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Abstract

Background: Identification of specific biological functions, pathways, and appropriate prognostic biomarkers is
essential to accurately predict the clinical outcomes of and apply efficient treatment for breast cancer patients.

Methods: To search for metastatic breast cancer-specific biological functions, pathways, and novel biomarkers in
breast cancer, gene expression datasets of metastatic breast cancer were obtained from Oncomine, an online data
mining platform. Over- and under-expressed genesets were collected and the differentially expressed genes were
screened from four datasets with large sample sizes (N > 200). They were analyzed for gene ontology (GO), KEGG
pathway, protein-protein interaction, and hub gene analyses using online bioinformatic tools (Enrichr, STRING, and
Cytoscape) to find enriched functions and pathways in metastatic breast cancer. To identify novel prognostic
biomarkers in breast cancer, differentially expressed genes were screened from the entire twelve datasets with any
sample sizes and tested for expression correlation and survival analyses using online tools such as KM plotter and
bc-GenExMiner.

Results: Compared to non-metastatic breast cancer, 193 and 144 genes were differentially over- and under-
expressed in metastatic breast cancer, respectively, and they were significantly enriched in regulating cell death,
epidermal growth factor receptor signaling, and membrane and cytoskeletal structures according to the GO
analyses. In addition, genes involved in progesterone- and estrogen-related signalings were enriched according to
KEGG pathway analyses. Hub genes were identified via protein-protein interaction network analysis. Moreover, four
differentially over-expressed (CCNA2, CENPN, DEPDCI, and TTK) and three differentially under-expressed genes (ABAT,
LRIGT, and PGR) were further identified as novel biomarker candidate genes from the entire twelve datasets. Over-
and under-expressed biomarker candidate genes were positively and negatively correlated with the aggressive and
metastatic nature of breast cancer and were associated with poor and good prognosis of breast cancer patients,
respectively.

Conclusions: Transcriptome datasets of metastatic breast cancer obtained from Oncomine allow the identification
of metastatic breast cancer-specific biological functions, pathways, and novel biomarkers to predict clinical
outcomes of breast cancer patients. Further functional studies are needed to warrant validation of their roles as
functional tumor-promoting or tumor-suppressing genes.
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Background

World Health Organization reports that breast cancer is
the most frequent female malignancy (www.who.int). Al-
though conventional therapeutic strategies, including
surgery, radiotherapy and chemotherapy, targeted ther-
apies, and more recently immunotherapies [1, 2] dramat-
ically prolonged the survival of breast cancer patients,
the incidence and mortality rates of some subtypes con-
tinuously increase in recent years and the trend even
varies depending on the race, age, or region [3, 4]. Iden-
tification of novel biomarkers in breast cancer is critical
for accurate prognosis analysis and therapeutic efficacy
prediction.

Stage IV breast cancers, in particular, are detrimental
metastatic breast cancers (MBCs). MBCs are rarely cura-
tive, so their 5-year survival rate (26%) is much lower
than localized cancer (99%) [5, 6]. Recently [7-14] and
in the past, numbers of bioinformatic analyses have been
conducted to identify key differentially expressed genes
and enriched biological pathways or to evaluate the ex-
pression of a few specific genes in breast cancers, but
such analysis using transcriptomes of MBCs has not
been satisfactorily performed. The identification of bio-
logical functions and pathways enriched in MBCs is piv-
otal to search for appropriate treatment options that
would minimize the adverse effects and increase the sur-
vival rates of this fatal disease.

ONCOMINE is a cancer microarray database and
web-based data-mining platform containing 729 avail-
able datasets with 91,866 samples as of December 17th,
2020 (www.oncomine.org/) [15]. I searched for gene ex-
pression datasets generated with MBC patient samples
and screened differentially over- and under-expressed
genes. With the genesets, I attempted to analyze bio-
logical functions and pathways enriched in MBCs, to
identify novel biomarker candidate genes positively and
negatively correlated with the aggressive and metastatic
nature of breast cancer and to validate their prognostic
values in breast cancer. To do so, I conducted gene
ontology (GO), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analysis, protein-protein inter-
action (PPI) network analysis, hub gene identification,
co-expression analysis, and Kaplan-Meier survival ana-
lyses with available online tools.

Ultimately, these analyses demonstrate that the identi-
fied genes may serve as potential prognostic biomarkers
that accurately predict the clinical outcomes of breast
cancer patients. The results also provide therapeutic im-
plications that might be beneficial for treating metastatic
breast cancer patients. Furthermore, the present study
recapitulates the usefulness of Oncomine platform in
identifying appropriate key pathways and biomarkers to
suggest therapeutic opportunities and accurately predict
the clinical outcomes of breast cancer patients.
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Methods

Dataset acquisition

To obtain microarray datasets, the publicly available
Oncomine data-mining platform (http://www.
oncomine.org) was analyzed. Datasets that profiled
metastatic breast cancers (MBCs) were retrieved using
filters including “breast cancer” (cancer type) and
“metastatic event status at three years” (Clinical Out-
come). A total of fourteen datasets were available
under these filters and only transcriptome datasets
were chosen (two genomic DNA studies were ex-
cluded): Bos Breast (N > 200), Desmedt Breast (N <
200), Hatzis Breast (N > 200), Kao Breast (N > 200),
Loi Breast (N < 200), Loi Breast 3 (N < 200), Minn
Breast 2 (N < 200), Schmidt Breast (N < 200), Sym-
mans Breast 2 (N < 200), Symmans Breast (N < 200),
vandeVijver Breast (N > 200), and Vantveer Breast (N
< 200).

Determination of differentially expressed genesets

From four datasets with large sample sizes (N > 200),
significantly over-expressed (fold change > 1) (DOE-
L) or under-expressed (fold change < - 1) (DUE-L)
genesets were selected based on their P values (P <
0.05) compared to the breast cancer patient samples
with no metastatic events. 4797/2009 in Bos Breast,
3607/3564 in Hatzis Breast, 2375/2191 in Kao Breast,
and 2350/2432 genes in vandeVijver Breast were sig-
nificantly over-expressed/under-expressed, respectively.
Using a Venn diagram drawing tool (http://
bioinformatics.psb.ugent.be/webtools/Venn/), common
genes were selected. In total, 193 and 144 genesets
were differentially over-expressed (DOE-L) and under-
expressed (DUE-L), respectively. These genesets were
subjected to gene ontology, KEGG pathway, protein-
protein interaction network analysis, and hub gene
analyses to search for MBC-enriched genes, biological
functions, and pathways.

To identify novel prognostic biomarkers, on the
other hand, all twelve datasets with any sample sizes
were analyzed. Differentially over-expressed (fold
change > 1) or under-expressed (fold change < - 1)
genesets with statistical significance (P < 0.05) were
screened and examined. There was no single common
gene found from all twelve datasets. However, four
genes (CCNA2, CENPN, TTK, and DEPDCI) were dif-
ferentially over-expressed (DOE-A) in eleven datasets
(except Minn Breast 2) and one gene each was differ-
entially under-expressed (DUE-A) in each of three
groups of eleven datasets (the gene ABAT in the all
twelve except Kao Breast, the gene LRIGI in the all
twelve except Symmans Breast 2 and the gene PGR
in the all twelve except Minn Breast 2).


http://www.who.int
http://www.oncomine.org/resource/login.html
http://www.oncomine.org/
http://www.oncomine.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. 1 Identification of differentially over-expressed and under-expressed genes in metastatic breast cancer. A, B Venn diagrams to screen
significantly (P < 0.05) over-expressed (fold change > 1) (A) and under-expressed genes (fold change < — 1) (B) in metastatic breast cancer (MBQ).
C,D 193 and 144 differentially over-expressed and under-expressed genes in MBCs are listed, respectively

Gene ontology (GO) and KEGG pathway analyses
Differentially expressed (DOE-L and DUE-L) genes ob-
tained from four breast cancer datasets with large sam-
ple numbers (N > 200) were subjected to gene ontology
(GO) and KEGG pathway analyses for functional and
characteristic classification of enriched genes. To do so,
337 genes including 193 DOE-L and 144 DUE-L gene-
sets were entered and analyzed at Enrichr (https://amp.
pharm.mssm.edu/Enrichr), an online analysis tool. Genes
were classified into three GO categories; Biological
Process, Molecular Function, and Cellular Component.
KEGG (Kyoto Encyclopedia of Genes and Genomes)
analysis for biological pathways was also conducted at
Enrichr. The top ten GO terms and pathways were
sorted according to their P values.

Protein-protein interactions (PPls) and hub protein
identification

To examine the protein-protein interaction network
within the differentially expressed genesets, I utilized the

Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING). In total, 193 DOE-L and 144 DUE-L
genesets were separately entered and their protein-
protein interaction networks were analyzed. The net-
works were created, exported, and entered into Cytos-
cape, the network analysis/visualization tool to identify
hub proteins from the complex networks. Among eleven
“node ranking methods” [16], I analyzed the networks by
Degree and both top ten hub proteins (hub_oe and hub_
ue) were screened and ranked based on their number of
interactors.

Comparison of biomarker candidate gene expression
between basal-like/triple-negative and other subtypes of
breast cancers

Two online RNA-seq databases (Cancer Cell Line
Encyclopedia (CCLE) for human breast cancer cell lines
and bc-GenExMiner (version 4.3) for breast cancer pa-
tient samples) were used to compare the expression
levels of four DOE-A and three DUE-A genes between
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basal-like/triple-negative and other subtypes of breast
cancer. For CCLE, basal-like/triple-negative breast can-
cer (BL/TNBC) and luminal breast cancer cell lines were
determined based on the literature [17-19]. For bc-
GenExMiner, basal-like and TNBCs were determined by
Prediction Analysis of Microarray 50 (PAM50) test and
immunohistochemistry (IHC), respectively.

Kaplan-Meier survival analyses

Survival tests including relapse-free survival (RFS), overall
survival (OS), distant metastasis-free survival (DMFS), and
post-progression survival (PPS) were performed using KM
plotter at http://kmplot.com with Jetset best probe sets.
MRES was tested at http://bcgenex.centregauducheau.fr
with all microarray datasets. All survivals were compared
between the patients with high or low expression of each
gene and the patient cohorts were split into two groups
according to the median gene expression.

Protocol registration
The research protocol used in the this study has been
registered in PROSPERO database (registration
#CRD42021247804).

Statistical analysis

Statistical analyses were performed according to the pre-
set analytic methods of each online tool. Two-tailed, un-
paired t-tests were performed for comparing gene ex-
pression with CCLE dataset analysis following grouping
the breast cancer cell lines into either luminal or BL/
TNBC. P < 0.05 was considered statistically significant.

Results

Identification of differentially expressed genesets in
metastatic breast cancers.

We identified differentially over-expressed (DOE-L) and
under-expressed (DUE-L) genes in metastatic breast
cancer (MBC) by utilizing the Oncomine database (Ta-
bles S1 and S2). A total of 193 DOE-L and 144 DUE-L
genes were selected (Fig. 1) as described in Methods.

Functional and characteristic classification of enriched
genes in metastatic breast cancer.

To analyze the functional enrichment of the differen-
tially expressed genes in MBCs, I examined gene ontol-
ogy (GO) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway analysis using 337 differentially


http://kmplot.com/
http://bcgenex.centregauducheau.fr/
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Fig. 3 Protein-protein interaction networks of differentially expressed genes in metastatic breast cancer. A Protein-protein interaction (PPI) among
193 differentially over-expressed genes was examined to analyze the functional protein association network in metastatic breast cancer using STRI
NG, an online tool. In total, 192 nodes (disconnected nodes are hidden) and 407 edges are presented. PPl enrichment P value is 1.11 X 107'°,
which implies this network has significantly more interactions than a network with a randomly chosen set of proteins. B Protein-protein
interaction (PPl) among 144 differentially under-expressed genes was examined to analyze the functional protein association network in
metastatic breast cancer using STRING. In total, 143 nodes (disconnected nodes are hidden) and 190 edges are presented. PPl enrichment P value
is 6.99 x 107", which implies this network has significantly more interactions than a network with a randomly chosen set of proteins. Circles and
lines in A and B indicate genes and interactions, respectively. The line colors indicate the types of interaction evidence.

expressed genes (193 DOE-L and 144 DUE-L genes).
They were classified into three GO categories including
biological process (BP), molecular function (MF), and
cellular component (CC). For BP, genes are significantly
enriched in the GO terms including negative regulation
of the apoptotic process, positive regulation of gene ex-
pression, regulation of the apoptotic process, negative
regulation of programmed cell death, and regulation of
protein metabolic process (Fig. 2A). For MF, genes are
significantly enriched in the GO terms including epider-
mal growth factor receptor binding, protein homodimer-
ization activity, microtubule plus-end binding, growth
factor receptor binding, and protein heterodimerization
activity (Fig. 2B). For CC, genes are significantly
enriched in the GO terms including ficolin-1-rich gran-
ule membrane, an integral component of the plasma
membrane, lytic vacuole, ficolin-1-rich granule, and
polymeric cytoskeletal fiber (Fig. 2C). Therefore, these
results suggest that genes regulating cell death, gene ex-
pression, protein metabolism, signal transduction, and
protein-protein binding are significantly enriched in
MBCs. Also, KEGG pathway analysis demonstrates that
genes involved in progesterone-mediated oocyte matur-
ation, oocyte meiosis, estrogen signaling pathway, path-
ways in cancer, and cell cycle are also significantly
enriched in MBCs (Fig. 2D).

Interactome networks of the differentially expressed
genes and identification of hub genes in metastatic
breast cancer

Protein-protein interaction (PPI) provides insights into
molecular function and diseases including cancer [20].
To explore PPI networks of the differentially expressed
genes in MBCs, I utilized STRING, an online protein-
protein interaction prediction tool, which visualizes po-
tential interaction networks based on experimentally
proven interaction data and computational prediction
[21]. DOE-L (Fig. 3A) and DUE-L genes (Fig. 3B) were
separately subjected to PPI analysis. In total, 192 nodes
and 407 edges from DOE-L genes and 143 nodes and
190 edges from DUE-L genes were predicted after ex-
cluding disconnected nodes. Of note, their PPIs were
predicted significantly more than those of a randomly
chosen set of proteins.

To identify hub genes based on the PPI networks, I
exported each network and examined them according to
the degree of connectivity (DC) using Cytoscape software.
In the DOE-L geneset, IL6 (DC = 32), CXCL8 (DC = 27),
AURKA/NOTCHI (DC = 21), CDC20/CCNA2/APOE
(DC = 17), CDKN2A (DC = 16), and KIF2C/TTK (DC =
15) were ranked as top ten hub genes (hub_oe) (Fig. 4A).
In addition, ESRI (DC = 22), FOXA1/GATA3 (DC = 14),
EEF2 (DC = 13), RPL7A/TFF1 (DC = 12), RPL15/AR/PGR
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Table 1 Potential biomarker candidate genes in metastatic breast cancer gene expression datasets

Potential biomarker candidate genes Relevant 11 studies

(over-expressed; DOE-A)
CCNA2
CENPN
DEPDC1
TTK

Potential biomarker candidate genes Relevant 11 studies

(under-expressed; DUE-A)

Bos Breast, Desmedt Breast, Hatzis Breast, Kao Breast, Loi Breast, Loi Breast 3, Schmidt Breast,
Symmans Breast 2, Symmans Breast, vandeVijver Breast, Vantveer Breast

ABAT Bos Breast, Desmedt Breast, Hatzis Breast, Loi Breast, Loi Breast 3, Minn Breast 2, Schmidt Breast,
Symmans Breast 2, Symmans Breast, vandeVijver Breast, and Vantveer Breast

LRIGT Bos Breast, Desmedt Breast, Hatzis Breast, Kao Breast, Loi Breast, Loi Breast 3, Minn Breast 2, Schmidt
Breast, Symmans Breast, vandeVijver Breast, and Vantveer Breast

PGR Bos Breast, Desmedt Breast, Hatzis Breast, Kao Breast, Loi Breast, Loi Breast 3, Schmidt Breast,

Symmans Breast 2, Symmans Breast, vandeVijver Breast, and Vantveer Breast

(DC = 11), and IGFIR (DC = 10) in DUE-L genes were
ranked as top ten hub genes (hub_ue) (Fig. 4B).

Identification of novel biomarker candidate genes for
breast cancer

As shown in Table 1, four (CCNA2, CENPN, DEPDCI,
and TTK; DOE-A) and three genes (ABAT, LRIGI, and
PGR; DUE-A) were identified as differentially over- and
under-expressed genes, respectively, as described in
“Methods” and they were selected as novel biomarker
candidate genes for breast cancer and were subjected to
the subsequent analyses.

Identification of PPl hub genes co-expressed with
potential biomarker candidates

I attempted to find PPI hub genes (hub_oe and hub_ue)
the most significantly and positively co-expressed with
four DOE-A and three DUE-A novel biomarker candi-
date genes, respectively. Among the top ten hub_oe
genes (Fig. 4A), KIF2C was the only gene that is the
most significantly (P < 0.0001) and positively co-
expressed with all four potential biomarker candidate
genes (AURKA (r = 0.75) was co-expressed as positively
as KIF2C (r = 0.75) with CENPN) (Fig. S1A). Among the
top ten hub_ue genes (Fig. 4B), ESRI was the only gene
that is the most significantly (P < 0.0001) and positively
co-expressed with all three potential biomarker candi-
date genes (FOXAI (r = 0.63) was co-expressed as posi-
tively as ESRI (r = 0.63) with LRIGI) (Fig. S1B)

Examination of the expression correlation of potential
biomarker candidate genes with the aggressive and
metastatic nature of breast cancer

Basal-like (BL) and/or triple-negative breast cancers
(TNBCs) are considered an aggressive and highly meta-
static subtype of breast cancer often associated with
poor clinical outcomes [22-27]. To examine the

expression correlation of the potential biomarker candi-
date genes (DOE-A and DUE-A) with the aggressive and
metastatic nature of breast cancer, I compared their ex-
pression levels in BL/TNBCs with those in other breast
cancer subtypes. First, I extracted RNA-seq expression
data of human breast cancer cell lines from the Cancer
Cell Line Encyclopedia (CCLE). A total of 57 human
breast cancer cell lines have expression information in
the database and their subtypes were determined based
on previous reports [17-19]. Among them, 26 are lu-
minal and 31 are BL/TNBCs. The expression levels of
CCNA2, DEPDCI, and TTK (DOE-A) were significantly
higher in BL/TNBCs than in luminal breast cancer cell
lines (Fig. 5A). The expression of all three DUE-A genes,
on the other hand, was significantly lower in BL/TNBC
cell lines, compared to luminal breast cancer cell lines
(Fig. 5B).

Next, I chose to further investigate whether this cor-
relation in cell lines could also be applied to human
breast cancer patient samples. Using an online tool
called bc-GenExMiner (version 4.3), I compared the
gene expression between BL/TNBCs and other subtypes
of human breast cancers. Consistent with cell line ana-
lysis, all four DOE-A genes were expressed significantly
more (Fig. 5C) and all three DUE-A genes were
expressed significantly less in BL/TNBCs than in non-
BL and non-TNBCs (Fig. 5D). Together, the results in
Fig. 5 strongly demonstrate that seven potential bio-
marker candidate genes (DOE-A and DUE-A) are posi-
tively and negatively correlated with the aggressive and
metastatic nature of breast cancer, respectively.

Additionally, I examined two of the most significantly
co-expressed hub genes (KIF2C and ESRI) shown in Fig.
S1 and found that KIF2C and ESRI were significantly
up- and downregulated in BL/TNBCs, respectively, com-
pared to luminal breast cancer cell lines (Figs. S2A and
S2B). Moreover, in human breast cancer patient samples,
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(See figure on previous page.)

Fig. 6 Correlation between the expression levels of potential prognostic biomarkers (DOE-A genes) and patient survival. A-D Relapse-free, overall,
distant metastasis-free, and post-progression survival of four DOE-A genes (CCNA2 in A; CENPN in B; DEPDCT in C; TTK in D) were stratified by the
expression levels of each gene (low or high). Expression data were analyzed using KM plotter (http://kmplot.com/). JetSet best probes were
selected and patients (for CCNA2, N = 3951 in RFS, = 1402 in OS, = 1746 in DMFS and = 414 in PPS; for CENPN, N = 1764 in RFS, = 626 in OS, =
664 in DMFS and = 173 in PPS; for DEPDC1, N = 1764 in = RFS, = 626 in OS, = 664 in DMFS and = 173 in PPS; for TTK, N = 3951 in RFS, = 1402 in
OS, = 1746 in DMFS and = 414 in PPS) were split by median expression. NS, not significant. E Metastatic relapse-free survival of four DOE-A genes
were stratified by the expression levels of each gene (low or high). Microarray expression data were analyzed using bc-GenExMiner v4.3 (http://
bcgenex.centregauducheau fr/). Patients (for CCNA2 and TTK, N = 4533; for CENPN and DEPDCI, N = 4359) were split by median expression.
Statistical analyses were performed by pre-set analytic methods. HRs (hazardous ratios) and 95% Cls (confidence intervals) are indicated

the result was consistent (Figs. S2C and S2D). The data
suggest that KIF2C and ESRI, two co-expressed hub
genes, are also positively and negatively correlated with
the aggressive and metastatic nature of breast cancer,
respectively.

Examination of prognostic values of the biomarker
candidate genes in breast cancer patients

To examine the prognostic values of four DOE-A and
three DUE-A potential biomarkers in predicting breast
cancer patient survival, I explored the correlation be-
tween their expression levels and the patients’ clinical
outcomes. For DOE-A genes, high levels of CCNA2,
CENPN, and TTK expression were significantly associ-
ated with poor prognosis in all four available patient sur-
vivals when analyzed with KM plotter (RES, relapse-free
survival; OS, overall survival; DMFS, distant metastasis-
free survival; PPS, post-progression survival). High ex-
pression of DEPDCI, another DOE-A gene, was signifi-
cantly associated with poor prognosis only in RFS and
PPS (Fig. 6A-D). Besides, high levels of all four DOE-A
gene expressions were significantly correlated with meta-
static relapse-free survival (MRFS) when analyzed with
bc-GenExMiner (version 4.3) (Fig. 6E). For DUE-A
genes, on the other hand, high levels of all three DUE-A
gene expression were significantly associated with good
patient RFS, OS, DMFS (except PPS) (Fig. 7A-C) and
MRES (Fig. 7D). I also examined two of the most signifi-
cantly co-expressed hub genes, KIF2C and ESRI, and
found that they were also significantly associated with
poor and good clinical outcomes, respectively, in all five
survival analyses (Fig. S3).

Discussion

Because of the limitations in the classical TNM staging
system, The American Joint Committee on Cancer
(AJCC) 8th edition added biological factors including es-
trogen and progesterone receptor expression and human
epidermal growth factor 2 status for clinical prognostic
staging in combination with the TNM staging [28]. Fur-
thermore, when available, the use of multigene expres-
sion assays is recommended as stage modifiers [28]. By
comparing the multigene assay panels recommended in
AJCC 8th edition, I found that three biomarker genes

(ESR1, PGR, and KIF2C) were already included in at
least one of the panels and the rest six biomarker genes
(CCNA2, CENPN, DEPDCI1, TTK, ABAT, and LRIGI)
were not included in any of them. This suggests that the
present study applied reliable analytic methods that
could reproduce the prognostic value of some bio-
markers as well as present meaningful novel prognostic
biomarkers. Each multigene panel is, however, limited to
use only in patients with specific stages and pathology,
which implicates that the biomarker genes identified in
the present study need additional validations to confirm
their proper utility in the particular patient groups based
on the stages and pathology.

CCNA2 encodes Cyclin A2 which functions as a cell
cycle regulator and its expression is elevated in many
human cancers. Moreover, CCNA2 gene dysregulation is
shown to be associated with poor prognosis [29-31].
CENPN encodes Centromere Protein N, which is im-
portant for the assembly of a multi-protein complex
called kinetochore [32]. DEPDCI encodes DEP domain
containing 1 protein, which has been shown to act as a
transcription regulator by forming a complex with
ZNF224, a member of the Krueppel C2H2-type zinc-
finger protein family [33]. TTK encodes a dual-
specificity protein kinase that can phosphorylate tyrosine
and serine/threonine (threonine tyrosine kinase) and has
crucial roles in regulating the spindle assembly check-
point [34]. It is often overexpressed in breast tumors
[35] and confers radioresistance [36]. ABAT encodes 4-
aminobutyrate aminotransferase, which metabolizes
GABA (y-aminobutyric acid), a neurotransmitter. This
gene expression is downregulated in inflammatory breast
cancer and low expression of ABAT is correlated with a
poor tamoxifen treatment outcome [37]. Moreover, it
suppresses breast cancer metastasis [38]. LRIGI encodes
a protein that negatively regulates epidermal growth fac-
tor receptor signaling, and its tumor-suppressive effects
in cancer have been demonstrated [39—-43]. PGR encodes
the progesterone receptor, a member of the steroid re-
ceptor superfamily. Its expression is higher in luminal
type A breast cancer than other aggressive breast cancer
subtypes [44] and studies have demonstrated that pro-
gesterone receptor-positive (PR+) breast cancers are as-
sociated with better prognosis [45-47]. Furthermore,
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Fig. 7 Correlation between the expression levels of potential prognostic biomarkers (DUE-A genes) and patient survivals. A-C Relapse-free,
overall, distant metastasis-free, and post-progression survival of three DUE-A genes (ABAT in A; LRIGT in B; PGR in C) were stratified by the
expression levels of each gene (low or high). Expression data were analyzed using KM plotter (http://kmplot.com/). JetSet best probes were
selected and patients (for ABAT and LRIGT, N = 3951 in RFS, = 1402 in OS, = 1746 in DMFS and = 414 in PPS; for PGR, N = 1764 in RFS, = 626 in
OS, = 664 in DMFS and = 173 in PPS) were split by median expression. NS, not significant. D Metastatic relapse-free survival of three DUE-A genes
was stratified by the expression levels of each gene (low or high). Microarray expression data were analyzed by bc-GenExMiner v4.3 (http://
bcgenex.centregauducheaufr/). Patients (for ABAT, LRIGT, and PGR, N = 4434) were split by median expression. Statistical analyses were performed
by pre-set analytic methods. HRs (hazardous ratios) and 95% Cls (confidence intervals) are indicated
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KIF2C encodes a kinesin-like microtubule-dependent
motor protein, which depolymerizes microtubules and
promotes chromosomal segregation [48, 49]. Its overex-
pression has been observed in human breast cancer
cases and cell lines [50, 51]. ESRI encodes estrogen re-
ceptor o, a hormone receptor whose transcription activ-
ity is regulated by estrogen binding. Patients with
estrogen receptor o positive (ERa+) breast tumors have
demonstrated better survival and later recurrence than
those with ERa- breast tumors [52—54] (Table 2).

Overall, it is interesting to note that cell cycle-related
genes (CCNA2, CENPN, TTK, and KIF2C) and hormone
signaling-related genes (ABAT, PGR, and ESRI) were
differentially over- and under-expressed in the meta-
static breast cancers, respectively. They were also pre-
dominantly associated with poor and good clinical
outcomes, respectively. The results suggest that targeting
cell cycle regulators may but hormonal therapy may not
be beneficial for metastatic breast cancer patients, in
general, although an individual patient may respond dif-
ferently. Indeed, cell cycle inhibitors such as CDK4/6i
(inhibitor of the cyclin-dependent kinases 4 and 6) have
been approved and used for metastatic breast cancer pa-
tients either alone or in a combinational therapy [55].

In addition, I attempted to identify functional, bio-
logical, molecular, and cellular processes specifically al-
tered in metastatic human breast cancers (MBCs).
Differentially expressed genes in MBCs are mostly in-
volved in regulating cell death, epidermal growth factor
receptor signaling, and membrane and cytoskeletal
structures, and are also enriched in biological pathways
such as progesterone- and estrogen-related signaling. In
fact, EGF receptor inhibition often fails in the treatment
of metastatic breast cancer potentially due to the “para-
doxical” anti-proliferative and anti-metastatic function of
EGF receptor signaling [56], which implicates that EGF
receptor inhibitors should be used with caution in
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metastatic breast cancer. Moreover, cancer metastasis
and chemoresistance are demonstrated as a linked
phenotype [57], which implies that chemotherapy-
induced cell death signaling is fundamentally altered in
metastatic breast cancer.

Although I demonstrated that the expression levels of
potential biomarkers are positively/negatively correlated
with the aggressive and metastatic nature of breast can-
cer and are associated with clinical outcomes of breast
cancer patients, their molecular functions except for
CCNA2, PGR, and ESRI have not been experimentally
elucidated in breast carcinogenesis. Future functional
validation is needed to warrant their potential values as
breast cancer biomarkers as well as tumor-promoting or
tumor-suppressing molecules. Also, the present study
proves the usefulness of Oncomine platform to identify
enriched pathways and potential prognostic biomarkers
to predict beneficial treatment options for and the clin-
ical outcomes of breast cancer.

Conclusions

In the present study, I delineated biological functions
and pathways specifically enriched in metastatic breast
cancer and demonstrated that CCNA2, CENPN, DEPD
Cl, TTK, ABAT, LRIG1, PGR, KIF2C, and ESRI may
serve as biomarkers to predict clinical outcomes of
breast cancer patients. Pathway analysis suggests which
therapeutic opportunities, in general, may or may not
potentially be beneficial to the treatment of metastatic
breast cancers. Additionally, the present study demon-
strates the usefulness of Oncomine data-mining plat-
form. Further functional studies are needed to warrant
validation of the roles of selected genes as functional
tumor-promoting or tumor-suppressing molecules.

Abbreviations
MBC: Metastatic breast cancer; GO: Gene ontology; KEGG : Kyoto
Encyclopedia of Genes and Genomes; PPI: Protein-protein interaction; DOE-L

Table 2 Summary of nine selected genes and their roles as prognostic biomarkers in breast cancer.

Gene Gene names Prognostic value in breast cancer with high  Cellular/biological roles

symbols expression

CCNA2 Cyclin A2 Poor Cell cycle regulator

CENPN Centromere protein N Poor Regulates kinetochore assembly

DEPDC1 DEP domain containing 1 Poor Transcription regulator

TTK TTK protein kinase Poor Regulates the spindle assembly
checkpoint

KIF2C Kinesin family member 2C Poor Microtubule-dependent motor
protein

ABAT 4-Aminobutyrate aminotransferase Good Metabolizes GABA

LRIGT Leucine-rich repeats and immunoglobulin-like  Good Negatively regulates EGFR

domains 1 signaling
PGR Progesterone receptor Good Hormone receptor
ESRT Estrogen Receptor 1 Good Hormone receptor
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/ DUE-L: Differentially over- or under-expressed genesets from the four data-
sets with large patient numbers (N > 200); DOE-A / DUE-A: Differentially
over- or under-expressed genesets from the entire twelve datasets with any
patient numbers; CCNA2: Cyclin A2; CENPN: Centromere protein N; DEPD

C1:. DEP domain containing 1; TTK: TTK protein kinase (Thr/Tyr kinase);

ABAT: 4-Aminobutyrate aminotransferase; LRIGT: Leucine-rich repeats and
immunoglobulin like domains 1; PGR: Progesterone receptor; IL6: Interleukin
6; CXCL8: C-X-C motif chemokine ligand 8; AURKA: Aurora kinase A;

NOTCHT: Notch receptor 1; CDC20: Cell division cycle 20;

APOE: Apolipoprotein E; CDKN2A: Cyclin-dependent kinase inhibitor 2A;
KIF2C: Kinesin family member 2C; ESRT: Estrogen receptor 1; FOXAT: Forkhead
box A1; GATA3: GATA binding protein 3; EEF2: Eukaryotic translation
elongation factor 2; RPL7A: Ribosomal protein L7a; TFFT: Trefoil factor 1;
RPL15: Ribosomal protein L15; AR: Androgen receptor; IGF1R: Insulin-like
growth factor 1 receptor; STRING: Search tool for the retrieval of interacting
genes; DC: Degree of connectivity; CCLE: Cancer Cell Line Encyclopedia;

BL: Basal-like; TNBC: Triple-negative breast cancer; PAM50: Prediction analysis
of microarray 50 (PAMS50); IHC: Immunohistochemistry; KM plotter: Kaplan-
Meier plotter; RFS: Relapse-free survival; OS: Overall survival; DMFS: Distant
metastasis-free survival (DMFS); PPS: Post-progression survival;

MRFS: Metastatic relapse-free survival; HR: Hazardous ratio; Cl: Confidence
interval; BP: Biological process; MF: Molecular function; CC: Cellular
component; hub_oe: Hub genes co-expressed with DOE-A genes;

hub_ue: Hub genes co-expressed with DUE-A genes; TCGA: The Cancer
Genome Atlas
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Additional file 1: Supplementary Figure S1. KIF2C and ESRT are hub
genes the most significantly co-expressed with the potential biomarker candi-
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gene expression between four DOE-A (A) or three DUE-A genes (B) and their
most significantly co-expressed hub genes identified from PPI networks. Statistical
analyses were performed by the pre-set analytic method of bc-GenExMiner. Sup-
plementary Figure S2. Comparison of mRNA expression of the two most signifi-
cantly co-expressed hub genes (KIF2C and ESRT) between basal-like or triple-
negative breast cancer and other subtypes of breast cancer. (A and B) RNA-seq
data of KIF2C and ESRT were obtained from the Cancer Cell Line Encyclopedia
(CCLE) and analyzed. N = 31 in BL/TNBC and N = 26 in luminal type cell lines. (C
and D) RNA-seq data of KIF2C and £SR1 from The Cancer Genome Atlas (TCGA)
[58] were analyzed at bc-GenExMiner v4.3. N = 97 in BL/TNBC and N = 736 in
non-BL/TNBC type breast cancer patient samples. Statistical significance in A and
B was determined by unpaired ttests and those in C and D were determined
by the pre-set analytic method of bc-GenExMiner. Supplementary Figure S3. Cor-
relation between the expression levels of two co-expressed hub genes (KIF2C
and ESRT) and patient survivals. (A and B) Relapse-free, overall, distant metastasis-
free, and post-progression survival of two co-expressed hub genes (KIF2C in (A);
ESRT in (B)) were stratified by the expression levels of each gene (low or high).
Expression data were analyzed by KM plotter (http-//kmplotcomy). JetSet best
probes were selected and patients (for KIF2C, N = 3951 in RFS, = 1402 in OS, =
1746 in DMFS and = 414 in PPS; for £SR1, N = 3951 in RFS, = 1402 in OS, = 1746
in DMFS and = 414 in PPS) were split by median expression. (C) Metastatic
relapse-free survival of KIF2C and ESRT was stratified by the expression levels of
each gene (low or high). Microarray expression data were analyzed by bc-
GenExMiner v43 (http//bcgenexcentregauducheaulfr/). Patients (KIF2C, N =
4533; ESRT, N = 4785) were split by median expression. Statistical analyses were
performed by pre-set analytic methods. HRs (hazardous ratios) and 95% Cls (con-
fidence intervals) are indicated.
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