 
in the MTBC, such as the above-mentioned LOS, because of a  
recombination event in the pks5 locus59,127. Interestingly, the lineage 
4 strains of the Euro-American lineage of M. tuberculosis strains 
harbor a frameshift mutation in the pks15/1 gene, which is not 
present in lineage 2 Beijing strains and in turn leads to the synthesis 
of phenolic glycolipids (PGLs) in these latter strains57,128,129. This 
phenomenon has been postulated to be linked with increased viru-
lence of Beijing strains130, although other lineage-specific factors 
also seem to interfere131. Lipid surface factors thus play a dual role  
in mycobacteria as immune response boosters, as virulence  
factors, or even as attenuation factors and could simultane-
ously be employed as vaccine adjuvants, as drug targets, or for  
attenuation119. Moreover, lipid surface factors can directly  
activate the adaptive immune responses via recognition by 
CD1; the exact role of this alternative activation of T-cells will  
need to be further elucidated132,133.

Perspectives on vaccine research
There is some skepticism over whether it will be possible to  
develop a truly effective vaccine against TB, but there is also 
some evidence that gives hope for a positive outcome. First of 
all, it is the existence of BCG, which does provide excellent  
protection against miliary and meningeal TB in children.  
Second, it is the fact that previous M. tuberculosis infection 
or controlled LTBI does seem to provide some protection 
against the development of active TB disease after reinfection, 
as 90–95% of people infected with M. tuberculosis exhibit a  
protective immune response and as a result do not develop  
active TB in their lifetime1. In the 1930s, a study from Norway 
of nurses working in a TB hospital, a high-risk population,  
showed that nurses with a positive TST prior to their employ-
ment at the hospital had a 96% risk reduction of developing  
active TB compared to nurses who had a negative TST134. A  
review of 18 prospective clinical trials from 2012 confirmed 
this with a 79% reduced risk of progression to active TB after  
reinfection in individuals with LTBI compared to previously 
non-infected people135. However, LTBI in itself poses a risk to 
the development of active TB when control of M. tuberculosis 
is lost, for example because of age or immunosuppression.  
Moreover, it has been described that the rate of reinfection 
TB, defined as a recurrent TB episode with a different strain, in  
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individuals who had previously already developed active TB 
disease and had successfully been treated, is higher than the  
rate of new TB cases in the population, suggesting that people 
who had TB once are at a strongly increased risk of developing  
TB when reinfected136. Indeed, this underlines the variability 
and importance of individual human immune systems to cope  
with the infection. One interesting attempt to improve vaccine 
research is thus to identify correlates of protection by study-
ing the protective immune response in people with LTBI51.  
Simultaneously, new vaccine candidates are often designed 
following two simple principles to either make BCG more  
immunogenic by introducing strong immunogens such as 
ESAT-6 or render M. tuberculosis attenuated by the deletion of  
important virulence factors4. Given the major advances that  
have been made recently in the genomic and cellular charac-
terization of virulence factors and virulence strategies of the  
members of the MTBC and closely related tubercle bacilli, 
such as M. canettii, the challenge is now to transpose this 
knowledge into practice concerning vaccine research. There 
are some promising leads, which include a number of recom-
binant BCG strains that show improved protection in preclinical  
models86,113,137,138. In addition, some recombinant BCG strains  
have been or are presently in clinical trials72,139, and very recent 
results have also suggested that revaccination with BCG has 
a positive impact against infection with M. tuberculosis140.  
Alternatively, there is hope that rationally attenuated  
M. tuberculosis strains may induce better protection than  
standard BCG vaccination, as suggested by different preclinical  
studies46,141. The fact that the attenuated M. tuberculosis strain  

MTBVAC is in clinical evaluation is an encouraging sign that 
attenuated M. tuberculosis strains may be part of the future 
vaccine strategies against M. tuberculosis infection and TB  
disease.

From a more upstream research prospective, the identification 
of novel virulence factors of pathogenic mycobacteria will  
certainly continue and might provide new perspectives for  
vaccine research. Several mycobacterial species that have been 
considered as most closely related to M. tuberculosis, such as  
M. marinum or M. kansasii, have been used to identify novel  
mycobacterial virulence factors142–145. However, according 
to the most recent genome analyses, several new, recently 
described mycobacterial species are much more closely related to  
M. tuberculosis than M. marinum and M. kansasii146,147. Indeed, 
several virulence factors, such as the fumarate reductase locus, 
the SL locus, or numerous toxin–antitoxin systems that have  
been considered as being present only in M. tuberculosis  
and/or M. canettii, can also be found in this group of closely 
related mycobacteria, which constitute a common clade with 
MTB that was named MTB-associated phylotype (MTBAP)147.  
Future research will show if some of these virulence factors  
might have importance in vaccine research.
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