
fcvm-09-881881 July 22, 2022 Time: 14:58 # 1

TYPE Original Research
PUBLISHED 28 July 2022
DOI 10.3389/fcvm.2022.881881

OPEN ACCESS

EDITED BY

Hendrik Tevaearai Stahel,
Bern University Hospital, Switzerland

REVIEWED BY

Vito Domenico Bruno,
University of Bristol, United Kingdom
Hong Liu,
UC Davis Health, United States
Debasis Das,
Narayana Superspeciality Hospital,
Howrah, India

*CORRESPONDENCE

Hushan Ao
aohushan@126.com

SPECIALTY SECTION

This article was submitted to
Heart Surgery,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 23 February 2022
ACCEPTED 27 June 2022
PUBLISHED 28 July 2022

CITATION

Gao Y, Liu X, Wang L, Wang S, Yu Y,
Ding Y, Wang J and Ao H (2022)
Machine learning algorithms to predict
major bleeding after isolated coronary
artery bypass grafting.
Front. Cardiovasc. Med. 9:881881.
doi: 10.3389/fcvm.2022.881881

COPYRIGHT

© 2022 Gao, Liu, Wang, Wang, Yu,
Ding, Wang and Ao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Machine learning algorithms to
predict major bleeding after
isolated coronary artery bypass
grafting
Yuchen Gao1, Xiaojie Liu2, Lijuan Wang1, Sudena Wang1,
Yang Yu1, Yao Ding1, Jingcan Wang1 and Hushan Ao1*
1Department of Anesthesiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease,
National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking
Union Medical College, Beijing, China, 2Department of Anesthesiology, The Affiliated Hospital of
Qingdao University, Qingdao, China

Objectives: Postoperative major bleeding is a common problem in patients

undergoing cardiac surgery and is associated with poor outcomes. We

evaluated the performance of machine learning (ML) methods to predict

postoperative major bleeding.

Methods: A total of 1,045 patients who underwent isolated coronary artery

bypass graft surgery (CABG) were enrolled. Their datasets were assigned

randomly to training (70%) or a testing set (30%). The primary outcome was

major bleeding defined as the universal definition of perioperative bleeding

(UDPB) classes 3–4. We constructed a reference logistic regression (LR) model

using known predictors. We also developed several modern ML algorithms. In

the test set, we compared the area under the receiver operating characteristic

curves (AUCs) of these ML algorithms with the reference LR model results, and

the TRUST and WILL-BLEED risk score. Calibration analysis was undertaken

using the calibration belt method.

Results: The prevalence of postoperative major bleeding was 7.1%

(74/1,045). For major bleeds, the conditional inference random forest

(CIRF) model showed the highest AUC [0.831 (0.732–0.930)], and

the stochastic gradient boosting (SGBT) and random forest models

demonstrated the next best results [0.820 (0.742–0.899) and 0.810 (0.719–

0.902)]. The AUCs of all ML models were higher than [0.629 (0.517–

0.641) and 0.557 (0.449–0.665)], as achieved by TRUST and WILL-

BLEED, respectively.

Conclusion: ML methods successfully predicted major bleeding after cardiac

surgery, with greater performance compared with previous scoring models.

Modern ML models may enhance the identification of high-risk major

bleeding subpopulations.

KEYWORDS

major bleeding, machine learning, predictionmodel, cardiac surgery, coronary artery
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Introduction

Postoperative bleeding is a significant cause of morbidity
and mortality in patients undergoing cardiac surgery,
particularly after coronary artery bypass grafting (CABG)
because they often are treated with potent antithrombotic
drugs (1). Excessive bleeding after cardiac surgery is related
to significant blood product transfusion, infections, longer
mechanical ventilation, prolonged intensive care unit (ICU)
stay, emergency surgical re-exploration, acute kidney injury,
sepsis, and thromboembolic events (2–4). In addition, several
studies have reported that major bleeding after cardiac
surgery was also associated with increased hospital costs (5,
6). Therefore, identifying patients at high risk of bleeding
will allow clinicians to take additional precautionary action
to mitigate risk.

Several risk stratification models have been developed
to support clinical decision, making such as the TRUST and
WILL-BLEED risk scores (7, 8). All the models in current
use are based on logistic regression (LR), which relied on
manually inputting variables. Missing the complex interactions
among features may result in model misspecification
(9). Artificial intelligence is a rapidly growing field in
cardiovascular medicine (10). Machine learning (ML) is a
sub-field of artificial intelligence that may produce better
predictive ability than traditional statistical analysis to
predict postoperative outcomes. These approaches better
account for high-order, non-linear interactions between
predictors and can gain more stable predictions (11).
Despite the success of ML in other clinical applications,
no study has yet examined the utility of modern ML models
to predict postoperative major bleeding in patients with
isolated CABG.

The goal of this study was to develop ML models to
accurately predict major bleeding after isolated CABG. We
also compared the performance of several ML approaches
with the reference LR model, the and the TRUST and WILL-
BLEED scores.

Materials and methods

Data source and study population

We analyzed electronic health record data from
Fuwai Hospital, Beijing, China from 1,045 consecutive
adult patients who underwent elective isolated CABG
between September 2017 and May 2018. The subjects
were assigned randomly to training and test sets at a
ratio of 7:3. This retrospective cohort study was approved
by the Institutional Review Board with waived written
consent.

Study variables

We collected datasets that included demographics, surgery-
related data, and clinical and laboratory parameters. The
continuous anti-platelet therapy was provided only in patients
with acute coronary syndrome presenting for CABG. All data
were obtained from the electronic health records as in recent
articles (12, 13). Our database initially comprised over 100 easily
obtained variables. Features that were missing for more than
50% of cases were excluded. The final set of input features
included 60 clinical variables. Missing values (Supplementary
Table 2) were imputed using the mean imputation method,
which replaces the missing values with the mean of the
available cases.

Definition of major bleeding

Development of postoperative major bleeding was defined
according to the universal definition of perioperative bleeding
(UDPB) in classes 3 and 4 (14, 15). The UDPB defines
5 perioperative bleeding classes, which are intended to
characterize the severity of bleeding, regardless of its source. The
details of the UDPB are presented in Supplementary Table 1.

Statistical analysis

Data are presented as means with SD, medians and
interquartile ranges (IQRs), or frequencies and proportions
depending on variable type and distribution. Differences
between groups were compared using the Student’s t-test
for normally distributed continuous variables, the Mann-
Whitney U-test for non-normally distributed continuous
variables, and the Pearson’s chi-square test of independence for
categorical variables.

To implement the ML algorithms, we randomly assigned
patient data into a training set (70%) for model derivation
and a testing set (30%) to be used for model validation.
Assignment to the training/testing sets was stratified on
primary outcome status.

To select features for LR models, we conducted a backward
stepwise selection procedure based on the Akaike information
criterion (AIC). Model development included several common
ML methods, such as support vector machines (SVM),
stochastic gradient boosting (SGBT), extreme gradient boosting
(XGBoost), random forest (RF), conditional inference random
forest (CIRF), boosted classification trees, Naïve Bayes (NB),
and bagged classification and regression tree (CART). We
report the variables included in each model in Supplementary
Table 4. The details of the R package were presented in

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.881881
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-881881 July 22, 2022 Time: 14:58 # 3

Gao et al. 10.3389/fcvm.2022.881881

TABLE 1 Baseline characteristics of the training set.

Variables Total (n = 732) No major bleeding (n = 680) Major bleeding (n = 52) P

Age (years) 62 (55–67) 61 (55–66) 65 (59–69) 0.017

Male, n (%) 559 (76.37) 524 (77.06) 35 (67.31) 0.127

Height (m) 1.68 (1.62–1.72) 1.69 (1.63–1.72) 165 (1.60–1.70) 0.007

Weight (kg) 72.00 (65.00–80.00) 72.00 (65.00–80.00) 67.25 (62.00–74.25) 0.001

BSA (m2) 1.83 ± 0.17 1.84 ± 0.17 1.76 ± 0.2 0.002

Smoking history, n (%) 375 (51.23) 349 (51.32) 26 (50.00) 0.886

Angina, n (%) 699 (95.49) 647 (95.15) 52 (100.00) 0.160

Myocardial infarction, n (%) 62 (8.47) 57 (8.38) 5 (9.62) 0.961

Arrhythmia, n (%) 22 (3.01) 20 (2.94) 2 (3.85) 0.665

Previous surgery, n (%) 176 (24.04) 164 (24.12) 12 (23.08) 0.866

Diabetes, n (%) 272 (37.16) 260 (38.24) 12 (23.08) 0.036

Hyperlipidemia, n (%) 603 (82.38) 559 (82.21) 44 (84.62) 0.850

Hypertension, n (%) 459 (62.70) 434 (63.82) 25 (48.08) 0.026

Kidney failure, n (%) 21 (2.87) 20 (2.94) 1 (1.92) > 0.99

Dialysis, n (%) 17 (2.32) 17 (2.50) 0 (0) 0.625

Chronic pulmonary disease, n (%) 11 (1.50) 11 (1.62) 0 (0) > 0.99

Congestive heart failure, n (%) 10 (1.37) 8 (1.18) 2 (3.85) 0.155

Anemia, n (%) 183 (25.00) 162 (23.82) 21 (40.38) 0.012

Peripheral vascular disease, n (%) 174 (23.77) 161 (23.68) 13 (25.00) 0.866

Venous disease, n (%) 46 (6.28) 43 (6.32) 3 (5.77) > 0.99

Cerebrovascular disease, n (%) 84 (11.48) 77 (11.32) 7 (13.46) 0.651

Previous PTCA, n (%) 16 (2.19) 14 (2.06) 2 (3.85) 0.316

Previous thrombolysis, n (%) 5 (0.68) 4 (0.59) 1 (1.92) 0.309

CHD family history, n (%) 77 (10.52) 69 (10.15) 8 (15.38) 0.240

Preoperative statin use, n (%) 307 (41.94) 286 (42.06) 21 (40.38) 0.885

Preoperative anticoagulant use, n (%) 639 (87.30) 596 (87.65) 43 (82.69) 0.284

Antiplatelet drugs pause < 5 days, n (%) 12 (1.64) 10 (1.47) 2 (3.85) 0.207

Left main coronary artery disease, n (%) 134 (18.31) 127 (18.68) 7 (13.46) 0.457

RBC (×1012/L) 4.44 ± 0.52 4.45 ± 0.51 4.32 ± 0.54 0.064

WBC (×109/L) 6.36 (5.31–7.41) 6.36 (5.30–7.41) 6.31 (5.35–7.41) 0.934

PLT (×109/L) 208 (176–247) 209 (177–249) 199 (167–228) 0.066

Platelet distribution width (fL) 12.30 (11.20–13.80) 12.30 (11.20–13.80) 12.35 (11.20–13.90) 0.841

Platelet volume (fL) 10.50 (10.00–11.20) 10.5 (10.00–11.20) 10.45 (10.07–11.33) 0.637

Platelet-large cell ration (%) 29.40 (24.70–34.90) 29.40 (24.58–34.73) 28.65 (26.15–35.42) 0.653

Thrombocytocrit (%) 0.22 (0.19–0.26) 0.22 (0.19–0.26) 0.21 (0.19–0.23) 0.096

Hemoglobin (g/L) 137 (126–146) 137 (127–146) 137 (120–143) 0.045

Total protein (g/L) 66.05 (62.90–70.10) 66.15 (63.00–70.30) 65.20 (61.65–68.03) 0.061

Albumin (g/L) 40.80 (38.70–43.42) 40.85 (38.70–43.60) 40.40 (38.48–42.20) 0.097

Potassium (mmol/L) 4.03 (3.77–4.25) 4.03 (3.77–4.26) 4.02 (3.72–4.13) 0.326

Sodium (mmol/L) 141.10 (139.12–143.01) 141.17 (139.13–143.01) 140.66 (138.74–142.74) 0.630

Calcium (mmol/L) 2.26 (2.19–2.34) 2.26 (2.19–2.34) 2.27 (2.19–2.33) 0.887

Glucose (mmol/L) 5.34 (4.69–6.54) 5.36 (4.69–6.55) 5.05 (4.64–6.18) 0.167

BUN (mmol/L) 5.23 (4.19–6.44) 5.29 (4.19–6.44) 5.07 (4.22–6.30) 0.431

Creatine (µmol/L) 82.00 (70.48–94.00) 82.00 (70.27–94.00) 84.29 (72.30–95.43) 0.527

GFR (ml/min/1.73 m2) 84.29 (71.51–93.94) 84.52 (72.14–94.24) 78.37 (64.62–92.18) 0.051

HSCRP (mg/L) 1.38 (0.66–3.10) 1.42 (0.67–3.10) 1.08 (0.50–2.99) 0.293

NT-proBNP (pg/ml) 156.35 (62.98–369.52) 154.05 (62.27–373.00) 177.75 (86.90–315.28) 0.532

PT (s) 13.10 (12.60–13.60) 13.10 (12.60–13.53) 13.30 (12.97–13.62) 0.045

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 732) No major bleeding (n = 680) Major bleeding (n = 52) P

INR (R) 1.00 (0.96–1.04) 1.00 (0.95–1.04) 1.02 (0.99–1.06) 0.047

CPB or not, n (%) 477 (65.16) 444 (65.29) 33 (63.46) 0.765

Operation time (h) 3.80 (3.30–4.50) 3.80 (3.30–4.40) 3.90 (3.38–4.93) 0.275

Blood loss (ml) 589.54 (75.17) 587.76 (68.81) 612.69 (131.82) 0.021

Intraoperative transfusion, n (%) 14 (1.91) 7 (1.03) 7 (13.46) < 0.001

Intraoperative urine output (ml/kg/h) 3.16 (2.02) 3.13 (2.01) 3.54 (2.11) 0.159

Hemoglobin decrease (g/L) 25.00 (16.00–33.00) 25.00 (16.00–33.00) 27.00 (14.25–33.00) 0.961

Postoperative first Creatine (µmol/L) 70.27 (60.88–81.90) 70.31 (60.88–81.80) 68.97 (60.85–84.61) 0.707

Postoperative first NT-proBNP (pg/ml) 602.10 (350.15–1060.75) 596.30 (342.08–1042.75) 690.90 (409.08–1124.25) 0.108

Preoperative hospital LOS (d) 6 (4–9) 6 (4–9) 6 (4–8) 0.596

TRUST score 2 (1–3) 2 (1–3) 2 (1–3) 0.002

WILL-BLEED score 1 (1–3) 1 (1–3) 3 (1–4) 0.013

BSA, body surface area; PTCA, percutaneous transluminal coronary angioplasty; CHD, coronary heart disease; RBC, red blood cell; WBC, white blood cell; PLT, platelet; BUN, blood
urea nitrogen; GFR, glomerular filtration rate; HSCRP, high sensitivity C reactive protein; NT-proBNP, N-terminal prohormone of brain natriuretic peptide; PT, prothrombin time; INR,
international normalized ratio; LOS, length of stay.

Supplementary Material. We conducted a fivefold cross-
validation to tune the parameters of the ML models on
the training set and determined the best hyperparameter.
Discrimination was evaluated with the receiver-operating-
characteristic curve (ROC) and the area under the ROC
curve (AUROC) (16). To evaluate the performance of ML
algorithms, we compared the ROC between the models
using Delong’s test by the pROC package (17). Calibration,
which is the agreement between predicted probabilities and
observed frequencies of postoperative major bleeding, was
assessed with calibration belts (18). The net reclassification
improvement was used to quantify whether a new model
provides clinically relevant improvements in prediction (19,
20). We graphically demonstrated the net benefit of each
model through a range of threshold probabilities of the
outcome as a decision curve. The variable importance from
ensemble algorithms was also determined, with the top 20
important variables from each algorithm identified. Analysis
code is available upon request. All statistical analyses were
performed using R software (version 4.1.1; The Comprehensive
R Archive Network).

Results

Baseline characteristics

We assigned 732 and 313 patients to the training and testing
sets, respectively. The variables remained constant between the
two sets (Supplementary Table 3). The postoperative major
bleeding rate were similar between the training and test sets.
Overall, the median age was 62 years (IQR 55–66 years) and
78.4% were men. At baseline, patients who developed a major
bleeding event were older, had lower body surface area (BSA),

and were more likely to have a history of anemia. Other
demographics and perioperative variables of the training set are
listed in Table 1.

Development of postoperative major
bleeding prediction model

The overall major bleeding rate was 7.1% (74 of 1,045
patients) in this study population. The variables included in each
model are presented in Supplementary Table 4. Multivariable
LR analysis with backward stepwise variable selection based on
AIC is shown in Table 2. ROC analysis showed an adequate
discriminatory ability of the LR model [0.702 (0.577–0.827)].
The AUC of the CRIF and SVM models performed significantly
better (p < 0.05) than the LR model in the test set. The
discrimination ability of models selected in the testing set is
presented in Table 3.

TABLE 2 Final logistic regression model.

Variables* OR (95%CI) P-value*

BSA 0.018 (0.002–0.133) <0.001

Diabetes 0.537 (0.256–1.055) 0.083

Hypertension 0.426 (0.577–0.827) 0.008

Total protein 0.931 (0.882–0.981) 0.008

Creatine 1.023 (1.004–1.041) 0.014

NT-proBNP 1.000 (0.999–1.000) 0.025

Blood loss 1.004 (1.000–1.007) 0.029

Intraoperative transfusion 21.968 (5.879–84.392) <0.001

OR, odds ratio; NT-proBNP, N-terminal prohormone of brain natriuretic peptide.
*The backward stepwise selection procedure base on Akaike information criterion was
performed to select variables.
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TABLE 3 Prediction models of postoperative major bleeding in the test set.

Models AUC (95%CI) P-value* P-value† P-value‡

TRUST 0.629 (0.517–0.741)

WILL-BLEED 0.557 (0.449–0.665)

Logistic regression 0.702 (0.577–0.827) 0.347 0.103

Support vector machine 0.792 (0.678–0.907) 0.016 0.002 0.031

Xgboost 0.802 (0.691–0.913) 0.028 <0.001 0.120

Random forest 0.810 (0.719–0.902) 0.005 <0.001 0.084

Conditional inference random forest 0.831 (0.732–0.930) 0.002 <0.001 0.027

Stochastic gradient boosting 0.811 (0.739–0.883) <0.001 <0.001 0.073

Naïve Bayes 0.687 (0.561–0.813) 0.468 0.059 0.842

Bagged CART 0.791 (0.706–0.876) 0.008 <0.001 0.098

Boosted classification trees 0.794 (0.675–0.913) 0.007 0.003 0.117

AUC, the area under the receiver operating characteristic curve; CART, classification and regression tree.
*Compared with TRUST.
†Compared with WILL-BLEED.
‡Compared with the logistic regression model.

FIGURE 1

Receiver-operating-characteristics (ROC) curves of the conventional model and machine learning models for postoperative major bleeding in
the test set. The corresponding values of the area under the receiver-operating-characteristics curve (AUC) for each model are presented in
Table 2.

We used the following ML methods in putting all the
variables, including SVM, SGBT, XGBoost, RF, CIRF, boosted
classification trees, NB, and bagged CART to predict major

bleeding after isolated CABG. The ROC of the evaluated models
are presented in Figure 1. The AUC of the CIRF model was
0.831 (0.732–0.930), which was the highest among the ML
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FIGURE 2

Decision curve analysis of the conventional models and machine learning-based models. The X-axis indicates the threshold probability and
Y-axis indicates the net benefit. The red solid line indicates the net benefit of all patients developing postoperative major bleeding events.
Ochre’s solid line indicates the net benefit of no patients developing postoperative major bleeding events. LR, logistic regression; CIRF,
conditional inference random forest; SGBT, stochastic gradient boosting.

models. The SGBT and RF models achieved the next and
the third-highest AUC value of 0.820 (0.742-0.899) and 0.810
(0.719–0.902), respectively. The AUC values of TRUST and
WILL-BLEED for the prediction of major bleeding were 629
(0.517–0.741) and 0.557 (0.449–0.665), respectively. All ML
models except the NB model performed remarkably better than
the TRUST and WILL-BLEED risk scores (p < 0.05).

The decision curve analysis (Figure 2) showed that the net
benefit of ML surpassed that of the conventional scoring systems
throughout the range of threshold probabilities, indicating that
the ML models yielded a higher net benefit. The threshold
probability is a level of certainty, above which the patient or
physician would choose to intervene.

The calibration belts of the ML models and the LR model for
major bleeding are shown in Figure 3. The RF and SGBT models
showed better calibration, while CIRF and LR models were not
well-calibrated.

Variable importance of machine
learning models

Figure 4 shows the importance matrix plot of machine
learning models. To gain insights into the relevance of each
predictor, Figure 4A summarizes the 20 most important
predictors used in the CIRF model. Of the top 20 most
important features, 15 were preoperative variables and 5 were
intraoperative variables. In the CIRF model, intraoperative
transfusion was the most important variable in predicting

postoperative major bleeding, followed by operation time and
BSA. The determinative factors in the ML and logistic models
were roughly the same.

Discussion

The clinical application of ML has emerged as a new tool to
improve patient care. In this study, we compared the predictive
accuracy of models for major bleeding after isolated CABG
among ML techniques, a traditional statistical approach, and
previous risk scoring models. The models developed using
ML algorithms better predicted major bleeding events than
conventional scoring systems, such as TRUST and WILL-
BLEED.

To date, accurate prediction models that use statistical
models for the risk of postoperative major bleeding have
been lacking. The TRUST and WILL-BLEED scores using
clinical and laboratory variables were developed using only
preoperative factors (7, 8). These two prediction models were
derived from multicenter databases and have demonstrated
accurate prediction of bleeding or transfusion in cardiac
surgery patients. However, these approaches showed poor
performance in our dataset. Our study demonstrated the
value of intraoperative and immediate postoperative data,
which reflected the surgical-related factors to bleeding
prediction. Integrating these features may elucidate the
improved discrimination of our LR model compared with the
TRUST and WILL-BLEED scores.
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FIGURE 3

Calibration belts of (A) logistic regression. (B) Random forest. (C) Conditional inference random forest. (D) Stochastic gradient boosting for
postoperative major bleeding prediction in the test set.

The LR model used in this study shares several risk
factors for bleeding common to other prediction models.
Interestingly, patients with hypertension could have a lower
risk of postoperative major bleeding in this study. Patients with
hypertension undergoing CABG had greater blood pressure
variability, and lability as a protective marker demonstrating
that autonomic nervous system integrity is associated with
improved outcomes (21, 22). A retrospective analysis found
that hypertension is a positive prognostic indicator in most
patients undergoing anesthesia and surgery (23). A prior study
has demonstrated that patients who developed major bleeding
have lower systolic blood pressures than those who did not have
major bleeding (24). These may be potential explanations for
this contrary perception.

By capturing the non-linear association of predictors ML
approaches may improve prediction in major bleeding (25).
ML models in this study performed the best but at the
cost of possibly increased complexity and lessened clinical
significance. While overfitting in conventional models is often

problematic, this study adopted a cross-validation method to
mitigate the overfitting of ML models. A recent systematic
review on the application of ML methods for predicting
operative mortality following cardiac surgery demonstrated
that ML models provide better discrimination ability (26).
The XGBoost ML algorithm offered modest improvements
across a variety of model performance measures compared
with The Society of Thoracic Surgeons Predicted Risk of
Mortality (STS PROM) (27). Zea-Vera and associates (28)
recently developed an ML model to predict mortality, major
morbidity, high total hospitalization cost, and 30-day re-
admission. Nevertheless, Benedetto et al. (29) reported that
the performance of ML techniques was not superior to an LR
model in predicting operative mortality after cardiac surgery.
Therefore, the additional value of ML in the development of
prediction models for a variety of clinical conditions needs
further investigation.

Decision curve analysis was developed as a method to
determine whether the use of a prediction model in the
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FIGURE 4

Variable importance of predictors in the ML models. The variable importance is a scaled measure to have a maximum value of 100. The
predictors with variable importance of the top 20 are shown. (A) Conditional inference random forest. (B) Xgboost. (C) Random forest.
(D) Stochastic gradient boosting.

clinic to inform decision-making would do more good than
harm (30). This analysis indicated that the CIRF model
improved the net benefit for predicting the postoperative
major bleeding over the LR model and TRUST and WILL-
BLEED scores. The threshold ranges displayed above the
curves (in Figure 2) indicate how the ML models will apply
to clinical practice. For example, if a patient’s threshold
probability is 15%, according to the decision curve, the
use of the CIRF model adds more benefit than either the
treat-all-patients scheme or the treat-none scheme and even
the other models.

Preventing postoperative bleeding is imperative to
improve patient outcomes and decrease hospital costs.
Prompt identification of patients at high-risk could help allow
deployment of additional resources to achieve better outcomes,
including precautions, such as preoperative correction of
anemia, earlier discontinuation of antiaggregant drugs, detailed
coagulation tests, better surgical homeostasis, and various
procoagulant agent during the operation (31). Understanding
which patients are at high risk for postoperative bleeding will
also help guide future practice and mitigate worse outcomes

associated with bleeding. Meticulous surgical technique aimed
to reduce surgical site bleeding seems to be essential to prevent
severe bleeding, exposure to blood products, and improve the
prognosis after CABG.

Several potential limitations exist in our study. First, because
it employed retrospective data from a single center at a tertiary
hospital, the generalizability of these models will need further
validation. Second, the study identified the most important
variables concerning predicting postoperative major bleeding
events, but we could not obtain certain degrees of risk,
such as the relative risk, which is a common limitation of
ML algorithms. In addition, we were only able to provide
a comparison with the TRUST and WILL-BLEED scores
and were unable to compute other risk scores because we
lacked appropriate data. Finally, the most important variables
reported in the ML model are not modifiable and accurate
risk prediction may not be followed by improved patient
outcomes. Thus, further prospective studies are required to
evaluate the application of ML-based predictive models to
clinical practice for the reduction of postoperative major
bleeding risks.
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Conclusion

Our study demonstrated that the ML technique of CIRF
showed significantly better performance than the traditional LR
analysis or previous scoring models in predicting postoperative
major bleeding events for isolated CABG. By capturing the
non-linear association of predictors, the ML approaches may
facilitate optimal candidate selection and prognostication of
patients undergoing isolated CABG. Future prospective studies
are required to evaluate the application of predictive models
based on ML to clinical practice and reduce bleeding risks.
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