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Background: Hepatocyte growth factor (HGF)/cMet pathway is necessary for repair and regeneration following acute kidney injury 
(AKI). We evaluated the clinical potential of plasma HGF and soluble cMet as prognostic biomarkers for severe AKI requiring continu-
ous renal replacement therapy (CRRT). 
Methods: One hundred thirty-six patients with severe AKI who participated in the VENUS (volume management under body composi-
tion monitoring in critically ill patients on CRRT) trial between 2017 and 2019 were enrolled in this study. We investigated associa-
tions between plasma HGF and cMet concentrations and all-cause mortality. 
Results: Plasma HGF and soluble cMet levels were positively correlated. Patients were divided into three groups based on their HGF 
and soluble cMet concentrations. The day D 0, D2, and D7 highest concentration HGF groups had significantly higher in-hospital mor-
tality after adjusting for sex, body mass index, Acute Physiology and Chronic Health Evaluation II, and age-adjusted Charlson comor-
bidity index score, especially on D7 (hazard ratio, 4.26; 95% confidence interval, 1.71–10.62; p = 0.002). D7 soluble cMet level was 
also associated with mortality. Receiver operating characteristic curve analysis indicated that D7 HGF and soluble cMet levels were 
best at predicting mortality. Addition of plasma HGF and soluble cMet to conventional prognostic indices significantly improved the 
predictive value for mortality on D7. However, plasma HGF and soluble cMet were not associated with fluid status. 
Conclusion: Plasma HGF and soluble cMet levels were significant predictors of the outcomes of severe AKI patients undergoing 
CRRT. There was no correlation between plasma HGF and soluble cMet levels and fluid balance.  
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Introduction 

Acute kidney injury (AKI) occurs in 10% of hospitalized 

patients and 30% of critically ill patients each year, and its 

incidence is increasing [1]. Severe AKI is one of the leading 

causes of death in critically ill patients. Despite recent tech-

nical advances in AKI management, mortality rates associat-

ed with severe AKI are approximately 40% to 50% [2,3]. 

Reliable biomarkers are important for treating AKI pa-

tients and predicting outcomes. Several studies have re-

ported various novel biomarkers for AKI that can detect 

kidney injury before serum creatinine (sCr), such as tissue 

inhibitor of metalloproteinase (TIMP)-2, insulin-like growth 

factor-binding protein 7 (IGFBP7) [4], and urinary matrix 

metalloproteinase 7 [5]. However, few studies have investi-

gated prognostic predictors of the outcomes of patients with 

severe AKI undergoing continuous renal replacement thera-

py (CRRT). 

Hepatocyte growth factor (HGF) and its tyrosine kinase 

receptor, cMet, have important roles in regulating wound 

healing, cell proliferation, and tissue fibrosis [6-8]. Several 

experimental studies have indicated that HGF has multiple 

protective effects on physiological and pathophysiological 

processes in the kidney, including accelerated DNA synthe-

sis and improved kidney cell regeneration, apoptosis, and 

necrosis (including that of proximal tubular cells, mesangial 

cells, podocytes, and endothelial cells) [7,8]. Activation of the 

HGF/cMet axis can improve acute and chronic kidney dis-

ease (CKD) by inhibiting oxidative stress, apoptosis, fibrosis, 

and inflammation [9,10]. We have also confirmed that cMet 

activation by agonistic antibodies can improve renal fibrosis 

[11]. 

A recent study showed that plasma HGF level predict-

ed all-cause mortality and cardiovascular mortality in the 

general population [12]. Additionally, HGF and cMet can 

predict clinical outcomes of patients with various cancers 

[13,14]. Recent studies have reported that HGF and cMet are 

biomarkers for CKD [15,16]. However, the clinical predictive 

abilities of HGF and soluble cMet in AKI patients have not 

been well studied. 

In this study, we investigated whether plasma HGF and 

soluble cMet levels could predict clinical outcomes of AKI 

patients who participated in the VENUS (volume manage-

ment under body composition monitoring in critically ill pa-

tients on CRRT) trial. Furthermore, we investigated whether 

plasma HGF and soluble cMet levels were associated with 

fluid balance. 

Methods 

Study design and population 

A total of 136 severe AKI patients admitted to seven hospitals 

in Korea who participated in the VENUS trial between 2017 

and 2019 were enrolled in this study [3]. The VENUS trial 

was designed to determine whether bioelectrical impedance 

analysis-guided fluid management could help achieve eu-

volemic status in patients treated with CRRT more efficiently 

than fluid management guided by a generally used quantifi-

cation method. All participants were selected from patients 

who were scheduled to undergo CRRT for at least 72 hours. 

There was no mandatory standardized CRRT protocol. CRRT 

initiation was decided by each institution’s physicians. CRRT 

settings, effluent dose, and target I/O balance were freely 

applied to maintain stable blood pressure to meet metabolic 

demands. In general, blood flow was set to 100–130 mL/min, 

and target effluent dose was set to 35 mL/kg/hr. 

Exclusion criteria were the following: age younger than 18 

years; imminent death (<24 hours); maintenance dialysis 

used before current hospitalization; any other major illness 

that, according to the investigators’ judgment, would sub-

stantially increase the risk associated with the subject’s par-

ticipation in this study; and withdrawal of patient consent.  

Clinical data and sample collection  

Clinical baseline characteristics data at the time of study en-

rollment, including age, sex, mean arterial pressure (MAP), 

body mass index (BMI), laboratory findings, contributing 

factors for AKI, all-cause mortality, outcome events include 

sepsis, cardiogenic diseases, pulmonary diseases, and 

cancer, among others, and Acute Physiology and Chronic 

Health Evaluation II (APACHE II) scores, and age-adjusted 

Charlson comorbidity index (Age-CCI) scores, were collect-

ed. Age-CCI is the combination of the age equivalence index 

and Charlson comorbidity index (CCI) [17]. For patients 

over 40 years old, the cumulative score was 1 point for each 

additional 10 years of age, and the score for age was added to 

the CCI. A completely resolved condition or current inactive 

surgery history was not considered a comorbid disease [18]. 
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Laboratory evaluations included measurements of complete 

blood cell counts, electrolytes, sCr, total protein, albumin, 

calcium, and high-sensitivity C-reactive protein. Blood sam-

ples were centrifuged to extract plasma. The plasma was 

frozen, stored at –70°C, and thawed before analysis. 

All procedures were performed in accordance with the 

ethical standards of the institutional and/or national re-

search committee and the 1964 Declaration of Helsinki 

and its later amendments or comparable ethical standards. 

All patients provided written informed consent at the time 

of their enrollment. The APACHE II score was designed to 

measure the disease severity of adult patients admitted to 

the intensive care unit (ICU) during the first 24 hours after 

admission. It is calculated using the patient’s age and 12 

routine physiological measurements (alveolar-arterial ox-

ygen gradient [AaDO2] or partial pressure of oxygen [PaO2] 

depending on the fraction of inspired oxygen [FiO2], tem-

perature, MAP, pH, heart rate, respiratory rate, sodium level, 

potassium level, creatinine level, hematocrit, white blood 

cell count, and Glasgow Coma Scale score). Approval to per-

form the study was obtained from the Institutional Review 

Boards of all participating centers (No. 20-2019-79). The trial 

protocol has been registered at http://www.clinicaltrials.gov 

(NCT03330626). 

Measurement of plasma soluble cMet and hepatocyte 
growth factor 

Enzyme-linked immunosorbent assay kits were used to 

measure the plasma concentrations of HGF (DY294; Becton 

Dickinson, Minneapolis, MN, USA) and soluble cMet (KHO 

2031; Invitrogen, Vienna, Austria) on day (D) 0, D2, and D7. 

Plasma HGF concentrations were measured after a 10-fold 

dilution and plasma soluble cMet concentration was mea-

sured after a two-fold dilution. Enzyme-linked immunosor-

bent assays was performed according to the manufacturers’ 

instructions. All laboratory investigators were blinded to the 

sample source, and all measurements were performed in 

duplicate. 

Assessment of fluid status 

Fluid status was measured by bioimpedance analysis using 

InBody S10 (InBody, Seoul, Korea) on D0, D2, and D7. Mea-

surements of total body water (TBW), intracellular water 

(ICW), and extracellular water (ECW) were obtained with 

InBody S10. Fluid state was based on ECW/TBW and TBW/

height squared (H2). 

Clinical outcomes 

Primary outcome was all-cause mortality after CRRT. We 

investigated the associations between HGF concentration 

and soluble cMet concentration and all-cause mortality. In 

this study, survival duration was calculated from the day of 

enrollment in the study to the day of discharge from the hos-

pital or death. The relationship between all-cause mortality 

after 2 years of follow-up was also assessed, starting from the 

first enrolled patient. Secondary outcome was fluid status 

according to HGF and soluble cMet concentrations.  

Statistical analysis  

Patients were classified into three groups based on their 

D0 HGF and soluble cMet concentrations. Table 1 shows 

the HGF and soluble cMet concentrations of each group. 

Categorical variables, which were expressed as frequencies 

and proportions, were compared using the chi-square tests. 

After testing for normality, normally distributed continuous 

variables were expressed as mean ± standard deviations 

and compared using Student t test or one-way analysis of 

variance. Nonnormally distributed variables were expressed 

as medians (interquartile ranges) and compared using the 

Mann-Whitney U or Kruskal-Wallis tests. To investigate the 

impact of D0, D2, and D7 plasma soluble cMet and HGF 

levels on mortality, Kaplan-Meier survival curves were con-

structed. Cox proportional hazard models with plasma sol-

uble cMet or HGF levels were used for multivariate survival 

analyses. To examine the prognostic value of plasma HGF 

and soluble cMet levels at multiple time points, we calcu-

lated the statistical significance of differences between the 

areas under the curve (AUC) at three-time points (D0, D2, 

and D7). Survival duration was calculated from day 0 to eval-

uate the predictive effects of D2 and D7 soluble cMet and 

HGF. Receiver operating characteristic (ROC) curves and 

AUC were generated to evaluate the accuracy and predic-

tive capability of each indicator of survival. To examine the 

incremental prognostic value before and after inclusion of 

plasma HGF and soluble cMet levels with traditional indices, 

including APACHE II and Age-CCI, we calculated the statis-
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tical significance of differences between the AUC, integrated 

discrimination improvement (IDI) index, and category-free 

net reclassification improvement (cfNRI) index. We divided 

patients into four groups based on median HGF and soluble 

cMet levels to determine the relationship between the two 

indicators and mortality rate. Patients with low concentra-

tions of HGF and soluble cMet were classified into group 1; 

individuals with high concentrations of both HGF and solu-

ble cMet were classified into group 4. Those patients with a 

low HGF concentration but high soluble cMet concentration 

were assigned to group 2; those with a high concentration 

of HGF combined with a low concentration of soluble cMet 

were assigned to group 3. We evaluated fluid status on D0, 

D2, and D7 according to HGF and soluble cMet concen-

trations using Student t test. All statistical analyses were 

performed using IBM SPSS version 23 (IBM Corp., Armonk, 

NY, USA) and R program version 3.2.5 (The R Foundation for 

Statistical Computing, Vienna, Austria). The p-value of <0.05 

indicated statistical significance. 

Results 

Baseline characteristics 

The study cohort consisted of 136 patients divided into three 

groups based on their HGF and soluble cMet concentrations 

on D0. Table 1 provides clinical baseline characteristics based 

on D0 HGF and soluble cMet concentrations. There were no 

significant differences in diabetes, hypertension, BMI, sCr, 

or blood urea nitrogen among the three groups based on D0 

HGF and soluble cMet concentrations. In the group with the 

highest D0 HGF concentration, the soluble cMet concentra-

tion was significantly higher (p = 0.02), MAP was significantly 

lower (p = 0.009), and more patients were on vasopressors (p 

= 0.02). The laboratory findings of patients in the highest D0 

HGF group indicated higher lactate levels in this group (p < 

0.001) and a lower pH (p = 0.004). The group with the highest 

D0 soluble cMet concentration had a higher APACHE II score 

than the other two groups (p = 0.03). 

Variations and correlations between hepatocyte growth 
factor and soluble cMet concentrations after continuous 
renal replacement therapy 

Both HGF and soluble cMet concentrations tended to 
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decrease after CRRT. HGF concentrations on D7 were sig-

nificantly reduced compared to those on D0 (Fig. 1A). Con-

centrations of HGF and soluble cMet on D0 were positively 

correlated with each other (R2 = 0.126; p = 0.03) (Fig. 1B). 

HGF and soluble cMet concentrations were not significantly 

correlated on D2 (R2 = 0.107 and p = 0.09) or D7 (R2 = 0.06 

and p = 0.42) (Fig. 1C, D).  

Effects of plasma hepatocyte growth factor levels on 
clinical outcomes  

Kaplan-Meier survival curves and log-rank tests were used 

to investigate the associations between plasma HGF con-

centrations on D0, D2, and D7 and mortality. We divided pa-

tients into three groups and analyzed survival rates. Survival 

rate distribution of the first and second groups based on 

HGF and soluble cMet levels were similar, but different from 

those of the third group that had the highest concentration 

Figure 1. Variations and correlations between HGF and soluble cMet levels. (A) Trends of HGF and soluble cMet concentrations 
in plasma after CRRT. (B) Plasma HGF level converted to a natural logarithm was positively correlated with plasma soluble cMet level 
on D0 after CRRT was initiated. Pearson correlation coefficient was R2 = 0.126 with a p-value of 0.03. No correlation was observed 
between plasma HGF levels and cMet levels on D2 (C) or D7 (D) after initiating CRRT.
CRRT, continuous renal replacement therapy; D, day; HGF, hepatocyte growth factor.

of both HGF and soluble cMet. Therefore, we combined the 

first group and the second group for analysis (Supplemen-

tary Fig. 1, available online). The risk of all-cause mortality 

was increased in patients with the highest D0 HGF levels 

(p = 0.04) (Fig. 2A). D2 and D7 HGF levels displayed sim-

ilar associations with in-hospital mortality, especially D7 

HGF level (p = 0.01 and p = 0.001, respectively) (Fig. 2B, C). 

In the 2-year follow-up data, plasma D0, D2, and D7 HGF 

levels were still closely related to all-cause mortality (Sup-

plementary Fig. 2A–C, available online). Next, we performed 

multivariate Cox proportional analysis to investigate the 

independent effects of D0, D2, and D7 HGF levels on patient 

outcomes (Table 2). Elevated HGF values remained an in-

dependent variable associated with clinical outcomes after 

adjusting for confounding variables, including sex, BMI, 

APACHE II score, and Age-CCI (D0 HGF: hazard ratio [HR] 

1.71, 95% confidence intervals [CI] 1.02–2.86, p = 0.04; D2 

HGF: HR 2.57, 95% CI 1.37–4.83, p = 0.003; D7 HGF: HR 4.26, 
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Figure 2. Survival rates of AKI patients who underwent CRRT according to plasma HGF and soluble cMet concentrations. (A) 
Patients in group 3 had a significantly lower survival rate than patients in group 1 and group 2 according to plasma HGF concentration 
on D0 (log-rank p = 0.04). (B and C) Patients in HGF group 3 had a significantly lower survival rate than those in groups 1 and 2 on D2 
(log-rank p = 0.01) and D7 (log-rank p = 0.001). Patients in group 3 were divided according to plasma soluble cMet concentrations on 
D0, D2, and D7. (D and E) No difference in mortality rates was found between cMet groups 1 and 2 and group 3 on D0 and D2. (F) The 
risk of all-cause mortality was significantly increased in the patient group with the highest D7 cMet levels (p = 0.005).
AKI, acute kidney injury; CRRT, continuous renal replacement therapy; D, day; HGF, hepatocyte growth factor.

95% CI 1.71–10.62, p = 0.002). 

Additionally, we evaluated the effects of changes in HGF 

concentrations between different time points during the 

week after CRRT initiation on clinical outcomes. Changes in 

HGF concentrations were calculated as differences between 

D2 and D0, between D7 and D0, and between D7 and D2. 

Changes in HGF concentrations were not related to mortali-

ty (Supplementary Fig. 3A–C, available online). 

Association between plasma soluble cMet level and 
clinical outcomes 

We used the same method to investigate the associations 

between plasma soluble cMet concentrations on D0, D2, 

and D7 and in-hospital mortality. D0 and D2 soluble cMet 

levels did not predict all-cause mortality (Fig. 2D–E). On 

D7, the risk of all-cause mortality (Fig. 2F) was significantly 

increased in the patient group with the highest soluble cMet 

level (p = 0.005). In the 2-year follow-up data, plasma D0 sol-

uble cMet level was still closely related to all-cause mortality 

(Supplementary Fig. 2D–F). Multivariate Cox regression 

analysis showed that the group with the highest soluble cMet 

level had a significantly higher mortality rate than the other 

groups after adjusting for other risk factors such as sex, BMI, 

APACHE II score, and Age-CCI (HR, 4.18; 95% CI, 1.69–10.32; 

p = 0.002) (Table 3). Additionally, changes in soluble cMet 

concentrations between D2 and D0, between D7 and D0, 

and between D7 and D2 were not associated with all-cause 

mortality (Supplementary Fig. 3D–F). 
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Ability of plasma hepatocyte growth factor and soluble 
cMet to predict outcomes at different time points 

Levels of HGF and soluble cMet that best predicted mortali-

ty were investigated using ROC curves. The AUCs (95% CI) of 

D0, D2, and D7 HGF were 0.576 (0.440–0.711), 0.540 (0.392–

0.689), and 0.716 (0598–0.838), respectively (Fig. 3A). The 

AUCs (95% CI) of D0, D2, and D7 soluble cMet were 0.579 

(0.440–0.719), 0.570 (0.429–0.711), and 0.678 (0.553–0.825), 

respectively (Fig. 3B). 

Plasma hepatocyte growth factor and soluble cMet as 
biomarkers for predicting mortality 

Next, we evaluated whether the addition of plasma HGF and 

soluble cMet to conventional prognostic markers such as 

APACHE II and Age-CCI improved prediction of mortality 

(Table 4). In ROC analysis, the addition of log(D7 HGF) and 

log(D7 cMet) increased the AUC. The AUCs (95% CIs) of the 

APACHE II (model 1), APACHE II + log(D7 HGF) (model 2), 

and APACHE II + Age-CCI + log(D7 HGF) + log(D7 cMet) 

(model 3) were 0.523 (0.393–0.0.653), 0.710 (0.588–0.832), 

and 0.749 (0.635–0.863), respectively. Additionally, the 

IDI and cfNRI for predicting mortality (model 1 vs. model 

3) were 0.166 (0.070–0.262; p < 0.001) and 75.1% (29.9%–

120.3%; p < 0.001), suggesting that addition of plasma log(D7 

HGF) and log(D7 cMet) to conventional predictors of mor-

tality significantly increased predictive value. 

Prediction of clinical outcomes according to combined 
hepatocyte growth factor and soluble cMet concentrations 

The ability to predict patient outcomes using the combina-

tion of HGF and soluble cMet concentrations was evaluated. 

Group 1 had a significantly higher mortality rate than the 

other groups (p = 0.04). Furthermore, the difference in mor-

tality between these groups was statistically significant when 

using D7 HGF and cMet concentrations (p = 0.02) (Supple-

mentary Fig. 4A–C, available online). 

Fluid status according to hepatocyte growth factor and 
soluble cMet concentrations 

We investigated fluid status according to HGF and soluble 

cMet concentrations using parameters of fluid status mea-

sured using InBody S10. There was no significant difference 

Figure 3. Comparison of the ROC curves for plasma HGF and soluble cMet at various time points. (A) ROC curve and AUC for 
plasma HGF concentrations at various time points. (B) ROC curve and AUC for plasma soluble cMet concentrations at various time 
points.
AUC, area under the curve; D, day; HGF, hepatocyte growth factor; ROC, receiver operating characteristic.
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between ECW/TBW and plasma HGF and soluble cMet 

levels on D0, D2, or D7 (Fig. 4A). There was no significant 

difference between plasma HGF levels on D0 and D7 and 

soluble cMet levels on D0, D2, and D7. TBW/H2 increased 

significantly (p = 0.02) only in the group of patients with the 

highest D2 HGF level (Fig. 4B). 

Discussion 

In this study, we found that increased plasma HGF and 

soluble cMet levels could predict the outcomes of patients 

with severe AKI undergoing CRRT. Plasma HGF and soluble 

cMet levels on D7 were the most valuable predictors of pa-

tient outcomes. The inclusion of plasma HGF and soluble 

cMet levels with conventional prognostic index markers 

improved the predictive power of the composite indices. 

Finally, there was no correlation between plasma HGF and 

soluble cMet levels and fluid balance. To our knowledge, 

this is the first study to show that increased plasma HGF 

and soluble cMet levels of patients with severe AKI can pre-

dict clinical outcomes. 

HGF and its receptor cMet are key components of a sig-

naling pathway with critical roles in cellular regeneration, 

proliferation, differentiation, invasion, angiogenesis, anti-

apoptosis, tissue fibrosis, and wound healing [19,20]. The 

HGF/ cMet signaling pathway has therefore been identified 

as a target to alleviate the various types of AKI and prevent 

progression to CKD. The expression of HGF has been shown 

to be increased in various acute and CKDs including experi-

mental acute ischemic injury, toxic elements, and unilateral 

nephrectomy [21,22]. 

HGF may act as an endocrine and paracrine effector for 

kidney repair during kidney injury. Administration of exoge-

nous HGF promotes tubular repair and recovery [22]. Previ-

ously, we demonstrated that administration of cMet agonis-

tic antibodies halted the progression of CKD [11]. Our group 

also confirmed that cMet agonistic antibodies attenuate 

apoptosis in AKI [23]. Conversely, disruption of HGF signal-

ing aggravates renal interstitial fibrosis after obstructive in-

jury [24]. However, many studies have reported that elevated 

plasma HGF and soluble cMet concentrations are associated 

with poorer clinical prognosis. Santalahti et al. [12] reported 

that levels of HGF and placental growth factor in plasma 

could predict mortality in a general population. Elevated 

circulating HGF levels have been observed in many patho-

Ta
bl

e 
4.

 In
cr

em
en

ta
l v

al
ue

s 
of

 H
GF

 a
nd

 s
ol

ub
le

 c
M

et
 c

om
pa

re
d 

to
 tr

ad
iti

on
al

 ri
sk

 fa
ct

or
s 

fo
r p

re
di

ct
in

g 
m

or
ta

lit
y 

du
e 

to
 s

ev
er

e 
ac

ut
e 

ki
dn

ey
 in

ju
ry

 (n
 =

 8
4)

D
ay

M
od

el
R

O
C 

an
al

ys
is

 (D
eL

on
g 

te
st

)
ID

I a
na

ly
si

s
C

at
eg

or
y-

fr
ee

 N
R

I a
na

ly
si

s

AU
C 

(9
5

%
 C

I)
p-

va
lu

e
ID

I (
9

5
%

 C
I)

p-
va

lu
e

N
R

I (
9

5
%

 C
I)

p-
va

lu
e

0
AP

AC
H

E 
II

0
.5

2
3

 (0
.3

9
3

–
0

.6
5

3
)

R
ef

er
en

ce
R

ef
er

en
ce

R
ef

er
en

ce

AP
AC

H
E 

II 
+

 A
ge

-C
CI

0
.5

81
 (0

.4
2

6
–

0
.7

3
6

)
0

.5
5

0
.0

3
4

 (–
0

.0
1

2
 to

 0
.0

8
0

)
0

.1
5

0
.1

2
3

 (–
0

.3
6

2
 to

 0
.6

0
8

)
0

.6
2

0
AP

AC
H

E 
II 

+
 lo

g(
H

G
F)

0
.5

8
4

 (0
.4

4
8

–
0

.7
2

0
)

0
.4

0
0

.0
0

6
 (–

0
.0

10
 to

 0
.0

2
2

)
0

.4
9

0
.2

8
5

 (–
0

.1
9

8
 to

 0
.7

67
)

0
.2

5

AP
AC

H
E 

II 
+

 A
ge

-C
CI

 +
 lo

g(
H

G
F)

0
.5

9
5

 (0
.4

4
2

–
0

.7
4

9
)

0
.4

5
0

.0
4

3
 (–

0
.0

0
9

 to
 0

.0
9

5
)

0
.1

1
0

.1
5

5
 (–

0
.3

2
9

 to
 0

.6
4

0
)

0
.5

3

AP
AC

H
E 

II 
+

 A
ge

-C
CI

 +
 lo

g(
H

G
F)

 +
 lo

g(
cM

et
)

0
.6

31
 (0

.4
8

2
–

0
.7

81
)

0
.2

9
0

.0
6

3
 (0

.0
0

2
 to

 0
.1

24
)

0
.0

4
0

.3
11

 (–
0

.1
6

9
 to

 0
.7

9
0

)
0

.2
0

2
AP

AC
H

E 
II 

+
 lo

g(
H

G
F)

0
.5

47
 (0

.4
01

–
0

.6
9

2
)

0
.6

6
0

.0
01

 (–
0

.0
0

6
 to

 0
.0

0
9

)
0

.7
5

0
.2

4
6

 (–
0

.2
3

4
 to

 0
.7

27
)

0
.3

2

AP
AC

H
E 

II 
+

 A
ge

-C
CI

 +
 lo

g(
H

G
F)

0
.5

8
5

 (0
.4

3
3

–
0

.7
37

)
0

.5
1

0
.0

3
5

 (–
0

.0
1

2
 to

 0
.0

8
2

)
0

.1
4

0
.1

8
8

 (–
0

.2
97

 to
 0

.6
7

2
)

0
.4

5

AP
AC

H
E 

II 
+

 A
ge

-C
CI

 +
 lo

g(
H

G
F)

 +
 lo

g(
cM

et
)

0
.5

9
3

 (0
.4

47
–

0
.7

3
9

)
0

.4
6

0
.0

47
 (–

0
.0

0
6

 to
 0

.1
0

0
)

0
.0

8
0

.1
67

 (–
0

.3
14

 to
 0

.6
5

8
)

0
.5

0

7
AP

AC
H

E 
II 

+
 lo

g(
H

G
F)

0
.7

10
 (0

.5
8

8
–

0
.8

3
2

)
0

.0
2

0
.0

61
 (0

.0
1

2
 to

 0
.1

0
9

)
0

.0
1

0
.7

19
 (0

.2
6

5
 to

 1
.3

17
2

)
0

.0
0

2

AP
AC

H
E 

II 
+

 A
ge

-C
CI

 +
 lo

g(
H

G
F)

0
.6

81
 (0

.5
4

6
–

0
.8

16
)

0
.0

8
0

.0
9

5
 (0

.0
2

3
 to

 0
.1

6
8

)
0

.0
1

0
.4

14
 (–

0
.0

6
5

 to
 0

.8
9

2
)

0
.0

9

AP
AC

H
E 

II 
+

 A
ge

-C
CI

 +
 lo

g(
H

G
F)

 +
 lo

g(
cM

et
)

0
.7

4
9

 (0
.6

3
5

–
0

.8
6

3
)

0
.0

2
0

.1
6

6
 (0

.0
7

0
 to

 0
.2

6
2

)
0

.0
01

0
.7

51
 (0

.2
9

9
 to

 1
.2

0
3

)
0

.0
01

Ag
e-

CC
I, 

ag
e-

ad
ju

st
ed

 C
ha

rls
on

 c
om

or
bi

di
ty

 in
de

x;
 A

PA
CH

E 
II,

 A
cu

te
 P

hy
si

ol
og

y 
an

d 
Ch

ro
ni

c 
H

ea
lth

 E
va

lu
at

io
n 

II;
 A

U
C,

 a
re

a 
un

de
r 

th
e 

cu
rv

e;
 H

G
F,

 h
ep

at
oc

yt
e 

gr
ow

th
 f

ac
to

r; 
ID

I, 
in

te
gr

at
ed

 
di

sc
rim

in
at

io
n 

im
pr

ov
em

en
t; 

N
R

I, 
ne

t r
ec

la
ss

ifi
ca

tio
n 

im
pr

ov
em

en
t; 

R
O

C,
 re

ce
iv

er
 o

pe
ra

tin
g 

cu
rv

e.

Li, et al. Plasma HGF/soluble cMet are acute kidney injury biomarkers

605www.krcp-ksn.org



Figure 4. Euvolemic status on D7 after CRRT according to HGF and soluble cMet concentrations. (A) Comparison of ECW/TBW 
and plasma HGF or soluble cMet on D0, D2, and D7. (B) Comparison of TBW/H2 and plasma HGF or soluble cMet levels.
CRRT, continuous renal replacement therapy; D, day; ECW, extracellular water; HGF, hepatocyte growth factor; H2, height squared; TBW, 
total body water.
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logic liver diseases, including hepatitis and hepatocellular 

carcinoma, and have been shown to be correlated with more 

severe liver cirrhosis [25]. Likewise, HGF levels are associ-

ated with sepsis and correlated with established markers of 

endothelial cell injury. Elevated HGF level in sepsis patients 

is a significant indicator of a poor prognosis [26]. Moreover, 

an increase in soluble cMet concentration has been shown 

to be associated with a poor clinical prognosis. As reported 

in various malignant tumors, soluble cMet concentration is 

associated with progression, metastasis, and a poor progno-

sis [27–29]. Our group previously demonstrated increased 

urinary cMet in diabetic nephropathy patients was strongly 

associated with progression to end-stage renal disease [15]. 

There are several explanations for why elevated HGF and 

soluble cMet concentrations are highly related to a poorer 

prognosis. First, the greater the extent of the disease, the 

greater the activation of the HGF/cMet signaling pathway 

for cell regeneration. Overexpression of the HGF/cMet 

pathway and increased plasma HGF and soluble cMet con-

centrations may be closely related to disease progression. In 

addition, an increase in soluble cMet inhibits the phosphor-

ylation of cMet, thereby inhibiting the HGF/cMet signaling 

pathway [30]. 

One study reported a marked increase in urinary HGF 

levels in patients with AKI [23]. Another study showed that 

HGF concentration in serum was significantly increased in 

AKI patients relative to participants receiving hemodialysis 

(approximately 20-fold) [31]. Clinical trials have indicated 

that HGF and other biomarkers in urine (such as neutrophil 

gelatinase-associated lipocalin [NGAL]) have the potential 

to predict AKI [32]. These studies suggested that HGF was 

correlated with AKI severity. Despite these data, these stud-

ies only examined AKI patients with urine volumes that were 

maintained and measured at one-time point; furthermore, 

cMet concentration was not considered. Additionally, the 

mortality rate of patients was not assessed. 

We previously reported that the expression of HGF and 

soluble cMet in plasma was significantly increased in AKI 

patients [23]. In this study, we evaluated if plasma HGF and 

soluble cMet concentrations could predict clinical longitu-

dinal outcomes of severe AKI patients undergoing CRRT. We 

confirmed that mortality rates during hospitalization were 

significantly higher in patients with severe AKI and patients 

with the highest HGF levels on D0, D2, and D7. Soluble cMet 

level on D7 was a significant predictor of patient mortality. 

After adjusting for sex, BMI, APACHE II score, Age-CCI, HGF 

and soluble cMet levels were still significant predictors of 

patient mortality. A large amount of HGF may be released 

as an injury protection mechanism to activate downstream 

signaling pathways. HGF is released not only by damaged 

kidneys but also distant organs (lung, liver, spleen) and can 

participate in tubular repair both as an endocrine factor and 

paracrine substance [33]. This suggests that plasma HGF 

and soluble cMet levels can be used as predictors of the 

prognosis of patients with severe AKI and of clinical risk and 

recovery after AKI. 

A previous study showed that a panel of urine biomarkers 

measured on D1, D7, and D14 yielded significantly different 

results for those recovering from AKI compared with those 

patients who did not recover [34]. We analyzed the correla-

tion between plasma HGF and soluble cMet concentrations 

and mortality at multiple time points after the initiation of 

CRRT (D0, D2, and D7). We found that plasma HGF as a 

clinical predictor was not affected by CRRT and that plasma 

HGF was a better predictor of mortality than soluble cMet. 

Furthermore, we examined whether HGF and soluble cMet 

levels on D0, D2, and D7 were reliable biomarkers of mortal-

ity using ROC curves and AUCs. D7 HGF and soluble cMet 

concentrations were prognostic biomarkers with high sensi-

tivity and specificity. The best time to measure plasma HGF 

and soluble cMet levels may be on D7 after the start of CRRT 

for severe AKI; repeated measurements can improve predic-

tion accuracy. 

An individual biomarker is rarely sufficient for clearly de-

fining a particular pathologic state [35,36]. Vaidya et al. [32] 

measured kidney injury molecule-1, HGF, NGAL, and inter-

leukin-18 levels simultaneously in the same aliquot of urine. 

The specificity and sensitivity of the combination of these 

urinary biomarkers for the diagnosis of AKI were signifi-

cantly higher than those of single biomarkers. The urinary 

[TIMP-2]·[IGFBP7] test can be used to identify critically ill 

patients at high risk for imminent AKI [5]. Therefore, multi-

ple biomarkers measured in the same biological sample at 

the same time are extremely useful for predicting outcomes. 

Circulating HGF and cMet are attractive potential alternative 

biomarkers for ligand overexpression and receptor overex-

pression, respectively [37]. In this study, we analyzed the 

ability of combined plasma HGF and soluble cMet levels 

to predict mortality in patients with severe AKI. We found 

that the mortality rates of groups with high HGF and soluble 
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cMet concentrations on D2 and D7 were significantly higher 

than those of other groups; furthermore, the inclusion of 

soluble cMet and HGF with conventional prognostic indices 

such as APACHE II and Age-CCI significantly improved pre-

dictive power. 

Rhee et al. [38] demonstrated that TBW/H2 (≥13 L/m2) and 

ICW/H2 were independently associated with higher in-hos-

pital mortality for patients with AKI undergoing CRRT. That 

study showed that the fluid status could be assessed using 

ECW/TBW in critically ill patients requiring CRRT and that 

ECW/TBW could predict mortality [39]. All patients who 

participated in this study were admitted to the ICU, and their 

fluid balance was maintained during CRRT. We used ECW/

TBW to evaluate the correlation between fluid status and 

plasma HGF or soluble cMet levels; however, no significant 

correlation was found. 

The present study had some limitations. First, although 

ethnicity can influence several clinical outcomes, data were 

acquired only from a Korean population, and this study 

was limited to Korean tertiary hospitals. Second, only mor-

tality during hospitalization was assessed and long-term 

outcomes were not considered. Finally, plasma HGF and 

soluble cMet concentrations could be affected by CRRT. It is 

necessary to identify HGF and soluble cMet levels in CRRT 

waste liquid or blood before and after CRRT to confirm that 

the CRRT waste liquid does not contain HGF or soluble cMet 

in future studies. 

In summary, plasma HGF measurements at multiple time 

points predicted the clinical outcomes of patients with se-

vere AKI undergoing CRRT. Furthermore, plasma soluble 

cMet measurements at a specific time point were able to 

predict clinical outcomes. For accurate mortality predic-

tions, the most valuable time to perform plasma HGF and 

soluble cMet measurements is D7 after CRRT, and repeated 

measurements can improve accuracy. We found no correla-

tion between plasma HGF and soluble cMet levels and fluid 

balance in this study. 
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