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In this paper, we propose the first machine teaching algorithm for multiple inverse

reinforcement learners. As our initial contribution, we formalize the problem of optimally

teaching a sequential task to a heterogeneous class of learners. We then contribute a

theoretical analysis of such problem, identifying conditions under which it is possible to

conduct such teaching using the same demonstration for all learners. Our analysis shows

that, contrary to other teaching problems, teaching a sequential task to a heterogeneous

class of learners with a single demonstration may not be possible, as the differences

between individual agents increase. We then contribute two algorithms that address the

main difficulties identified by our theoretical analysis. The first algorithm, which we dub

SPLITTEACH, starts by teaching the class as a whole until all students have learned all

that they can learn as a group; it then teaches each student individually, ensuring that

all students are able to perfectly acquire the target task. The second approach, which

we dub JOINTTEACH, selects a single demonstration to be provided to the whole class

so that all students learn the target task as well as a single demonstration allows. While

SPLITTEACH ensures optimal teaching at the cost of a bigger teaching effort, JOINTTEACH

ensures minimal effort, although the learners are not guaranteed to perfectly recover

the target task. We conclude by illustrating our methods in several simulation domains.

The simulation results agree with our theoretical findings, showcasing that indeed class

teaching is not possible in the presence of heterogeneous students. At the same time,

they also illustrate the main properties of our proposed algorithms: in all domains,

SPLITTEACH guarantees perfect teaching and, in terms of teaching effort, is always at

least as good as individualized teaching (often better); on the other hand, JOINTTEACH

attains minimal teaching effort in all domains, even if sometimes it compromises the

teaching performance.

Keywords: optimal teaching, inverse reinforcement learning, heterogeneous multi-agent teaching, class teaching,

Markov decision processes

1. INTRODUCTION

Machines can be used to improve education by providing personalized learning activities. Research
on machine teaching and intelligent tutoring systems has proposed different ways by which to
attain such personalization (Anderson et al., 1995; Koedinger et al., 1997; Nkambou et al., 2010;
Davenport et al., 2012; Patil et al., 2014; Clement et al., 2015). For example, if we consider that a
significant part of learning relies on examples, learning efficiency can be greatly improved if the
teacher is able to carefully select the examples that are most informative for each particular learner.
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However, teaching of human learners is a very challenging
problem, due to a number of reasons. First, estimating the
cognitive model of a human learner is often a challenge in
itself (Corbett and Anderson, 1994; Beck and Xiong, 2013;
González-Brenes et al., 2014). Second, it is often convenient to
adapt the “level of difficulty” of the teaching contents to the
progress of the learner (Lee, 2005). Both assessing the cognitive
model of the learner and adapting the teaching contents to
her progress require a close interaction between learner and
teacher, and a third challenge thus is to ensure that such frequent
interactions do not reduce motivation and engagement (Shute,
2011). Finally, one last challenge is finding the best teaching
examples at each stage of learning (Rafferty et al., 2011; Clement
et al., 2015).

Some of the aforementioned approaches circumvent the need
to model the learner by treating her as a “black-box,” i.e., not
considering the actual learning process of the learner. That is
the case, for example, in most intelligent tutoring systems (ITS),
which select content as a direct result of the learners’ responses
during interaction, without explicitly considering the learning
process of the particular user. In that way, the contents selected
by ITS are tailored to the observations, and not tailored to the
learner (Anderson et al., 1995; Koedinger et al., 1997; Nkambou
et al., 2010; Clement et al., 2015; Mota et al., 2015).

Machine teaching (MT), on the other hand, considers the
problem of finding the smallest set of examples that allows
a specific learner to acquire a given concept. MT sets itself
apart from standard ITS in that it explicitly considers a specific
computational model of the learner (Balbach and Zeugmann,
2009; Zhu, 2013, 2015; Zhu et al., 2018). The optimal amount
of training examples needed to teach a target task to a specific
learner is known as the teaching dimension (TD) of that task-
learner pair (Shinohara andMiyano, 1991; Goldman and Kearns,
1995). By optimizing the teaching dimension, machine teaching
promises to strongly reduce the effort required from both learner
and teacher.

Much like intelligent tutoring systems, machine teaching
can be applied in several real-world problems. In this work,
we are motivated by examples where we need to teach
tasks that are sequential in nature: cognitive tasks such as
algebraic computation or algorithms; motor tasks such as
industrial maintenance or assembly; etc. We are interested in
understanding how such tasks can be efficiently taught to a
heterogeneous class, i.e., a large number of learners who might
have different cognitive and motor skills.

Most MT research so far has focused on single-learner
settings in non-sequential tasks—such as Bayesian estimation
and classification (Shinohara and Miyano, 1991; Goldman and
Kearns, 1995; Balbach and Zeugmann, 2009; Zhu, 2013, 2015;
Zhu et al., 2018). Recently, however, some works have considered
the extension of the machine teaching paradigm to novel settings.
For example:

1. Some works have investigated the impact of group settings
on machine teaching results. In the context of non-sequential
tasks, Zhu et al. (2017) show that it is possible to teach
a heterogeneous class using a common set of examples.

The same work also establishes that, by dividing a group
of learners in small groups, it is possible to attain a
smaller teaching dimension. Yeo et al. (2019) generalize those
results for more complex learning problems, and consider
additional differences between the learners, e.g., learning rates.
Teaching to multiple learners, in the context of classification
tasks, has also been considered with more complex learning
models, for example when each learner has an exponentially
decayed memory (Zhou et al., 2018). Recent works have also
considered the case of imperfect labels (Zhou et al., 2020).

Other approaches that consider multiple learners focus
on very different settings. Examples include decomposing
a multi-class classification problem into multiple binary
classification problems, where the multi-class classifier acts
as the “teacher” and the different binary classifiers are
the learners (You et al., 2018). Other works also explore
the ideas of teaching multiple learners in the context of
compressing a complex neural network into multiple simpler
networks (Malik et al., 2020).

2. Some works (Walsh and Goschin, 2012; Haug et al., 2018;
Melo et al., 2018) investigate the impact that the mismatch
between the learner and the teacher’s model of the learner
may have in the teaching dimension—a situation particularly
relevant in group settings. The aforementioned works focus
on supervised learning settings, although some more recent
works have explored inverse reinforcement learning (IRL)
settings (Kamalaruban et al., 2019).

3. Other works have considered machine teaching in sequential
decision tasks. Cakmak and Lopes (2012) introduce the first
machine teaching algorithm for sequential decision tasks
(i.e., when the learners are inverse reinforcement learners).
Brown and Niekum (2019) propose an improved algorithm
that takes into consideration reward equivalence in terms of
the target task representation. The work of Rafferty et al.
(2015) considers sequential tasks in a different way; instead
of evaluating the quality of learning based on the match
between the demonstrated and the learned policy, it infers
the understanding of the task by estimating the world model
that the learners inferred. Recent approaches for teaching in
the context of IRL have considered that interactions are not
always possible, providing improvements both for the teacher
and learner side (Troussard et al., 2020). Other recentmethods
have also considered more complex forms of teaching that
take into account preferences and constraints (Tschiatschek
et al., 2019). In a context of reinforcement learning, rather
than IRL, several works have explored these ideas to better
understand how humans learn (Chuang et al., 2020), as well as
the theoretical teaching dimension ofQ-learning (Zhang et al.,
2020).

From the previous discussion, summarized in Table 1, we see
that teaching multiple heterogeneous learners in the context
of sequential tasks has not be considered. In this paper, we
build on the ideas discussed above and consider the problem of
teaching a sequential task to a group of heterogeneous learners
(a “class”). We henceforth refer to a setting where a single
teacher interacts with multiple (possibly different) learners as
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TABLE 1 | Comparative analysis of the most relevant works.

Sequential Multiple Uncertainty

Current paper × ×

Brown and Niekum (2019) ×

Cakmak and Lopes (2012) ×

Zhou et al. (2020) × ×

Zhu et al. (2017) ×

Yeo et al. (2019) × ×

Melo et al. (2018) ×

Haug et al. (2018) × ×

Walsh and Goschin (2012) × ×

Kamalaruban et al. (2019) × ×

The column “Sequential” indicates whether the works address sequential tasks; the

column “Multiple” indicates whether the different works address multiple learners; finally,

the column “Uncertainty” indicates which works consider uncertainty in some form—either

in the information provided by the teacher or the teacher’s knowledge about the learner.

We have also grouped the references along their main focus—the first group is focused

on sequential tasks; the second group is focused in settings with multiple learners; the

third group is focused on dealing with uncertainty.

class teaching. We follow Cakmak and Lopes (2012) in assuming
that the learners are inverse reinforcement learners (Ng et al.,
2000), and address the problem of selecting a demonstration that
ensures that all learners are able to recover a task description
that is “compatible” with the target task, in a sense soon to be
made precise. Specifically, the paper focuses on the following
research question:

Is it possible to teach a sequential task to a class of heterogeneous
inverse reinforcement learners using a single demonstration?

Teaching a sequential task in a class setting, however, poses
several additional complications found neither in single-agent
settings (Cakmak and Lopes, 2012; Walsh and Goschin, 2012;
Haug et al., 2018; Brown and Niekum, 2019), nor on esti-
mation/classification settings (Walsh and Goschin, 2012; Zhu
et al., 2017; Yeo et al., 2019). In such setting, we need to teach
not only one particular learner but a whole diverse group of
learners. The teacher needs to guarantee that all learners learn,
while delivering the same “lecture” to everyone. Learner diversity
might have different origins, from different learning rates or
prior information, to having a completely learning algorithm.
Intuitively speaking, we may think that if the differences are
large, then each learner needs a particular demonstration and
class teaching is not possible. Nevertheless, quantifying what are
“large” differences is not trivial.

As an example, in the family of tasks considered by Zhu et al.
(2017) or Yeo et al. (2019), learners have large differences in their
prior information. But, no matter how large this difference is,
all learners can be taught with the same demonstration, even
if a larger number of samples is required. In the present work,
we investigate what happens in sequential tasks to understand
which differences between learners may still allow to teach
all of them simultaneously and which differences do not. We
discuss the challenges arising when extending machine teaching
of sequential tasks to class settings and contribute the first

formalization of the problem from the teacher’s perspective. We
then contribute an analysis of the problem, identifying conditions
under which it is possible to teach a heterogeneous class with
a common demonstration. From our analysis, we propose two
class teaching algorithms for sequential tasks—SPLITTEACH and
JOINTTEACH—and illustrate their performance against other
more “naive” alternatives.

In summary, the main contributions of the paper
are as follows:

• We contribute the first formalization of the problem of
teaching a sequential tasks to a heterogeneous class of inverse
reinforcement learners.

• We contribute a theoretical analysis of the aforementioned
problem, identifying conditions under which class teaching is
possible and is not possible.

• We propose two novel teaching algorithms for sequential
tasks—SPLITTEACH and JOINTTEACH—and discuss their
relative merits and inconvenients.

• We illustrate the application of the aforementioned methods
in six different simulation class teaching scenarios.

The paper is organized as follows. Section 2 provides an
overview of reinforcement learning (RL), IRL, and machine
teaching in IRL. Section 3 formalizes the problem of class-
teaching a sequential task and provides a theoretical analysis
thereof. Section 4 introduces the SPLITTEACH and JOINTTEACH

algorithms, whose performance is then illustrated in section 5.
Section 6 concludes the paper.

2. BACKGROUND

In this section, we go over key background concepts upon which
our work is built, both to set the nomenclature and the notation.
We go over Markov decision problems (MDPs, Puterman, 2005),
IRL (Ng et al., 2000), and machine teaching in RL settings
(Cakmak and Lopes, 2012; Brown and Niekum, 2019).

2.1. Markov Decision Problems
A Markov decision problem (MDP) is a tuple (S,A,P, r, γ ),
where S is the state space, A is the action space, P encodes the
transition probabilities, where

P(s′ | s, a) = P
[

St+1 = s′ | St = s,At = a
]

,

and St and At denote, respectively, the state and action at time
step t. The function r :S → R is the reward function, where r(s)
is the reward received by the agent upon arriving at a state s ∈ S.
Finally, γ ∈ [0, 1) is a discount factor.

A policy is a mapping π :S → 1(A), where 1(A) is the set
of probability distributions over A. Solving an MDP amounts to
computing the optimal policy π∗ that maximizes the value

vπ (s) , E

[

∞
∑

t=0

γ tr(s) | S0 = s,At ∼ π(· | St)

]

for all s ∈ S. In other words, we have that vπ∗
(s) ≥ vπ (s) for

all policies π and states s. We henceforth denote by π∗(r) the
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optimal policy with respect to the MDP (S,A,P, r, γ ), where S,
A, P, and γ are usually implicit from the context. Writing the
value function vπ as a vector vπ , we get

vπ = r + γPπv
π = (I− γPπ )

−1r, (1)

where Pπ is a matrix with component ss′ given by:

[Pπ ]ss′ =
∑

a∈A

π(a | s)P(s′ | s, a).

2.2. Inverse Reinforcement Learning
In IRL, we are provided with a “rewardlessMDP” (S,A,P, γ ) and
a sample of a policy π (or a trajectory obtained by following π)
and wish to determine a reward function r∗ such that π is optimal
with respect to r∗, i.e., π = π∗(r∗) for the resulting MDP. If π is
optimal, then, given an arbitrary policy π ′,

r + γPπv
π � r + γPπ ′vπ ,

where we write � to denote element-wise inequality. Using (1),
for a reward r to be a valid solution, it must verify the constraint

(Pπ − Pπ ′ )(I− γPπ )
−1r � 0. (2)

Unfortunately, the constraint in (2) is insufficient to identify r∗.
For one, (2) is trivially verified for r = 0. More generally, given a
policy π , there are multiple reward functions that yield π as the
optimal policy. In the context of an IRL problem, we say that two
reward functions r and r′ are policy-equivalent if π∗(r) = π∗(r′).1

Moreover, the computation of the constraint in (2) requires the
learner to access the complete policy π . In practice, however, it is
inconvenient to explicitly enunciate π . Instead, the learner may
be provided with a demonstration consisting of a set

D =
{

(sn, an), n = 1, . . . ,N
}

where, if (s, a) ∈ D, a is assumed optimal in state s.
To address the two difficulties above, it is common to treat

(2) as a constraint that the target reward function must verify,
but select the latter so as to meet some additional regularization
criterion, in an attempt to avoid the trivial solution (Ng et al.,
2000). For the purpose of this work, we re-formulate IRL as

max 1⊤v

s.t. (p(sn, an)− p(sn, a
′))v � ε, ∀(sn, an) ∈ D, a′ ∈ A,

0 � v − γ max
a∈A

Pav � Rmax,

(3)
where p(s, a) is the row-vector with element s′ given by P(s′ |

s, a). In (3), we directly solve for vπ instead of r∗, and then
compute r∗ as

r∗ = v − γ max
a∈A

Pav.

The IRL formulation in (3) implicitly assumes a reward r ≤

Rmax, which has no impact on the representative power of the

1This happens, for example, if r − r′ is a potential function (Ng et al., 1999).

solution. Moreover, it deals with the inherent ambiguity of IRL
by maximizing the value of all states while imposing that the
“optimal actions” are at least ε better than sub-optimal actions.
The proposed formulation, while closely related to the simpler
approaches of Ng et al. (2000), is simpler to solve and less
restrictive in terms of assumptions.

It is worth noting that previous approaches on machine
teaching in sequential tasks (Cakmak and Lopes, 2012; Brown
and Niekum, 2019) assume (either implicitly or explicitly) that
the IRL learners turn a demonstration into constraints that the
reward function must verify, like those in (2). However, such
constraints are built in a way that requires the learner to know (or,
at least, be able to sample from) the teacher’s policy π (Cakmak
and Lopes, 2012; Brown and Niekum, 2019). As argued before,
this is often inconvenient/unrealistic. Our formulation in (3)
circumvents such limitation and has interest on its own. More
efficient methods for IRL have been introduced (Balakrishnan
et al., 2020) or considering differences in features between the
teacher and the learner (Haug et al., 2018). Here, our focus
is on the multiple learner aspect and so, for clarity, rely on
simpler methods.

In the remainder of the paper, we refer to an “IRL agent” as
defined by a rewardless MDP (S,A,P, γ ) and such that, when
given a demonstration D, outputs a reward r(D) obtained by
solving (3). We write r∗ to refer to the (unknown) target reward
function, and v∗ to denote the value function associated with
π∗(r∗). Finally, unless if otherwise stated, all value functions are
computed with respect to the MDP (S,A,P, r∗, γ ).

2.3. Machine Teaching in IRL
Let us now consider the problem of teaching an IRL agent.
In particular, given an IRL agent, described by a rewardless
MDP (S,A,P, γ ), and a target reward function r∗, we want to
determine the “most concise” demonstration D such that r(D) is
policy- equivalent to r∗, i.e.,

π∗(r∗) = π∗(r(D)).

By “most concise,” we imply that there is a function, effort, that
measures the teaching effort associated with any demonstration
D (for instance, the number of examples in D). Teaching an IRL
agent can thus be formulated as solving

min
D

effort(D)

s.t. π∗(r∗) = π∗(r(D)).
(4)

The first approach to solving this problem was presented by
Cakmak and Lopes (2012) using an incremental process. A more
efficient approach was introduced by Brown and Niekum (2019),
where the set of non-redundant demonstrations is found through
the solution of a linear problem. The latter is the one used in this
work. Note also that, in order to solve (4), the aforementioned
approaches assume that the teacher knows r∗—used to compute
π∗(r∗)—and the learner model—used to compute r(D), π∗(r∗),
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FIGURE 1 | Diagram representing two inverse reinforcement learning (IRL) agents (all unmarked transition are deterministic). The two agents are similar in all states

except 1, where action a always succeeds for agent (A) but only succeeds with probability p for agent (B).

and π∗(r(D)). In the remainder of the paper, we also adhere to
this assumption.

To illustrate the problem of machine teaching in IRL consider,
for example, the IRL agent A in Figure 1A, defined as the
rewardless MDP ({1, 2, 3, 4, 5} ,

{

a, b
}

,P, γ ), where the edges
represent the transitions associated with the different actions
(unmarked edges correspond to deterministic transitions) and
γ > 0.5. If the target reward is

r∗ =
[

0, 0, 1, 0, 2
]⊤

, (5)

the optimal value function is given by

v∗ =
1

1− γ

[

2γ 2, 2γ , 1, 0, 2
]⊤

,

and the optimal policy selects action a in state 1 and action b
in state 2, since 2γ > 1. Since both actions are equal in the
remaining states, the most succinct demonstration should be, in
this case,

D =
{

(1, a), (2, b)
}

.

As another example, consider the IRL agent B in Figure 1B. This
learner is, in all aspects, similar to IRL agent A except that action
a is now stochastic in state 1 and succeeds only with probability
p. The optimal value function is now

v∗ =
1

1− γ

[

u, 2γ , 1, 0, 2
]

,

where

u = max

{

2γ 2p

1− γ (1− p)
, γ

}

.

Then, if

p >
1− γ

γ
,

the optimal policy is the same as in the previous case, as is the
most concise demonstration. If, instead, the reverse inequality
holds, the optimal policy is now to select action b in both states 1
and 2, and the best demonstration is

D =
{

(1, b), (2, b)
}

.

Finally, if p = (1 − γ )/γ , then both actions are equally good in
state 1, and the most concise demonstration is just D =

{

(2, b)
}

.
In the continuation, we extend the present setting, considering

the situation where the teacher is faced with multiple inverse
reinforcement learners.

3. CLASS-TEACHING OF SEQUENTIAL
TASKS

In this section, we present our first contributions. We formalize
the problem of class-teaching multiple IRL agents. We then
identify necessary conditions that ensure that we can teach
all learners in a class simultaneously, i.e., using the same
demonstrations for all. We finally provide a first algorithm that
is able to teach under these conditions. We note that, although
most examples in this section feature 2-learner settings, the
conclusions hold for settings involving more than two agents,
since the latter cannot be simpler than the former.

3.1. Teaching a Class of IRL Learners
Let us consider a teacher facing a heterogeneous class of L IRL
agents, each one described as a rewardless MDPMℓ

2. We assume
that the teacher perfectly knows the models M1, . . . ,ML and
that the learners all adopt the IRL formulation in (3), given a
demonstration D consisting of a set of state-action pairs.

Given a target reward function r∗, the goal of the teacher
is, once again, to find the “most concise” demonstration D that

2Note that we allow different learners to have different models.
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ensures that rℓ(D) is compatible with r∗, where rℓ(D) is the
reward computed by the IRL agent ℓ upon observing D. In other
words, the goal of the teacher is to solve the optimization problem

min
D

effort(D)

s.t. π∗
ℓ (r

∗) = π∗
ℓ (rℓ(D)), for ℓ = 1, . . . , L.

(6)

For the sake of concreteness, we henceforth consider
effort(D) = |D| / |S|, roughly corresponding to the “percentage”
of demonstrated states. The constraint in (6) states that the
teacher should consider only demonstrations D that ensure the
reward rℓ(D) recovered by each IRL agent ℓ is policy-equivalent
to r∗, for ℓ = 1, . . . , L.

In general, the problem (6) may not have a solution. In
fact, there may be no single demonstration that ensures that all
learners recover a reward function compatible with r∗. Consider
for instance a class comprising the agents A and B from Figure 1.
Suppose that the target reward is the one in (5) and that

p <
1− γ

γ
.

If we provide the demonstrationD =
{

(2, b)
}

, the only constraint
imposed by such demonstration is that v(5) ≥ v(4) + ε, which
leads to the solution

v =
1

1− γ

[

1, 1, 1, 1− ε(1− γ ), 1
]⊤

,

corresponding to the reward

r =
[

1, 1, 1, 1− ε(1− γ ), 1
]⊤

. (7)

Such reward does not verify the constraint in (6). For example,
the policy that selects a and b in state 1 with equal probability
is optimal with respect to the reward in (7), both for A and B.
However, it is not optimal with respect to r∗ for neither of the
two. Repeating the derivations above for the demonstration D =
{

(1, a), (2, b)
}

, we immediately see that the reward rA(D) will
verify the constraint in (6) but not the reward rB(D). Conversely,
if D =

{

(1, b), (2, b)
}

, we immediately see that rB(D) will verify
the constraint in (6) but not rA(D).

The example above brings to the forefront an immediate
difficulty in teaching a group of heterogeneous IRL agents: since
the relation between the reward and the policy tightly depends
on the rewardless MDP describing the IRL agent, the ability of
the teacher to ensure that an IRL agent recovers the desired
reward/policy is strongly tied to the teacher’s ability to provide
a personalized demonstration. This is a fundamental difference
from other MT settings, where the examples provided by the
teacher directly encode the concept to be learned.

In the IRL case, the examples provided by the teacher
(state-action pairs) provide only indirect information about the
concept to be learned (the reward), the relation being greatly
dependent on the particular learner considered. This observation
is summarized in the following result, where we refer to a
demonstration D as complete if there is a pair (s, a) ∈ D for
every s ∈ S.

FIGURE 2 | Diagram representing two inverse reinforcement learning (IRL)

agents (all transition are deterministic). (A,B) The two agents are similar in all

states except s0, where actions a1 and a2 lead to different states.

Lemma 1. For two complete demonstrations D1 and D2 and two
arbitrary IRL agents A and B,

π∗
A(rA(D1)) = π∗

B (rB(D2))

only if D1 = D2.

Proof: By definition, a complete demonstration includes a state-
action pair for every state s ∈ S with a corresponding optimal
action. The constraints implied by the demonstration will
necessarily lead both agents to learn similar policies. Conversely,
if the agents learn different policies, either the demonstrations are
different or incomplete.

In the continuation, we discuss in further detail how
differences between learners affect the ability of the teacher to
teach a whole class with a single demonstration.

3.2. Teaching Learners With Different
Transition Probabilities
As argued before, assuming that the policy is provided to the
learners in full (i.e., the demonstration is complete in the sense
of Lemma 1) is often unrealistic. In the more natural situation
of an incomplete demonstration, the conclusion of Lemma 1 no
longer holds. To see why this is so, we first consider the case
where the IRL learners differ only in their transition probabilities,
i.e., each IRL learner is described as a rewardless MDP Mℓ =

(S,A,Pℓ, γ ), ℓ = 1, . . . , L.
To aid in our discussion, we consider two simple IRL agents,

depicted in Figure 2 and suppose that we provide a non-empty
but incomplete demonstration to the agents. For concreteness,
let D =

{

(s1, a1)
}

. From our IRL formulation, we get the
constraint that

v(s1)− v(s2) ≥ ε,

for some ε > 0 which, by setting Rmax = 1, leads to

v(s0) = v(s1) =
1

1− γ
; v(s2) =

1

1− γ
− ε.

Then, in state s0, both agents will necessarily recover a different
policy. We state this observation in the following fact.
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FIGURE 3 | Diagram representing an inverse reinforcement learning (IRL)

agent. All transitions occur with probability 1.

Fact 1. Let S andA denote arbitrary finite state and action spaces,
with |S| > 1 and |A| > 1, andD ⊂ S×A a non-empty incomplete
demonstration. Then, there exist two IRL agents (S,A,PA, γ ) and
(S,A,PB, γ ) such that

π∗
A(rA(D)) 6= π∗

B (rB(D)).

In other words, an incomplete demonstration may lead to different
policies in different agents.

This is a negative result for class teaching: we show that
the differences between the transition probabilities of the agents
in a class may imply that the same reward leads to different
optimal policies which, in turn, implies that there are cases
where the same demonstration will lead to rewards that are
not “compatible” with the target policy [i.e., do not verify the
constraint in (6)]. This is particularly true for classes where
the transition probabilities of the different learners exhibit
large differences.

3.3. Teaching Learners With Different
Discount Factors
We now address the case where the IRL learners differ in their
discount, i.e., each IRL learner is described as a rewardless MDP
Mℓ = (S,A,P, γℓ), ℓ = 1, . . . , L. As we will see, this situation is
similar to that discussed in section 3.2.

Consider two IRL agents, A and B, each described as a
rewardless MDP (S,A,P, γℓ), where the transition probabilities
are represented in Figure 3, and such that γA = 0.1 and γB =

0.9. Further, suppose that we provide the demonstration D =
{

(s2, a1), (s4, a1)
}

. From our IRL formulation, we get that

v(s2)− v(s1) ≥ ε, and v(s3)− v(s4) ≥ ε,

for some ε > 0.
Again setting Rmax = 1, we get that

v(s2) =
1

1− γ
; v(s1) =

1

1− γ
− ε.

Similarly, after some manipulation, we can conclude that v(s4) =
v(s3)− ε,3 and

v(s3) = 1+ γ v(s4) = 1+ γ (v(s3)− ε).

Solving for v(s3) yields

v(s3) =
1

1− γ
−

γ

1− γ
ε.

Finally,

v(s0) = 1+γ max
{

v(s1), v(s3)
}

=
1

1− γ
−γ εmax

{

1,
γ

1− γ

}

.

We can now conclude that, in state s0, both agents will recover a
different policy, leading to the following fact.

Fact 2. Let S andA denote arbitrary finite state and action spaces,
with |S| > 4 and |A| > 1, andD ⊂ S×A a non-empty incomplete
demonstration. Then, there exist two IRL agents (S,A,P, γA) and
(S,A,P, γB) such that

π∗
A(rA(D)) 6= π∗

B (rB(D)).

In other words, an incomplete demonstration may lead to different
policies in different agents.

It is interesting to note that the example above relies on more
complex MDPs (i.e., with larger state-space), since the impact of
the discount factor in the IRL agents only becomes noticeable if
the agent is able to experience longer trajectories of states.

As in section 3.2, Fact 2 is a negative result for class teaching:
we show that the differences between the discount factor of the
agents in a class may imply that the same demonstration will lead
to rewards that do not verify (6).

3.4. Teaching Learners With Different
Reward Features
We conclude our analysis by considering the situation where the
agents have different representations for the reward function.
This situation is different than those considered before, since
it does not concern differences in the IRL agent model
(i.e., the rewardless MDP), but rather in the way the agents
represent the reward.

In particular, if the two agents are represented by a common
rewardless MDP (S,A,P, γ ), from a common demonstration D

both agents will recover the same value function v as a solution to
(3). The difference between the two agents will thus be observed
in the process of recovering the reward from v.

Suppose, then, that the IRL agents represent the reward as a
linear combination of K features φk, k = 1, . . . ,K, i.e.,

rw(s) =

K
∑

k=1

φk(s)wk = φ⊤(s)w,

3From our IRL formulation, it follows that v(s4) =

min
{

v(s3)− ε,Rmax + γ v(s3)
}

. However, if ε > 0 and Rmax > 0, we have

that v(s3)− ε < Rmax + γ v(s3).
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FIGURE 4 | Diagram representing an inverse reinforcement learning (IRL)

agent. All transitions occur with probability 1. Transitions labeled with “∗” are

associated with all actions a ∈ A.

where φk(s) is the value of the kth feature on state s, and φ(s) is
a column-vector with kth component given by φk(s). Then, given
the value function v, we can compute, for example,

r̂ = argmin
∥

∥v − γ max
a∈A

Pav − rw
∥

∥

2
,

where the minimization is over all possible rw. In this case, the
solution is the orthogonal projection of v − maxa∈A Pav on the
linear span of the set of features, i.e.,

r̂ = Proj(v − γ max
a∈A

Pav)
def
= 8(8⊤8)−18⊤(v − γ max

a∈A
Pav).

Let us then consider the case where the IRL learners differ in
the set of features they use to represent the reward function. In
particular, given two agents A and B, suppose that agent A uses
features

{

φA,k, k = 1, . . . ,K
}

, and agent B uses a different set of
features,

{

φB,k, k = 1, . . . ,K
}

4. If
{

φA,k

}

and
{

φB,k

}

both span the
same linear space, both agents recover the same reward function
and a single demonstration suffices to teach both agents the best
possible reward. The two sets of features span the same subspace
if there is an invertible K × K matrixM such that

8A = 8BM.

In that case, given any reward function r,

ProjA(r) = 8A

(

8A
⊤8A

)−1
8⊤

A r

= 8BM
(

M⊤8⊤
B 8BM

)−1
M⊤8⊤

B r

= 8BMM−1(8⊤
B 8B)

−1M−⊤M⊤8⊤
B r

= 8B(8
⊤
B 8B)

−18⊤
B r

= ProjB(r).

However, if
{

φA,k

}

and
{

φB,k

}

span different spaces, an
incomplete demonstration may lead to different policies in

4We focus on the benign case in which both agents consider the same number of

features. The negative results we present trivially hold if that is not the case.

different agents. Consider two IRL agents, A and B, both
described by the rewardless MDP in Figure 4. Assume that
both consider the same discount γ , but agent A considers the
reward features

φA,1 =
[

0, 1, 0, 0, 1
]⊤

, φA,2 =
[

0, 0, 1, 1, 0
]⊤

,

and agent B considers the reward features

φB,1 =
[

0, 1, 0, 1, 0
]

, φB,2 =
[

0, 0, 1, 0, 1
]

.

Upon observing the demonstration D =
{

(s1, a1)
}

, both agents
will recover

v =
1

1− γ

[

1, 1, 1− ε(1− γ ), 1, 1
]⊤

,

and

v − γ max
a∈A

Pav =
[

1, 1, 1− ε, 1, 1,
]⊤

.

It follows immediately that

ProjA(v − γ max
a∈A

Pav) =
[

0, 1, 1− ε
2 , 1−

ε
2 , 1

]⊤
,

ProjB(v − γ max
a∈A

Pav) =
[

0, 1, 1− ε
2 , 1, 1−

ε
2

]⊤
.

The reward recovered by both agents A and B leads to a policy
that matches the demonstration, but differs in the action selected
by the agents in state s0. We thus get the following fact.

Fact 3. Let S andA denote arbitrary finite state and action spaces,
with |S| > 3 and |A| > 1, and D ⊂ S × A a non-empty
incomplete demonstration. Then, there exist two IRL agents A and
B, both described by the same rewardless MDP (S,A,P, γ ) but
using different sets of reward features

{

φA,k

}

and
{

φB,k

}

, with
different linear span, such that

π∗
A(rA(D)) 6= π∗

B (rB(D)). (8)

In other words, an incomplete demonstration may lead to different
policies in different agents.

Fact 3 is yet another negative result for class teaching: we
show that the differences between the features that the learners
in a class use to represent the reward function may imply that
the same demonstration will lead to rewards that do not verify
(6). We note, however, that the example leading to Fact 3 can
be explained by the fact that the reward features of agents A
and B do not span the whole space of possible rewards. If the
reward features of both agents did span the whole space of
possible rewards, we would be back in a situation where class
teaching is possible.

The case where the space of reward features does not span
the whole space of possible rewards, however, falls somewhat
outside of our analysis, since it may not be possible at all for the
IRL agents to recover a reward that is compatible with r∗—i.e.,
even a single-agent setting, teaching may not be possible. For this
reason, in the remainder of the paper, we assume that—even if
different—the reward features used by the different agents always
span the set of all possible rewards.
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3.5. The Possibility of Class Teaching
We finally identify necessary conditions to ensure that two
different learners (either in transition probabilities, discount, or
reward features) recover reward functions compatible with r∗

from a common demonstration D.

Proposition 1. Given two IRL agents A and B which may differ in
their transition probabilities, discount, and/or reward features, if

π∗
A(r

∗) 6= π∗
B (r

∗),

then, in general, the two IRL agents cannot be taught using
a common demonstration D and recover a reward compatible
with r∗.

Proof: Let s0 ∈ S be such that π∗
A(s0; r

∗) = a1 and π∗
B (s0; r

∗) =
a2, with a1 6= a2, and suppose that we provide a common
demonstration to agents A and B. Clearly, if either (s0, a1) or
(s0, a2) appear in D, one of the agents will learn a reward that is
not compatible with r∗. On the other hand, if s0 does not appear
inD, both agents will learn rewards according to which the policy
that selects a1 and a2 with equal (and positive) probability is
optimal, which are incompatible with r∗.

Proposition 1 establishes that, in general, we cannot expect to
achieve successful class teaching, where the same examples can
be used by everyone. It also provides a verified way to test how
different the learner can be before we need personalized teaching.
The next corollary is a direct consequence of Proposition 1.

Corollary 1 (Possibility of Class Teaching). If it is possible
to class-teach a reward r∗ to two IRL agents A and B,
then π∗

A(r
∗) = π∗

B (r
∗).

Corollary 1 states the main challenge of class teaching in
sequential tasks: if the differences between the different learners
imply different optimal policies, they cannot be taught with a
common demonstration.

4. CLASS TEACHING ALGORITHMS

In this section, we consider the implications of the results in
section 3 in terms of the problem of optimally teaching sequential
tasks to multiple learners. We first consider the problem of exact
teaching and then move on to a more relaxed setting, where we
allow the learners to learn the target task only approximately.

4.1. Exact Teaching
Let us first consider the problem of exact teaching. The goals
of the teacher are twofold. First, it must ensure that all learners
learn the correct task, i.e., have all students recover a reward such
that the associated optimal policy (as computed by the student)
is compatible with the target reward. Second, it must do so while
optimizing the effort in teaching5.

The effort of providing a common demonstration to a class
is independent of the number of learners in the class and,

5Recall that we consider the effort to depend directly on the number of

examples provided.

Algorithm 1 SPLITTEACH: Exact teaching IRL learners.

Require: IRL learners ℓ = 1, . . . , L
Require: Target reward r∗

Compute π∗
ℓ (r

∗) for ℓ = 1, . . . , L
For ℓ = 1, . . . , L, compute the demonstration Dℓ necessary
to determine rℓ(Dℓ) that is policy-equivalent to r∗ (see
section 2.3)
Compute

Djoint =
⋂

ℓ

Dℓ;

Provide Djoint to all agents
for ℓ = 1, . . . , L do

Provide to each learner ℓ, the examples in Dℓ −Djoint

end for

in that sense, the most efficient way to teach the class is to
provide a single demonstration to the whole class. Unfortunately,
in heterogeneous classes, it is unlikely that the conditions of
Proposition 1 hold, so providing a single demonstration may lead
students to learn an incorrect task.

Conversely, providing an individual demonstration to each
learner ensures that all learners acquire the correct task, but it is
the least efficient way of teaching, since the effort grows linearly
with the number of students.

From the observations above, one very straightforward
approach to class teaching is simply to provide a “class
demonstration” containing all examples that are common
across the class, and then complement this with individual
demonstrations that make sure that the differences between the
students are adequately addressed. In other words, we propose
to combine class and personalized teaching. This simple idea is
summarized in Algorithm 1, which we dub SPLITTEACH.

SPLITTEACH extends the algorithm of Brown and Niekum
(2019) to the class setting. The algorithm proceeds as follows:
it identifies the optimal policy for each learner given the target
reward r∗. The teacher then demonstrates to the class those
samples that are compatible across learners, and to each learner
individually those samples that are specific to that learner’s
optimal policy6.

We can analyze the complexity of SPLITTEACH along several
dimensions. Verifying if class teaching is possible or not implies
comparing the optimal policies for the different learners. This
comparison requires solving theMDP for each learner, which has
a polynomial complexity.

On the other hand, computing which demonstrations to
provide to each learner is linear in the number of learners and
states. However, if we want to reduce the teaching effort by
providing the most efficient demonstrations, we must identify

6The algorithm could be further improved, considering subgroups that can

minimize the teaching effort and providing samples to these subgroups. Such

approach would bring additional savings in effort, but would require the

computation of such subgroups, which is a combinatorial problem and adds to

the complexity of the algorithm. We do not consider such variation in this paper.
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which demonstrations introduce redundant constraints. This
can be done through linear programming (Brown and Niekum,
2019), and requires solving as many linear programs as the
size of the initial demonstrations set. In this case, since linear
programming is solvable in polynomial time, we again obtain
polynomial complexity.

Finally, we note that—with SPLITTEACH—each learner ℓ ends
up observing

Djoint ∪ (Dℓ −Djoint) = Dℓ.

However, the dataset D provided by the teacher has a number of
examples given by

|D| =
∣

∣Djoint

∣

∣ +

L
∑

ℓ=1

∣

∣Dℓ −Djoint

∣

∣ ,

which corresponds to a saving in effort of
∣

∣Djoint

∣

∣ × (L − 1)/ |S|

when compared with individual teaching, for which

|D| =

L
∑

ℓ=1

|Dℓ| .

4.2. Approximate Teaching
In our discussion so far, we considered only exact demonstrations
and investigated conditions under which all learners in the class
are able to recover the desired reward function (or a policy-
equivalent one) exactly. We could, however, consider situations
where some error is acceptable.

Error in the Policy

As a first possibility, we could consider an extended setting that
allows small errors in the reward recovered by (some of) the
learners. In such setting, we could consider that, given ǫ > 0,

∥

∥π∗(r∗)− π∗(r(D))
∥

∥ < ǫ,

along the lines of Haug et al. (2018). Such approximate setting
could allow reductions to the teaching effort in the case where
class teaching is possible.

However, the impossibility results we established still hold
even in the approximate case. In fact, when class teaching is not
possible, we can find ǫL > 0 such that

∥

∥π∗(r∗)− π∗(r(D))
∥

∥ ≥ ǫL,

i.e., we cannot reduce the error arbitrarily (for otherwise class
teaching would be possible). The example in Figure 1 shows one
such case, where the same demonstration, if provided to the
two learners, would result in an error that could not be made
arbitrarily small.

Loss in Value

Another alternative is to consider that we allow the learners
to learn different rewards as long as the expected cumulative
discounted reward is not far from the optimal.

Let us consider a scenario with two IRL agents, A and B,
each one described as a rewardless MDP (S,A,Pℓ, γ ), ℓ = A,B,
differing only in the transition probabilities. Further assume that
π∗
A(r

∗) 6= π∗
B (r

∗), and suppose that we provide both learners with
a complete demonstration D such that

π∗
A(rA(D)) = π∗

A(r
∗).

In other words, learner A is able to recover from D a reward that
is policy equivalent to r∗, i.e., such that

vπ∗
A(rA(D))(s) = v∗(s)

for all s ∈ S, where both functions vπ∗
A(rA(D)) and v∗ are

computed in the context of the MDP (S,A,P, r∗, γ ). Lemma 1
ensures that learner B will recover a reward rB(D) such that

π∗
B (rB(D)) = π∗

A(rA(D)) 6= π∗
B (r

∗).

We can compute an upper bound to how much the performance
of learner B strays from that of learner A.

For simplicity of notation, we henceforth write vℓ and Pℓ to

denote vπ∗
ℓ (rℓ(D)) and Pℓ,π∗

ℓ (rℓ(D)), respectively, for ℓ = A,B.

When we want to highlight the dependence of vℓ and Pℓ

on the demonstration D, we write vℓ(D) and Pℓ(D) with the
same meaning.

We have

vA − vB = r∗ + γPAv
A − r∗ − γPBv

B = γ
(

PAv
A − PBv

B
)

. (9)

Some manipulation yields

vA − vB =
γ

2

[

(PA + PB)(v
A − vB)+ (PA − PB)(v

A + vB)
]

.

Defining

P̄ =
1

2
(PA + PB) v̄ =

1

2
(vA + vB),

we get

vA − vB = γ
(

I− γ P̄
)−1

(PA − PB)v̄.

Noting that P̄ is still a stochastic matrix, the inverse above is well
defined. Computing the norm on both sides, we finally get, after
some shuffling,

∥

∥vA − vB
∥

∥

2
≤

γ

1− γ
‖PA − PB‖2 ‖v̄‖2 . (10)

As expected, the difference in performance between agents A
and B grows with the difference between the corresponding
transition probabilities.

Following similar computations as those leading to (10), we
can now derive an approximate teaching algorithm, obtained by
relaxing the requirement that every learnermust recover a reward
that is policy equivalent to the target reward. In particular, let us
suppose that a demonstration D is provided to a heterogeneous

Frontiers in Artificial Intelligence | www.frontiersin.org 10 September 2021 | Volume 4 | Article 625183

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Melo and Lopes Teaching Multiple Inverse Reinforcement Learners

Algorithm 2 JOINTTEACH: Approximate teaching multiple IRL
learners.
Require: IRL learners ℓ = 1, . . . , L
Require: Target reward r∗

Solve the optimization problem (12) to get D
Provide class demonstration D

class of L learners. Unlike the derivations above, we now admit
that the learners may differ in their transition probabilities,
discount, and reward features.

Given a target reward r∗, let v∗ℓ denote the corresponding
optimal value function for learner ℓ, for ℓ = 1, . . . , L. On the
other hand, when provided a demonstration D, each learner
ℓ will recover a reward rℓ(D) and compute an associated
policy π∗

ℓ (rℓ(D)). As before, we write Pℓ(D) to denote the
associated transition probabilities. Then, the corresponding loss
in performance of learner ℓ is given by

Lossℓ(D) =
∥

∥v∗ℓ − (I− γℓPℓ(D))−1r∗
∥

∥

2
. (11)

Note that the loss in (11) is directly related to the bound in (10).
In fact, when the demonstration that minimizes (11) matches
that needed to teach one of the learners, the bound in (10)
directly applies.

Assuming (as we have throughout the paper) that the teacher
has a model of the learners, the value in (11) can be computed for
every learner ℓ = 1, . . . , L. Therefore, the problem of the teacher
can be reduced to the optimization problem

min
D

L
∑

ℓ=1

∥

∥v∗ℓ − (I− γℓPℓ(D))−1r∗
∥

∥

2

2
. (12)

The optimization problem (12) can be solved using any suitable
optimization method, such as gradient descent (Neu and
Szepesvári, 2007). Unfortunately, the objective function is non-
convex, meaning that optimization through local search methods
can be stuck in local minima. Nevertheless, there are several good
initialization that may mitigate the impact of local minima—e.g.,
we can use as initialization the optimal value function of one
of the learners, or the average between the two. The resulting
approach is summarized in Algorithm 2.

We conclude by noting that, in this work, we considered
only learners that, given a demonstration, are able to solve
the corresponding IRL problem exactly. When this is not the
case, and the learner is only able to solve the IRL problem
approximately, available error bounds for such approximation
could be integrated into JOINTTEACH at the cost of a more
complex optimization. Suppose that learner ℓ is able to compute
only an approximate reward r̂ℓ(D) = rℓ(D)+mℓ, where ‖mℓ‖ =

ε. Let Pℓ(D,mℓ) denote the transition probabilities associated
with π∗

ℓ (r̂ℓ(D)). Then, (12) becomes

min
D

L
∑

ℓ=1

max
mℓ

∥

∥v∗ℓ − (I− γℓPℓ(D,mℓ))
−1r∗

∥

∥

2

2
. (13)

5. SIMULATIONS

In this section, we provide several illustrative examples7 of when
class teaching can, or cannot, be made in different scenarios. We
present two simple scenarios motivated by potential applications
in human teaching, and two extra scenarios that show other
possibilities of our algorithm, namely that it works in random
MDPs, that they handle differences in terms of the discount γ , as
well as more than 2 agents.

5.1. Scenarios
Scenario 1. Brushing teeth (cognitive training): Training
sequential tasks is very important for many real-world
applications. For instance, elderly whose cognitive skills are
diminishing often struggle to plan simple tasks such as brushing
their teeth or dressing up (Si et al., 2007). Motivated by such
situations, we model the problem of training a group of learners
in the different steps required to brush their teeth (Figure 5A).
To brush the teeth, the brush (B) and toothpaste (P) must be
picked; the brush must be filled (F) with toothpaste; only then
brushing will lead to clean teeth (C). People may forget to put
the paste, or may have coordination problems and be unable to
hold the brush while placing the paste.
Scenario 2. Addition with carry (education): When teaching
mathematical operations, teachers need to choose among
different algorithms to perform those operations, taking into
account the level of the learners, their capabilities for mental
operations, and how much practice they had (Putnam, 1987). Let
us consider addition with carry. For some learners, it might be
useful to write down the carry digit to avoid confusion. A more
advanced learner might find it confusing or even boring to be
forced to make such auxiliary step.We canmodel this problem as
the MDP in Figure 5B. The asterisks indicate which of the digits
of the result have been computed (top). The square indicates
whether or not the carry digit is memorized, while the double
square indicates whether or not the carry digit is written down.
A learner with bad memory may prefer to write down the carry
digit; there is a larger probability of forgetting it and getting a
wrong result.
Scenario 3. RandomMDPs: To further illustrate the application
of our approach in a more abstract scenario (ensuring that
our algorithm is not exploiting any particular structure of the
previous scenarios), we also consider randomly generated MDPs
with multiple states (5–20 states), actions (3–5 actions), and
rewards. The transition probabilities and reward are sampled
from a uniform distribution.
Scenario 4. Difference in discount factor γ : In a fourth scenario,
we consider two IRL learners described by the rewardless MDP
depicted in Figure 1, but where γA = 0.9 and γB = 0.01,
respectively. In this case, one learner is more “myopic” (i.e., eager
to receive a reward) than the other. The policy in state 1 is
different, so class teaching in not possible.
Scenario 5. Alternative MDP: In a fifth scenario, we consider
two IRL learners, A and B, described by the alternative

7Code for some of the simulations is available at https://github.com/maclopes/

learnandteachinIRL.
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FIGURE 5 | MDPs used in the examples. (A) Teeth brushing example: Each state is described by 4 binary features: P (holding paste), B (holding brush), F (brush with

paste), and C (teeth clean). We consider the case where one user that cannot hold two objects at the same time and so some of the states are inaccessible (states in

the shaded region). (B) Addition with carry: Simple model of 2-digit addition with a single carry. The asterisks represent digits. Some learners are able to memorize the

carry digit (the single square) and do not have to explicit write it (the double square). If memorizing may fail (top path), the teacher might suggest to write the carry digit

explicitly (lower path). Without writing the carry digit, a learner with difficulties may forget it (the top branch has higher probability), obtaining the wrong result. (C)

Alternative paths MDP: 3-state MDP, where the task to be learned is to reach state 3, for which there are two paths: a direct one and a longer one, going through

state 2. The two agents differ in the transition probabilities associated with actions a and c.

(rewardless) MDPs in Figure 5C. In this case, the task to be
learned is to reach state 3, but the two agents differ in the
transition probabilities associated with actions a and c. For agent
A, c is the best action; for agent B, a is the best action.
Scenario 6. 3 agents: In a final scenario, we consider a scenario
involving 3 learners. The scenario is mostly the same as
Scenario 1, but we now consider 2 constrained agents and 1 non-
constrained agent. We use Algorithm 1, where we first identify
the examples than can be presented to all agents simultaneously,
and then consider the agents one by one.

5.2. Methodology
We now describe in greater detail the methodology used to
evaluate our algorithms in simulation.

Most of our scenarios consider two different agents, dubbed A
and B, the single exception being Scenario 6, where we consider
3 agents, two of which are similar (see section 5.1). We evaluate
the performance of our algorithms in terms of effort and error
in the value function. Effort measures the percentage of states for
which the teacher must provide demonstration (i.e., the number
of samples in D) in relation to size of the state-space, as defined

in page 6. Specifically,

effort(D) =
|D|

|S|
. (14)

The error in the value function is the average difference between
the value of the policy estimated by the different agents and that
of the optimal policy, i.e.,

error(D) =
1

L

L
∑

ℓ=1

1

|S|

∑

s∈S

(vπ∗
ℓ (rℓ(D))(s)− v∗(s)). (15)

To provide a basis for comparing the performance of our
proposed algorithms, use three baselines:

• Individual, where we teach each agent individually, i.e., we
provide an individual demonstration Dℓ for each agent ℓ, ℓ =

A,B. In this case, the teacher provides a total of

|D| =

L
∑

ℓ=1

|Dℓ|
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examples. Hence, we expect this baseline to provide an upper
bound on the teaching effort, as each learner receives a
different demonstration. Conversely, we expect this baseline
to provide a lower bound on the error, as each learner receives
the best demonstration possible;

• Class ℓ, with ℓ = A,B, where we provide both learners with a
common demonstration, computed as if all agents were equal
to agent ℓ. In this case, the teacher provides a total of

|D| = |Dℓ|

examples. This demonstration should provide a lower bound
in terms of effort, but will potentially incur in errors,
since the it does not take into consideration the difference
between the learners.

The simulation results are collected through the following
procedure:

1. We compute π∗
ℓ (r

∗), for all agents ℓ;
2. Verify the conditions of Proposition 1;

• if class teaching is possible, set D = DA, or D = DB;
• otherwise, for SPLITTEACH, compute D as described

in Algorithm 1;
• for JOINTTEACH, computedD as described in Algorithm 2;

3. provide D to the different agents, according to the
aforementioned procedure;

4. for each agent ℓ, compute rℓ(Dℓ) using (3);
5. for each agent ℓ, compute π∗

ℓ (rℓ(D)) using value iteration;
6. compute the effort using (14);
7. compute the error using (15).

Due to the stochasticity of the different environments, the results
reported correspond to the averages over 100 independent runs
of each scenario.

5.3. Results
Table 2 presents the results on the six scenarios described in
section 5.1. To the extent of our knowledge, our work is the
first to address machine teaching to multiple IRL learners.
For this reason, we compare our algorithm with two natural
baselines: teaching each agent individually (appearing in the
table as “Individual”), where each agent gets an individualized
demonstration, and teaching the whole class ignoring the
differences between agents—by considering all agents to be like
agent ℓ, ℓ = A,B (appearing in the table either as “Class A”
or “Class B”). As discussed above, we expect individual teaching
to provide the best results in terms of task performance across
the class (shown in the columns marked with “v̄”), but at a
greater cost in terms of effort (shown in the columns marked
with “effort”). On the other hand, we expect the baselines that
ignore the differences between agents (“blind” class teachers) to
provide the best results in terms of effort, but often at a cost in
task performance.

As can be seen in the results, our algorithms are able to strike
a balance between these two extreme approaches to different
extents. Specifically,

TABLE 2 | Results for class teaching in five different Markov decision problems

(MDPs).

1. Brushing 2. Addition 3. Random

effort v − v∗ effort v − v∗ effort v − v∗

Individual 0.5 0.0 1.3 0.0 1.0 0.0

Class A 0.3 –3.9 0.6 –0.4 0.5 –4.1

Class B 0.3 –17.0 0.6 –3.2 0.5 –4.4

SPLITTEACH 0.4 0.0 0.7 0.0 0.7 0.0

JOINTTEACH 0.3 –2.2 0.6 –0.4 0.5 –2.0

4. Different γ 5. Alternative 6. 3 Agents

effort v − v∗ effort v − v∗ effort v − v∗

Individual 0.8 0.0 0.3 0.0 0.7 0.0

Class A 0.4 0.0 0.2 –4.5 0.3 –5.2

Class B 0.4 –3.6 0.2 –4.5 0.3 –11.0

SPLITTEACH 0.6 0.0 0.3 0.0 0.4 0.0

JOINTTEACH 0.4 0.0 0.2 –0.9 0.3 –3.0

We present the total effort and the average difference for all states of the value function of

the learned policy and the value function for the optimal policy. We consider five conditions:

individual teaching, teaching as if the class was homogeneous (Class A and Class B) and

both our approaches (SPLITTEACH and JOINTTEACH).

• In the Brushing scenario, neither “blind” class teaching
approaches could teach the task, even if the effort was
lower. Individual teaching could teach the task, but with
maximum effort. SPLITTEACH could reduce the effort while
still guaranteeing teaching, while JOINTTEACH ended up
converging to a “blind” class teaching strategy.

• In the addition scenario and the scenario featuring different
discounts, the results are similar. One remarkable difference is
that, in these two scenarios, SPLITTEACH was not able to save
in effort at all, when compared with the individual teaching.

• When considering random MDPs, the advantages of our
approaches become clearer: SPLITTEACH is significantly more
efficient than individual teaching, while still attaining perfect
performance. Conversely, JointTeach is the most efficient
approach, at a minimal loss in performance.

• In the scenario with the alternative 3-state MDP, SPLITTEACH

showcases maximum effort, while JOINTTEACH showcases
minimum effort. The performance of the latter is significantly
better than “blind” class teaching, even if not optimal.

6. CONCLUSIONS

In this work, we formalized the problem of class teaching for IRL
learners, studied its properties, and introduced two algorithms
to address this problem. We identified a set of conditions that
determine whether class teaching is possible or not. Contrary
to several recent results for density estimation and supervised
learning (Zhu et al., 2017; Yeo et al., 2019), where class teaching
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is always possible (even if with some added effort), in the case
of IRL teaching, our results establish that class teaching is not
always possible.

We illustrated the main findings of our paper by comparing
our proposed algorithms in several different simulation scenarios
with natural baselines. Our simulation results confirmed that
our class teaching approaches are often able to teach as well as
individual teaching, and often with a lower effort. The results
in this work provide a quantitative evaluation of when class
teaching is possible. As a side contribution, we showed also
a simpler way to solve the IRL problem using directly the
value function.

In this work, our presentation focused almost exclusively on
scenarios with only two agents. However, we showed in the
results that a trivial extension to more agents can be made by
considering first class teaching, and then individual teaching.
A more efficient method could consider the creation of a class
partition, as presented in the work of Zhu et al. (2017).

One assumption we make throughout the paper is that
the teacher knows the model of the students exactly. In a
practical situation, without any added information/interaction,
this assumption might be unrealistic. We could instead consider
that the teacher does not have the exact model, but a distribution
describing the student variation. In this case, the distribution
could be used to decide when to do individual teaching or group
teaching. The group teaching might still be possible, but some
form of interaction might be needed (Walsh and Goschin, 2012;
Haug et al., 2018; Melo et al., 2018).

We can envision several applications of this work in the
teaching of humans. For applications involving humans, the
complexity of the algorithm is not a problem, but the problem

is assumption of knowing the learner’s decision-making process
(i.e., the rewardless MDP describing the human). In future work,
we will consider how to include interaction in the teaching
process, to overcome the lack of knowledge regarding the human
learner, as was done for other teaching problems (Melo et al.,
2018). Other applications of machine teaching include the study
of possible attacks to machine learners (Mei and Zhu, 2015). We
can use our approach to see if a set of learners can be attacked
simultaneously or not.
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