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ABSTRACT

Cyclohexene nucleic acids (CeNA), which are char-
acterized by the presence of a cyclohexene moiety
instead of a natural (deoxy)ribose sugar, are known
to increase the thermal and enzymatic stability
when incorporated in RNA oligonucleotides. As it
has been demonstrated that even a single cyclo-
hexenyl nucleoside, when incorporated in an oligo-
nucleotide, can have a profound effect on the
biological activity of the oligonucleotide, further
research is warranted to study the complex of
such oligonucleotides with target proteins. In order
to analyse the influence of CeNA residues onto
the helix conformation and hydration of natural
nucleic acid structures, a cyclohexenyl-adenine
building block (xAr) was incorporated into the
Dickerson sequence CGCGA(xAr)TTCGCG. The
crystal structure of this sequence determined to
a resolution of 1.90 Å. The global helix belongs
to the B-type family and shows a water spine,
which is partially broken up by the apolar cyclohex-
ene residue. The cyclohexene ring adopts the
2E-conformation allowing a better incorporation of
the residue in the dodecamer sequence. The crystal
packing is stabilized by cobalt hexamine residues
and belongs to space group P2221, never before
reported for nucleic acids.

INTRODUCTION

Cyclohexene nucleic acids (CeNAs) consist of a natural
base and phosphate group, and are furthermore char-
acterized by the replacement of the (deoxy)ribose sugar by
a cyclohexene moiety. Recently cyclohexenyl nucleotide
residues have been introduced in a double-stranded

siRNA, targeting the multi drug resistant gene (1).
Interestingly incorporation of one cyclohexenyl residue
in the sense and antisense strand of dsRNA leads to an
enhanced biological activity. This has been demonstrated
at the level of protein expression, at mRNA level and by
functional assays (rhodamin accumulation and increased
cytotoxicity of doxorubicin). Incorporation of cyclohex-
enyl nucleotides in RNA leads to an increase in its stability
against nuclease degradation. The question is open if
the excellent biological activity of the CeNA–RNA dimer
is only due to its increased stability or that some structural
reasons are involved. In perspective of projects in
synthetic biology, we have evaluated the incorporation
of cyclohexenyl nucleosides into DNA using DNA as
template and DNA polymerase and reverse transcriptase
as catalyst (2). The cyclohexenyl nucleoside are incorpo-
rated to a limited extend. The reason is currently under
investigation. However, a better insight in the structure
of a DNA duplex with an incorporated CeNA residue is
the first step to understand the interaction between
modified nucleic acid duplexes and polymerases. As a
first study in the analysis of the influence of CeNA
residues on the conformation of natural nucleic acids, we
have solved the structure of the Dickerson sequence
containing one CeNA unit, while a study of CeNA in
complex with RNA is in progress.
The Dickerson sequence d(CGCGAATTCGCG) was

the first DNA oligonucleotide sequence that was crystal-
lized as a B-type double helix. Since it was first crystallized
in 1980 (3,4), it was re-investigated numerous times and
high-resolution structures have been published (5,6).
Furthermore the Dickerson sequence is crystallized in
different space groups [H3, Ca2+-form (7) H32, phos-
phoramidate backbone (8); P3212, flipped out bases (9)],
while the original Dickerson sequence crystallizes in the
orthorhombic space group P212121.
Because of the existence of high-resolution structures

and the intensity by which this sequence is studied,

*To whom correspondence should be addressed. Tel: +32 16327609; Fax: +32 16327990; Email: luc.vanmeervelt@chem.kuleuven.be

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



the Dickerson sequence d(CGCGAATTCGCG) is con-
sidered as ideal to study the influence of modified building
blocks on the global helix conformation and hydration.
Here we present the structure of the modified Dickerson

sequence CGCGA(xAr)TTCGCG, where (xAr) represents
a cyclohexenyl-adenine nucleoside.
This modified Dickerson sequence with the incorpo-

rated cyclohexene residue has previously been studied
using NMR and molecular modelling (10). The compar-
ison between the chemical shifts from the modified and the
native structure indicated that the presence of the
cyclohexenyl-adenine residue has practically no effect on
the global structure. The overall structure is comparable
with the original B-type Dickerson structure. However,
there were indications that the cyclohexenyl-adenine
residue induces conformational mobility.
Circular dichroism (CD) spectra (10) suggested that the

cyclohexene residue might adopt different conformations
when incorporated in dsDNA and dsRNA helices,
this mobility was confirmed by the NMR measurements.
It was assumed that cyclohexene residues adopt the
3H2 conformation in A-type CeNA/RNA helices, and
the 2H3 conformation in B-type CeNA/DNA helices
(Figure 1a and b, respectively).

MATERIALS AND METHODS

Oligonucleotide synthesis

The CeNA nucleoside (11) with an adenine base, as well as
the protected phosphoramidite nucleosides, that were used
in the oligonucleotide synthesis, were synthesized by the
Laboratory of Medicinal Chemistry at the Rega Institute
(Leuven) (12). Assembly of the monomers into oligonu-
cleotides was done as described by Maurinsh et al. (13).

Crystallization conditions

The modified Dickerson dodecamer CGCGA(xAr)
TTCGCG, with (xAr) the incorporated CeNA residue,

was crystallized at 168C by the ‘hanging-drop’ vapour
diffusion method. The crystallization conditions were
screened using a 24-matrix screen developed for oligonu-
cleotides (14). The conditions that produced crystals were
then further optimized by increasing the potassium
concentration. This optimized crystallization condition
contained 20mM potassium cacodylate buffer (pH=5.5),
10mM cobalt hexamine, 44mM potassium chloride,
6mM sodium chloride, 5%(v/v) 2-methyl-2,4-pentanediol
(MPD) and 0.75mM ssDNA against a 35%(v/v) MPD
stock solution. Block-like crystals were obtained after one
day. No crystals could be obtained using the original
crystallizations conditions, Na+/Mg2+/spermine.

Data collection

A dataset was collected at the EMBL synchrotron
facility (Hamburg) on beamline BW7b (�=0.841 Å) up
to 1.85 Å resolution. The crystal used was about
0.1� 0.1� 0.2mm. Data frames were taken with �j-
increments of 28 over a total j-range of 948 at a collection
temperature of 100K. The data were processed with
‘Mosflm’ (15) and scaled with ‘Scala’ (16) to 1.90 Å.

No signs of decay were observed. The data collection
statistics up to 1.90 Å are summarized in Table 1.

The unit cell was determined as: a=24.949 Å,
b=38.718 Å and c=66.901 Å, which is similar to the
unit cell found for the original Dickerson sequence and
initially the space group P212121 was assigned, following
the same analogy.

Structure determination

The space group could not be unambiguously determined
based on systematic absences, although these indicated
that space group P212121 would be unlikely. The correct
space group was assigned during the molecular replace-
ment procedure.

Since the NMR studies (10) indicated that the
incorporation of the cyclohexenyl-adenine residue has
practically no effect on the global structure and also
because there is no (NMR-) model of the modified
Dickerson sequence available, the high-resolution struc-
ture (NDB code BDL084) was used as search model for
the molecular replacement procedure. This was done in
the assumption that the global crystal packing was similar
to the original Dickerson structure. The molecular
replacement program ‘Phaser’ (17) was used to find one

Table 1. Data collection statistics for the modified Dickerson sequence

CGCGA(xAr)TTCGCG with (xAr) a cyclohexene residue

Space group P2221
Resolution range (Å) 20.00–1.90 (2.00–1.90)a

Measured reflections 24 668
Unique reflections 5476
Completeness (%) 99.4 (100.0)a

Rmerge (%) 5.0 (45.7)a

Multiplicity 4.5 (4.6)a

Mean I/s(I ) 15.3 (3.0)a

Average B-value (Å2) 38.0
Mosaicity (8) 1.1

aValues in parentheses are for the outermost shell.
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Figure 1. CeNA in its two stable conformations: (a) the 2H3 half-chair
conformation which mimics the C2’-endo conformation of the natural
ribose sugar and (b) the 3H2 half-chair conformation mimicking the
C3’-endo conformation. (c) The CeNA in the 2E-envelope conforma-
tion. (d) Numbering scheme used for the CeNA cyclohexene ring.
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duplex in the space group P212121 and its enantiomers
(P222, P21212, P22121, P21221, P2221, P2212 and P2122).
The automatic mode failed to give any results and a
clear solution was only found by omitting the packing
function step in the molecular replacement procedure
in the space group P2221 where the helical dyad axis
coincides with a crystallographic 2-fold rotation axis.
A second helix was also found to have the dyad
axis coinciding with a crystallographic 2-fold axis.
Finally the asymmetric unit does not consist of one
double helix, as observed for the native Dickerson
sequence, but of two single stands, generating the double
helices by applying the space group symmetry.

The structure was refined using ‘Refmac’ (18), using the
standard dictionary files and a new dictionary entry was
made for the cyclohexene residue. Target values for the
modified sugar moiety were obtained from the Cambridge
Structural Database (CSD) (19). The modified cyclohex-
ene sugar moiety was fitted onto the sixth residue of the
positioned MR model, to incorporate the modified residue
into the molecular replacement solution. No ideal torsion
angles were imposed for the CeNA residues, except for
planarity restraints applied to the adenine bases and to the
double bond in the cyclohexene ring. The chiral volumes
of the sugar ring atoms were calculated and monitored
during the refinement, as well as the bond distances and
angles. The 2|Fo|�|Fc| and |Fo|�|Fc| maps were also
inspected to check the agreement between the model and
the experimental electron density maps.

The terminal cytosine residue of the second strand
(residue C1 of duplex Two) could not be fitted in the
density maps and was found to be disordered, due to steric
hindrance between the terminal cytosine residue ands its
neighbour generated by a crystallographic 2-fold axis.

Three cobalt hexamine residues were found when
inspecting the density maps; a residue with ideal geometry
was fitted into the 2|Fo|�|Fc| density map using the
program ‘Coot’ (20), and refined in Refmac in subsequent
refinement cycles. One of the cobalt hexamine residues has
an occupation factor of 50%. In total 75 water molecules
were added using the ‘arp_waters’ (ARP/wARP ver-
sion5.0) function in ‘Refmac’ (21). The diffuse solvent
was modelled according to Babinet’s principle (22). The
convergence of the refinement was cross-validated using a
4.5% Rfree-value test set. The final R- and Rfree-values are
23.0% and 30.8%, respectively. Further refinement details
are listed in Table 2.

All molecular figures were created using the program
PyMol (DeLano, W.L. The PyMOL Molecular Graphics
System (2002) on World Wide Web http://www.
pymol.org).

RESULTS AND DISCUSSION

As the original Dickerson sequence, the modified sequence
forms a right-handed, anti-parallel double helix in which
all bases are engaged in standard Watson–Crick base
pairs, with hydrogen bonding distances close to the
standard values (Figure 2). On the contrary the modified
sequence d(CGCGA(xAr)TTCGCG) crystallizes in the

orthorhombic space group P2221, whereas the unmodified
Dickerson sequence crystallizes in the space group P212121
with similar unit cell parameters. This is even more
remarkably, knowing that this modified helix is the first
oligonucleotide that crystallizes in this particular space
group.
Since the asymmetric unit consists of two single-

stranded oligonucleotides rather than one double helix,
two distinct biological units (double helices) are present.

Figure 2. Stick representation showing the two duplexes present in the
crystal structure, duplex One on the left, duplex Two on the right. The
two strands are shown in silver and black, respectively and are
connected through an internal 2-fold rotation axes. Notice the missing
terminal cytosine residue in duplex Two.

Table 2. Refinement parameters for the modified Dickerson sequence

CGCGA(xAr)TTCGCG with (xAr) a cyclohexene residue

Resolution range (Å) 17.76–1.90
Number of reflections 5209

Number of atoms
Nucleic acid 468
Waters (treated as O) 75
CoðNH3Þ

3þ
6 21

Number of disordered atoms 19
Final R-value (working set) (%) 23.0
Final R-value (all data) (%) 23.3
Final Rfree-value (%) 30.8

RMS deviation from restraint target value
Bond lengths (Å) 0.011
Angles (8) 1.803

Distances from restraint planes (Å) 0.009
Anti-bumping distance restraints (Å) 0.171
Mean B-values (Å2) 44.2
DNA atoms 43.1
Solvent atoms 49.3
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Each oligonucleotide strand generates its own duplex
by applying the crystallographic 2-fold rotation axis
present in the space group P2221. Both oligonucleotide
strands and the duplexes that they both generate are
thus not equivalent. The two single-stranded oligonucleo-
tides as well as their respective double helices will be
named One and Two respectively, corresponding to chain
A and chain B in the pdb file (NDB code BD0101).
The numbering scheme for the CeNA residues is given
in Figure 1d.

Influence of the incorporated CeNA residue

The C10–C10 distances from duplex One are all very similar
to those found in duplex Two with an average distance
of 10.7 and 10.6 Å, respectively. Also the � angles
(angle between the vectors C10–C10 and C10–N1/N9) are
similar to one another, 53.68 and 53.88 for duplex One and
duplex Two, respectively. Both the C10–C10 distances and
� angles are comparable with the base-pair geometry
found in high-resolution A-DNA and B-DNA crystal
structures (23).
The overall structural features of both helices are

similar and when superposing both duplexes onto each
other, the root mean square (RMS) deviation is �1.13 Å,
with the largest positional differences observed in the
terminal residues. Similar results are found when super-
posing duplex One and Two onto the unmodified high-
resolution Dickerson sequence (NDB code BDL084), a
RMS deviation of 1.12 and 1.41 Å, with a maximum
deviation of 4.85 and 5.38 Å is found, for duplex One and
duplex Two, respectively. Comparing only the central
GAATTC residues of the high-resolution and the mod-
ified dodecamer, the RMS deviation decreases consider-
ably (0.58 and 0.56 Å for duplex One and Two,
respectively), highlighting the rigidity of the central
residues despite the modification.
The ring puckering of the five-membered deoxyribonu-

cleotides ranges from C20-endo over C10-exo and C40-exo
to C30-endo for both duplex One and duplex Two. In order
to minimize the deviation from the global B-type helix, the
cyclohexene ring is forced into the 2E-envelope conforma-
tion, rather than the suggested 2H3 half-chair conforma-
tion. The average intra-strand phosphate distance in
B-type DNA is �7.0 Å (24). The C30 atom of the CeNA
residue is pushed into the plane, formed by the double
bond, to reduce the intra-strand phosphate distance to the
average value found in B-type DNA and to preserve the
global B-type helix. The intra-stand phosphate distance
between the phosphate atom from the CeNA residue and
phosphate atom attached to its 30-end is 7.2 Å for both
duplexes One and Two (Figure 3).
Helical parameters (Table 3) were calculated with the

3DNA package (25) and values similar to the ones
found in unmodified B-type DNA are observed. The
x-displacement is almost 0 Å (0.10 and �0.64 Å for duplex
One and duplex Two, respectively). The base pairs are
inclined over 3.48 (duplex One) and 6.58 (duplex Two) and
show on average a propeller twist of �11.08 and a buckle
of 0.08. The average roll and slide for duplex One are 1.58
and 0.26 Å, respectively and 3.78 and �0.03Å, respectively

for duplex Two. Duplex One is characterized by a rise of
3.26 Å and a twist of 35.48, similar to the rise and twist
found in duplex Two, 3.22 Å and 35.28, respectively. The
twist found in both duplex One and duplex Two
corresponds with about 10.2 base pairs in a full turn.

Since the helical parameters for both duplexes are very
comparable, the minor and major groove widths are also
very similar. The minor groove widths were calculated as
the closest separation between the O4’ atoms (or the C70

atoms for the CeNA residues) and were corrected for the

Table 3. Helical parameters for the modified Dickerson sequence

CGCGA(xAr)TTCGCG with (xAr) a cyclohexene residue and compar-

ison with classical B-type DNA

Modified Dickerson sequence

B-DNAa Duplex One Duplex Two

x-displacement (Å) 0.05 0.15 �0.65
Inclination (8) 2.1 3.4 6.5
Rise (Å) 3.32 3.3 3.2
Twist (8) 36.0 35.4 35.2
Slide (Å) 0.23 0.26 0.0
Roll (8) 0.6 1.5 3.66
Propeller twist (8) �11.4 �11.0 �11.0
Buckle (8) 0.5 0.0 0.0

aHelical parameters for A and B type DNA are taken form (Olson
et al. (2001).

Figure 3. Stick representation and electron density of residues 6 (xAr)
(CeNA) and T7. The CeNA sugar ring adopts the 2E envelope
conformation rather than the 2H3 half-chair conformation. The C30

atom of the CeNA moiety is pushed into the plane formed by the
double bond in order to prevent further stretching of the intra-strand
phosphate distance, now 7.2 Å, and to preserve the global B-type
conformation. Electron density maps are calculated with refined phases
and contoured at 1.1s above the average background.
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van der Waals radii of the corresponding atoms (oxygen
atoms: 1.52 Å, carbon atoms: 1.70 Å). An average value of
5.38 and 5.14 Å is observed for duplex One and duplex
Two, respectively (minor groove BDL084, 4.89 Å). The
major groove was calculated as the distance between
phosphate atom of residue P(n) and the phosphate atom
P(n+2) on the opposite strands, and the distance was
corrected for the sum of the van der Waals radii of
the two phosphate groups (5.80 Å). Average values of
10.21 and 9.72 Å are observed for duplex One and duplex
Two, respectively (major groove BDL084, 9.78 Å). Both
the minor and major groove broaden from the central
region outwards.

The structure of the unmodified B-type helix
CGCGAATTCGCG is characterized by a spine of water
molecules that are located in the minor groove. This was
already described by Drew and Dickerson (1981) (26) and
confirmed by the high-resolution structure (5).

In Figure 5, the schematic hydrogen network in the
minor groove is shown. This schematic representation of
the water network is to be compared with a similar
illustration for the high-resolution structure [figure 5 in
Shui et al. (5); NDB code BDL084]. When comparing
both figures it is clear that the water spine is partially
preserved in the modified duplexes (missing water
molecules in the water spine of the modified dodecamer
are indicated with X. Moreover when superposing the
modified duplexes onto the high-resolution structure it is
unmistakable that the water molecules occupy similar
sites, despite the introduced modification (Figure 4).

While the hydration spine extends asymmetrically in the
unmodified duplex, with respect to the central AATT
region, the water spine in the modified duplexes is
symmetrical due to the internal 2-fold rotation axis. This
is clearly seen in Figure 5 where the water molecules O3
and O6 are located onto a 2-fold axis (Symmetry
generated residues and water atoms are indicated with
an �). This causes an extension of the water spine at one

side of the helix and the terminal water molecules of the
hydration spine deviate therefore more from the average
sites of the high-resolution dodecamer.
In duplex One, one water molecule of the hydration spine

could not be located in the density. This water molecule and
its symmetry-related equivalent, which correspond to water
molecule 55 and 67 in the high-resolution structure
(BDL084), would lie next to the modified CeNA residue
and it is believed that the introduction of the apolar
cyclohexene ring results in the absence of the suitable
O4’-acceptor site in the sugar ring. In duplex Two, however,
this water molecule is present, mainly because a cobalt
hexamine residue acts as a donor/acceptor for the water
molecule (HOH 8) in the hydration spine (Figure 5), rather
than the oligonucleotide.
The average temperature factor of the water molecules

in the hydration spine of duplex One (49 Å2) is only
slightly lower than the average temperature factor for all
water molecules (50 Å2). In duplex Two, however the
average temperature factor for the spine water molecules
is much lower (41 Å2). This can be partially understood by
the stabilizing effect of a cobalt hexamine residue on the
hydration spine in duplex Two.
The base-stacking patterns in the modified dodecamer

show a great resemblance with unmodified B-type DNA.
No inter strand overlap between the base rings is observed
and the intra-strand base stacking diminishes moving
from the central base-pair steps outwards, with almost no
overlap observed for the terminal base-pair steps.
It appears that the two CoðNH3Þ

3þ
6 residues, which are

located close to the modified CeNA residue, positively
influence the base-stacking interaction of the central step
in duplex Two. The intra-strand ring overlap for the
central step in duplex One is �1.37 Å2 while for duplex
Two an overlap of 2.41 Å2 is observed. This increase in
base-stacking interaction can be attributed solely to the
larger negative slide found in duplex Two (�0.98 Å)
as compared to the value of �0.38 Å in duplex One.

Figure 4. Stick representation of the central GAATTC residues with the hydration spine shown as spheres. The modified Dickerson sequence with
the incorporated CeNA residue (shown in green) is superposed onto the high-resolution structure [Shui et al. (5)] (shown in red). duplex One is shown
on the left, duplex Two on the right.
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The phosphate group in duplex Two adopts the BI

conformation ("�� difference: �58.78) whereas the phos-
phate group in duplex One is found to be in the BII

conformation ("�� difference: 14.78). In general the BII

conformation appears to be associated with less favorable
intra-strand base-stacking energies, as is observed in
duplex One. The more positive slide found in duplex
One can also be ascribed to the BII conformation of the
phosphate group (27). It appears therefore that the cobalt
hexamine residues, attached to duplex Two, facilitate the
conversion to the BI configuration for the modified CeNA
residue. This conversion increases the base pair overlap
and results in a more stable configuration.

The CGCGAATTCGCG dodecamer in a new crystal form

The double helices stack on top of each other to form
pseudo-continuous helices, similar to the pseudo-
continuous helices found in the unmodified Dickerson
structure. In the packing two such columns are observed,
consisting of duplexes One and the other consisting of
duplexes Two. Both columns are aligned along the c-axis.
Unlike the natural dodecamer, which crystallizes in the
space group P212121, the CeNA modification crystallizes
in space group P2221. The introduction of 2-fold axes
applies more restrains to the double helices and to their
packing. These 2-fold axes are responsible for the disorder
of the first cytosine residue of duplex Two. Rebuilding the
disordered cytosine residue results in unfavorable contacts

between the phosphate group atoms of the second residue
of duplex Two and its symmetry equivalent.

The Dickerson sequence has already been crystallized
in different space groups. It was reported that adding
calcium ions changed the packing and the structure (28).
Here the terminal cytosine residue was also found to be
disordered, due to the crystal packing.

The presence of other cations (K+, Cs+ or Tl+) does
not change the crystal packing of the Dickerson sequence
(29–31).

In the crystal packing of the Dickerson sequence with
the incorporated CeNA residues, the dyad axes coincide
with the crystallographic 2-fold axes of the P2221 space
group. This is also the case with the Dickerson sequence
crystallized in the space group P3212 (9). Here the terminal
bases are flipped out, with the duplexes stacking on top of
each other.

Modifying the sugar-phosphate backbone does not
normally change the crystal packing (32–34). However,
when replacing the sugar-phosphate backbone by a
phosphoramidate backbone (O30!N30) the Dickerson
sequence crystallizes in the H32 space group (twinned
structure with three helices in the asymmetric unit) (8).
Here the helices stack in continuous columns contrary to
the pseudo-continuous helices observed in the native
Dickerson sequence.

The packing in our structure is greatly stabilized by the
three cobalt hexamine residues present in the crystal
structure. Two cobalt hexamine residues, which are located

Figure 5. Schematic representation of the water network observed in the minor groove of the modified Dickerson sequence CGCGA(xAr)TTCGCG.
This figure is to be compared with figure 5 in Shui et al. (5) where a similar illustration is shown for the high-resolution structure (NDB code
BDL084). On the left duplex One is shown, on the right duplex Two. Missing water atoms, compared to the water-spine found in the high-resolution
structure are indicated with X, symmetry generated residues and water atoms are indicated with �. Notice in particular the presence of the Co(NH3)6
residues, which stabilize the water spine in duplex Two. The water spine in duplex One and duplex Two stretches symmetrically to either side of the
duplex, with the central water molecules (O3 and O6) being positioned on a crystallographic 2-fold axis.
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�10 Å from each other, are highly hydrated and are
situated in-between the pseudo-continuous columns.
These two cobalt hexamine residues are connected with
six (symmetry related) single-strand oligonucleotides
through hydrogen bonds with bridging water molecules.
The CoðNH3Þ

3þ
6 residues not only stabilize the terminal

residues of duplex One but the modified residue in duplex
Two as well. The phosphate group attached to the 3’-end of
the modified CeNA residue in duplex Two is involved
in hydrogen bonding with both CoðNH3Þ

3þ
6 residues,

the cobalt hexamine residues hereby stabilizes
the global B-type conformation of the duplex and the
2E-conformation of the cyclohexene residue in duplex Two.

The third CoðNH3Þ
3þ
6 residue, which has an occupancy

of 50%, does not stabilize the modified residue, but is
located close to the disordered residue in duplex Two. It is
believed that the third CoðNH3Þ

3þ
6 residue replaces the

disordered cytosine residue of duplex Two by stabilizing its
Watson–Crick complement (Guanine 12 of duplex Two)
through hydrogen bonds with the O6 and N7 atoms of the
guanine residue. Furthermore this third CoðNH3Þ

3þ
6

residue interacts with symmetry-related duplexes, stabiliz-
ing the crystal packing.

CONCLUSIONS

The modified Dickerson sequence CGCGA(xAr)TT
CGCG with one incorporated cyclohexene adenine residue
crystallizes in the orthorhombic space group P2221, and
data were collected up to 1.90 Å. The helix was found to be
an anti-parallel right-handed duplex, with both strands
connected by a crystallographic 2-fold rotation axis. The
single cyclohexene residue causes almost no conforma-
tional changes; the global helix belongs to the B-type
family. Standard Watson–Crick base pairs are observed
and the backbone torsion angles are similar to those found
in the original Dickerson sequence.

The conformation of the furanose sugar moieties varies
from C30-endo over O40-endo to C30-exo, and the modified
sugar ring adopts the 2E conformation, rather than the
expected 2H3 half-chair conformation.

The water spine found in the original Dickerson
sequence is partially broken by the introduction of the
apolar cyclohexene residues, especially in duplex One, in
duplex Two the spine is better preserved.

The presence of two cobalt hexamine residues greatly
stabilizes the crystal packing and the modified residues.
These cobalt hexamine residues are highly hydrated and
show hydrogen bonds with phosphate groups as well as
with DNA bases.

The reported space group is quite unusual, not only
because the Dickerson sequence has never before been
crystallized in the space group P2221, but also because this
space group has never been reported for nucleic acid
sequences.

The odd crystal packing also causes the terminal
cytosine residue of one of the two chains to be disordered.
The crystal packing is however quite similar to the one
observed in the native Dickerson sequence, with duplexes
stacking in pseudo-continuous helices. There is also

resemblance with other types of crystal packing. As in
the structure reported by Liu et al. (1999) (NDB code
BD0014), the terminal cytosine residue is disordered and
similar to the structure of Johansson et al. (9) (NDB code
BD0032), the dyad axis coincides with a crystallographic
2-fold axis.
Although designed to be more rigid and to belong to the

A-type family, the cyclohexene residue adopts its con-
formation to a B-type DNA when incorporated in the
Dickerson sequence. Further studies will be established to
investigate the influence of CeNA on a duplex involving
RNA as the natural partner to obtain a better insight in
the recognition of CeNA by the RISC complex.
The structural characterization of a DNA duplex with

an incorporated CeNA residue is a first important step in
the understanding of the interaction between CeNA and
polymerases when synthesizing CeNA oligomers on a
DNA template.

Accession codes

Final coordinates and structure factor amplitudes have
been deposited with the Protein Data Bank (code 2P8D)
and Nucleic Acid Data Bank (code BD0101).
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