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Abstract

filamentous fungi have been characterized.

the first characterized bacterial member.

Background: Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by
a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity
towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from

Results: We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the
thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and
known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/
glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a
glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic
peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent
evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus
subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The
purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were
found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In
addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases.

Conclusions: Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as

Background

Biotech industries are becoming more and more suc-
cessful in providing enzymatic solutions to an ever
increasing number of industrial processes. The combina-
tion of high-throughput screening methods and the low
cost of full genome sequencing has greatly sped up the
process of identifying and isolating genes that match the
criteria for a given industrial process. Besides being able
to catalyze the enzymatic reaction in the industrial pro-
cess, the enzymes must also be able to survive the often
harsh industrial conditions. One of the frequently
required capabilities of an industrial enzyme is the
ability to function at high temperatures in either an
acidic or alkaline environment. Enzymes with such
properties can either be designed in silico or by
high-throughput screening of microorganisms. High-
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throughput screening is often the first choice because
optimization of an existing enzyme to an industrial pro-
cess is much simpler than in silico design. The high-
throughput screening is performed at conditions made
to mimic the industrial process in order to find existing
enzymes already able to cope with the industrial envir-
onment. Again, these study enzymes are often found in
microorganisms that are able to grow in extreme condi-
tions. By taking advantage of the many published and
freely available genomes, it is often possible to make an
educated guess of which microorganisms would be
interesting to screen for a certain enzyme. Screening of
such microorganisms will often provide an extensive
battery of enzymes optimized for the selected screening
conditions.

A soil screening conducted by Novozymes A/S
resulted in the discovery of a novel strain of Alicycloba-
cillus (WO 2005/066339). The thermoacidophilic bacter-
ial strain was isolated at low pH (approx. 4.5) and high
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temperature (60°C). The genus was identified by 16 S
rRNA analysis and showed a significant phylogenetic
distance from the previously known strains of Alicyclo-
bacillus (WO 2005/066339). The strain was deposited in
the DMSZ bacteria collection as Alicyclobacillus sp.
DSM 15716. A gene for a putative G1 peptidase was
identified in a gene library screening for secreted
enzymes using Transposon Assisted Signal Trapping
(TAST) [1] of Alicyclobacillus sp. DSM 15716 (WO
2005/066339).

The peptidase showed significant sequence similarity
to the peptidase family G1 [2], a family otherwise
thought to be limited to the filamentous fungal species
of the Ascomycota phylum [3]. The characterized pro-
teins known to be part of the G1 family are aspergillo-
glutamic peptidase (AGP) from Aspergillus niger [4],
scytalidoglutamic peptidase (SGP) from Scytalidium lig-
nicolum [5], acid peptidases B and C (EapB and EapC)
from Cryphonectria parisitica [6], Penicillium marneffei
acid proteinase (PMAP-1) [7], Talaromyces emersonii
glutamic peptidase 1 (TGP1) [8] and BcACP1 from
Botryotinia fuckeliana [9].

Based on sequence homology, five bacterial and a sin-
gle archaeal protein have been annotated as putative G1
peptidases at the MEROPS peptidase database, but bio-
chemical characterizations have not been carried out to
confirm their function [2]. Structural homology to fun-
gal G1 peptidases and conservation of the catalytic resi-
dues indicate that pepG1 from Alicyclobacillus sp. DSM
15716 could be a bacterial G1 peptidase. In order to
further examine its properties, we have amplified pepG1I
from Alicyclobacillus sp. DSM 15716 genomic DNA and
heterologously expressed it in B. subtilis. Following puri-
fication, pepG1 was characterized according to its physi-
cal properties, such as pH and temperature optimum
and the effects of various protease inhibitors were deter-
mined. Based on these results, we suggest that pepG1
can be annotated as a G1 peptidase.

Results and discussion

Phylogenetic analysis of peptidase family G1

Previously, only G1 peptidases derived from filamentous
fungi have been characterized and the peptidase family
G1 was thought to be limited to filamentous fungi -
more precisely fungi from the Ascomycete phylum [3].
As the number of sequenced genomes increases, more
and more hypothetical proteins are annotated based on
sequence similarities to previously characterized pro-
teins or protein signatures. The MEROPS peptidase
database (version 9.1) [2] has assigned sixty-six open
reading frames (ORFs) to family G1 with the majority
being derived from Ascomycetes. Sixty of the ORFs are
from Ascomycetes but six are supposedly non-pepti-
dase homologs lacking one or both catalytic residues,
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thereby bringing the total number of Ascomycete pep-
tidases down to fifty-four. The G1 peptidases are found
in the following Ascomycete orders: Eurotiales, Pezi-
zales, Sordariales, Leotiales, Diaporthales, Dothideales
and Pleosporales, with the vast majority of G1 pepti-
dases originating from the Eurotiales order (Additional
file 1 Table S1). Of the remaining six ORFs in pepti-
dase family G1, five are from bacteria and one is from
archaea. In addition, blast searches at NCBI identified
one more archaeal and three more bacterial G1 pepti-
dase homologs. A bootstrapped unrooted maximum
likelihood phylogenetic tree (disregarding the non-pep-
tidase homologues) showed a clear distinction between
Ascomycete and bacterial/archaeal pepG1 peptidases.
The Ascomycete cluster A can be subdivided into two
major clusters, termed B and C (Figure 1). All G1 pep-
tidases derived from the Eurotiales and Leotiales orders
had at least one paralog in each major cluster, as indi-
cated in Additional file 1 Table S1. This strongly indi-
cates that gene duplication took place before species
differentiation in the Eurotiales and Leotiales. Each
species, primarily in the Eurotiales, contains numerous
paralogs [3] (i.e. seven in Talaromyces stipitatus and P.
marneffei), which appears to be the result of extensive
gene duplications within the species as many of the
paralogs exhibit very high sequence similarity. The
bootstrap confidence levels of the internal nodes of the
Ascomycete clusters were in general above 0.7, indicat-
ing that the members of the different clusters are
grouped correctly together. As expected, the bacterial
and archaeal peptidase G1 orthologs were found to
cluster separately from the Ascomycetes, supported by
a bootstrap confidence value of 0.7 (Figure 1). The
archaeal G1 peptidases were clustered together, but do
not appear to be as divergent from the bacterial G1
peptidases as could be expected. A plausible explana-
tion could be that “housekeeping genes” from archaea
are bacterial in origin [10], although this assumption is
still heavily debated. Another possibility could be that
the introduction of G1 peptidases into archaea was
facilitated by ancient horizontal gene transfer events.
Low bootstrap values prevent deduction of the mutual
relationship between the bacterial G1 peptidases from
the generated maximum likelihood phylogenetic tree,
except for the observation that bacterial G1 peptidases
from Proteobacteria (Bin and Bvi) and Firmicutes (Ame,
Cat, Ckl, Geo, pepG1 and Rsa 1+2) fall into two differ-
ent clusters (Figure 1). Several attempts to improve the
confidence levels of the bacterial/archaeal part of the
phylogentic tree, including restricting the phylogenetic
analysis to the most conserved regions of the sequences,
were unsuccessful. On the other hand, no significant
changes in the layout of the phylogenetic tree were
observed by using only the most conserved regions,
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Figure 1 Phylogenetic tree of peptidases from the MEROPS peptidase family G1. The archaeal G1 peptidases are highlighted in rose. The
fungal G1 peptidase cluster is highlighted in different shades of blue, and the major fungal clusters are labeled A, B and C. All annotated and
putative family G1 peptidases (except for non-peptidase homologs) at the MEROPS peptidase database (version 9.1) were aligned using ClustalX
version 2.0.11. The bootstrapped maximum likelihood tree was built using PhyML 3.0 aLRT [31] and visualized in TreeView [32]. The tree was
bootstrapped with 100 iterations and bootstrap values are indicated on the figure. All GenBank accession numbers and detailed information on
the members of each cluster can be found in Additional file 1 Table S1. Asa: [GenBank: YP_003816089] from Acidilobus saccharovorans;

Ame: [GenBank: YP_003762485] from Amycolatopsis mediterranei; Bin: [GenBank: ACB95479] from Beijerinckia indica; Bvi: [GenBank: ABO59772]
from Burkholderia vietnamiensis; Cat: [GenBank: YP_003114490] from Catenulispora acidiphila; Ckl: [GenBank: BAH07727] from Clostridium kluyveri;
Cma: [GenBank: ABW02092] from Caldivirga maquilingensis; Geo: [GenBank: YP_003244752] from Geobacillus sp. Y412MC10; PepG1: [GenBank:
HMO11103] from Alicyclobacillus sp. DSM 15716; Rsa_1: [GenBank: ABY24309] from Renibacterium salmoninarum; Rsa_2: [GenBank: ABY21885]
from Renibacterium salmoninarum.

indicating that the present layout of the phylogenetic
tree is acceptable. A possible explanation as to why the
bootstrap values could not be improved may be due to
the highly divergent amino acid sequences, illustrated
by the low sequence homology between both the bacter-
ial orthologs (25-35% sequence identity) and the bacter-
ial and fungal orthologs (24-30% sequence identity).

Catalytic residues and secondary structure of pepG1

Before the determination of the crystal structures of
AGP and SGP, several attempts at elucidating the cata-
lytic residues of G1 peptidases were carried out. Site-
directed mutagenesis of conserved acidic residues was
completed and the mutated enzymes were evaluated
based on their catalytic activity. It is also known, that
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both AGP and SGP are expressed as precursor proteins
which are autocatalytically processed into mature pro-
teins in acidic conditions. By selecting both mutants
unable to catalyze the conversion of precursor into
mature protein, and those lacking peptidase activity, a
glutamine (Q107 in SGP, Q133 in AGP) and a gluta-
mate (E190 in SGP, E219 in AGP) were believed to be
the active site residues of G1 peptidases [11-13]. The
almost simultaneous publications of the near identical
crystal structures of SGP and AGP verified the site-
directed mutational studies and confirmed that the cata-
lytic dyad in G1 peptidases consists of a glutamine and
a glutamate residue [14,15].

An alignment of all G1 peptidases from the MEROPS
database and pepG1 showed that the catalytic dyad was
strictly conserved in pepG1 and all family G1 members,
both characterized and putative. A simplified alignment
showing the bacterial/archaeal members and the charac-
terized fungal members are shown in Figure 2. The
overall sequence similarities are, in general, low between
the fungal and bacterial/archaeal peptidases, ranging
from 24% to 30% amino acid identity. The crystal struc-
ture of SGP [14] revealed seven highly conserved motifs
clustered on the upper B-sheet surrounding the active
site and substrate-binding sites. The presence and high
conservation of these motifs in both pepG1 and the
other non-fungal putative members of G1 (Figure 2)
strongly suggest that these enzymes are related members
of fungal G1. Most mutations found in the motifs are
conservative and therefore the general tertiary structure
and function of the regions should be unaffected. SGP
has three disulfide bridges, however not all are con-
served in other G1 peptidases [14]. One is unique for
SGP and of the two others, the most highly conserved
one is located between C101 and C181 (Table 1) but is
missing from EapC. The third disulfide bridge is specific
to SGP and EapB and not found in any of the other fun-
gal peptidases shown in the phylogenetic tree (Figure 1).
None of the conserved cysteines are present in any of
the bacterial or archaeal G1 homologs (Table 1). Disul-
fide bridge formation appears to have no direct effect
on enzymatic activity but could result in more stable
proteins as disulfide bridges are known to stabilize pro-
teins at high temperatures [16].

The structure determinations of AGP and SGP
revealed a previously undescribed fold, comprised of a
B-sandwich with two seven stranded antiparallel -
sheets [14,15]. Protein structure prediction of pepG1l
using Phyre [17] identified AGP and SGP as the closest
homologs to pepG1 and predicted that pepG1 had all
fourteen B-sheets needed for the two seven stranded
antiparallel B-sheet fold unique for G1 peptidases. No
significant structural homology was found towards other
proteins. To further examine the pepG1 structure, a
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three-dimensional model structure was generated using
the SWISS-MODEL structure homology-modeling ser-
ver [18]. A model structure encompassing residues
65-263 of pepG1 was obtained (Figure 3), corresponding
to the mature pepG1 enzyme without the signal peptide.
The structural template for the model structure of
pepG1 was SGP [PDB: 2ifw], which has 23.5% sequence
identity to pepG1l. Stereochemistry of the backbone
structure was evaluated by Ramachandran maps. Out of
a total of 199 residues, only 12 were found in the disal-
lowed and generously allowed regions. The PROCHECK
[19,20] overall g factor, evaluating all torsion angles and
bond lengths, was -0.5, indicating a good-quality model
[21]. The two antiparallel B-sheet fold was present in
the pepG1 homology model, but two of the B-sheets
were missing from the upper section (Figure 3). The
missing [3-sheets are not believed to influence the cataly-
tic activity of G1 peptidases. The active site residues,
Q117 and E199, were found to be solvent exposed on
the concave surface of the upper f-sheet. Both the
orientations of the individual antiparallel B-sheets and
the positions of active site residues in the pepG1 model
are almost identical to the published structures of AGP
and SGP [14,15]. The high structural similarity strongly
supports that pepG1 is a G1 peptidase.

Sims et al [3] showed that G1 proteins carry several
characteristic protein signatures. Investigation of the
putative bacterial and archaeal G1 peptidases (Table 1)
identified three out of four protein signatures. The miss-
ing protein signature, PR00977, is composed of five
sequence motifs (Figure 4), of which four of them
roughly correspond to the conserved motifs surrounding
the active site [14] (Figure 2). A manual alignment of
the PR00977 protein signatures to pepG1l showed that,
although not all residues are conserved, the changes are
mostly conservative. The PR00977 signature is based on
an alignment of AGP, SGP, EapB and EapC [22]. The
few sequences used for generating the PR00977 protein
signature strongly restricts the allowed residue devia-
tions (Figure 4) and would account for why the protein
signature was not identified in the bacterial and archaeal
G1 peptidases.

Identification and expression of pepG1

The gene for a putative G1 peptidase was identified in a
gene library screening for secreted enzymes using
Transposon Assisted Signal Trapping [1] of Alicycloba-
cillus sp. DSM 15716 (WO 2005/066339). The gene
encoding pepG1 was PCR amplified from genomic DNA
of Alicyclobacillus sp. DSM 15716 and integrated by
homologous recombination into the chromosome of
B. subtilis MB1053. The signal peptide of pepG1 was
replaced with a subtilisin-signal peptide for improved
secretion in the B. subtilis host. SignalP cleavage site
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SATLID- IEQNG- - - Se - -QVLTDVSVS S GDOVVVKYV - - 284
rrrrr ADDKS - - - - - -RYTWTFGAIG - SDGASFTMTRH - -- 238
YEMIMVYNDQG - - - S - - KVLAQPSGLY SAYGSSFYVOYGPUGSSGSGGHHG - - - 275
SSLVVLTMLDNAG - - - ----QRISSPIIEN CFMFLYFYNYGSSN- - - - - .- 385
SATATIVDYAMTDASG - ce - - TIIMQANLAP - - - - - - PHLKANAPTEYGYTNVTFLGGTTTGNP 356
rrrrrrrrrr MASGS S TTKATVSSIS- - - - - - SSS6-AFSDTWHH- - - - - - - - - -- 245
-55GNIVIVPSSLGSDGESFTTTTAVSNSHLNNGPS I DPN-FRRRFNNTPPRORHIDNLSSQFHSEES I TLLIYYNTNKRLD - - 348
rrrrr WS IMVMNSG - --------ETLAYPSSLT SDGSSFTUTYG - - - - - - - - - - - 253
.- Se - IMLQNS- - - - ---TYTSIPSNPN- “RAGDGF - VVKGWVHQ- - - - - - - - 228
S SYMVANN - - - - - -AVVSVFPSAPD - -SDTDGFHNVAYGSNQPSPPAS - - 272

----- TKYNG - - - - - -VKKDSTSYDG S SDGLOVNWLHS - - 288
rrrrr VaYNN - VKKTEASKSS- S SSALRVKWLHA- -- 182

Alicyclobacillus sp. DSM 15716 (pepG1) and [GenBank: ABY21885] from Renibacterium salmoninarum (Rsa_1
peptidases were [GenBank: YP_003816089] from Acidilobus saccharovorans (Asa) and [GenBank: ABW02092] from Caldivirga magquilingensis (Cma).

Figure 2 Comparison of pepG1 with well-known family G1 peptidase and putative bacterial and archaeal members.
sequences including signal peptides were aligned using ClustalX version 2.0.11. The residues numbering for each peptidase is indicated. The
seven highly conserved segments in all G1 peptidases are colored according to the percentage of the residues in each column that agrees with
the consensus sequence. Only the residues that agree with the consensus residue for each column are colored. Dark blue means > 80%, blue >
60%, light blue > 40% and white < 40%. The catalytic dyad is colored red and the residues involved in a highly conserved disulfide bridge are
shown in yellow. The fungal peptidases used for the alignment were aspergilloglutamic peptidase (AGP, [GenBank: P24665]) from Aspergillus
niger, scytalidoglutamic peptidase (SGP, [GenBank: P15369]) from Scytalidium lignicolum, acid peptidases B and C (EapB [GenBank: Q00550] and
EapC [GenBank: Q00551]) from Cryphonectria parisitica, Penicillium marneffei acid proteinase (PMAP-1, [GenBank: EEA28697]), BCACP1 ([GenBank:
AAZ77775) from Botryotinia fuckeliana and Talaromyces emersonii glutamic peptidase 1 (TGP1, [GenBank: Q8X1C6]). The putative bacterial
peptidases were [GenBank: YP_003762485] from Amycolatopsis mediterranei (Ame), [GenBank: ACB95479] from Beijerinckia indica (Bin), [GenBank:
ABO59772] from Burkholderia vietnamiensis (Bvi), [GenBank: YP_003114490] from Catenulispora acidiphila (Cat), [GenBank: BAH07727] from
Clostridium kluyveri (Ckl) and [GenBank: ABY24309], [GenBank: YP_003244752] from Geobacillus sp. (Geo), [GenBank: HM011103] from

Full-length

and Rsa_2). The two archaeal
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Table 1 Protein signatures of known and hypothetical family G1 peptidases
Organism Protein Protein signatures Active site Disulphide
residues bridge
IPR000250 IPR0O08985
PD18627 PR00977 PF001828
Fungi AGP X X X X Q133 E219 c127 210
Fungi BCcACP1 X X X X Q108 E194 C102 C185
Fungi EapB X X X X Q125 E210 c119 201
Fungi EapC X X X X Q121 E206 A115 Q197
Fungi PMAP-1 X X X X Q109 E196 C103 c187
Fungi SGP X X X X Q107 E190 c101 181
Fungi TGP1 X X X X Q116 E201 c110 192
Bacteria Ame X X X Q95 E176 c127 K167
Bacteria Bin X X X Q226 E316 Q307
Bacteria Bvi X X X Q173 E268 V259
Bacteria Cat X X X Q99 E181 A172
Bacteria Ckl X X X Q136 E224 1215
Bacteria Geo X X X Q81 E162
Bacteria PepG1 X X X Q117 E199
Bacteria Rsa_1 X X Q119 E208 G199
Bacteria Rsa_2 X X X Q31 E120 G111
Archaea Asa X X Q97 E183 D175
Archaea Cma X X Q92 E175 L167

prediction for pepG1 was L33DA-SP [23]. Expression of
pepG1 was tested in three different liquid medias at two
different temperatures. Fermentation was continued for
up to six days. The highest peptidase activity at pH 3.4,
50°C towards AZCL-collagen was observed after five

Missing B-sheet

Missing B-sheet

Figure 3 Homology model of pepG1. The model was generated
using SWISS-MODEL [18] and visualized using PYMOL. The active
site residues, Q117 and E199, are shown in yellow. The upper
antiparallel B-sheet is light blue, and the lower B-sheet is red.

days of growth in PS-I media. Degradation of AZCL-
Collagen resulted in the formation of a blue halo. The
diameter of the halo was used as a rough measurement
of activity.

Purification of pepG1

Purification of pepG1 was performed as described in the
material and methods section. A troublesome and unex-
pected high affinity of pepG1 to the ion exchange col-
umn used in the final purification step, resulted in only
a partial elution of pepG1 (Figure 5). Fractions were
analyzed for acid peptidase activity and as shown in
Figure 5 pepG1 was eluted continuously in a broad peak
and not a sharp peak as expected. Increased NaCl con-
centrations were required to elute the remaining pepG1l
(fractions 49-56 in Figure 5). Fractions with acid pepti-
dase activity were pooled and analyzed by SDS-PAGE. A
single polypeptide band of 28 kDa was observed in the
pooled fractions (Figure 5 insert), very similar to the
molecular weights of about 22 kDa for AGP and SGP
[24,25]. The total amount of purified protein was 226
mg/L. N-terminal sequencing was carried out on the
purified protein and the following sequence (AgoQ)
NgFGWSASNWXGY, corresponding to the mature
pepG1 peptidase, confirmed that the purified protein
was pepGl.
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Figure 4 WebLogo of the protein signature PR00977. The
sequence logo was constructed from the alignment of the four G1
peptidases AGP, SGP, EapB and EapC [22]. The letter size is
proportional to the degree of amino acid conservation. The
Weblogo was generated using WeblLogo version 2.8.2 [34].

Characterization of pepG1

pepG1 exhibited peptidase activity towards AZCL-col-
lagen, AZCL-casein and bovine serum albumin. AZCL-
collagen was used for the characterization of pepG1
because of its higher stability at the experimental condi-
tions (pH 2-12, 15-80°C) compared to AZCL-casein and
bovine serum albumin. G1 peptidases are characterized
by optimal enzymatic activity at low pH [2]. Peptidase
activity for pepG1 was observed at pH values from 2.0
to 5.0, with a broad optimum pH range centered around
pH 3.0 at 37°C (Figure 6a). The activity profile of pepGl
fits very well with the pH optimum of SGP, PMAP-1
and TGP1 [7,8,25]. 60°C, at pH 4.0, was found to be the
optimal temperature for pepG1 proteolytic activity (Fig-
ure 6b). Temperature and pH optima fit the optimal
growth conditions of the known thermophilic bacteria
of the genus Alicyclobacillus, more precisely 35-60°C at
pH 3.0-5.5 [26]. pepG1 was found to be a very stable
protein, in regards to both the pH and temperature
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stability. Prolonged incubation at pH values of up to 6
had only minor effects on peptidase activity. Even at a
pH of 9, the residual activity was still more than 50%
(Figure 6c¢). Incubation at 70°C for up to one hour
caused some reduction in pepGl1 activity, but more than
60% activity was retained after one hour incubation at
70°C (Figure 6d). It was surprising that despite the lack
of disulphide bridges, pepG1 had higher thermal stabi-
lity than SGP. The single cysteine residue present in
pepGl is located in the N-terminal signal peptide and is
removed from pepGl after conversion of pepG1 into its
mature form. SGP lost most of its activity after incuba-
tion at 70°C for fifteen minutes, despite its three disul-
fide bridges otherwise known to stabilize proteins at
high temperatures [16]. An explanation for the higher
stability of pepG1 could be due to the presence of a
large number of electrostatic interactions and/or hydro-
phobic interactions, which are known to stabilize pro-
teins at high temperatures.

Effects of protease inhibitors and divalent cations on
pepG1 activity
Many aspartic peptidases are strongly inhibited by the
microbial derived inhibitor, pepstatin [27]. However, a
hallmark feature of the G1 peptidases is their insensitiv-
ity towards pepstatin. Therefore, studies of pepGl
sensitivity towards four catalytic class-specific inhibitors,
pepstatin, EDTA, PMSF and E-64 (L-trans-epoxysucci-
nyl-leucylamide-(4-guanidino)butane, N-(N-L-3-trans-
carboxyirane-2-carbonyl)-L-leucyl)-agmatine, were
performed in order to further characterize pepG1l. No
significant inhibition was observed in the presence of
the aspartic, serine and cysteine inhibitors, pepstatin,
PMSF and E-64. Furthermore, pepGl insensitivity
towards EDTA suggests that metal ions are not required
for activity (Table 2). Similar resistance to protease inhi-
bitors are seen in fungal G1 peptidases [7,8,25,28].
Insensitivity towards the aspartic peptidase inhibitor
pepstatin, is a characteristic feature of G1 peptidases
and supports the assignment of pepG1 to the G1 family.
Oda and Murao [25] showed that by incubating SGP
for 30 min with the divalent cations Cu** and Mn*", a
50% increase in enzymatic activity occurred. Studies
were performed with various divalent cations, including
Cu** and Mn**, but only Cu** had an effect on pepG1l
enzymatic activity (Table 3).

Conclusions

Here we report the first characterization of a non-eukar-
yotic glutamic protease from the bacteria Alicyclobacil-
lus sp. DSM 15716. Alignment of pepG1l with the
known members of peptidase family G1 showed that the
catalytic dyad, Q117 and E199 (pepG1l numbering)
was conserved which indicates that the enzymatic
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Figure 6 Characterization of pepG1. A. Effect of pH on pepG1 activity. The maximum activity at 37°C towards AZCL-collagen was obtained at
a broad plateau around pH 3.0 and set at 100%. B. Determination of temperature optimum for pepG1. The maximum activity towards AZCL-
collagen was observed at 60°C, pH 4.0 and set at 100%. C. pH stability of pepG1. pepG1 was diluted and incubated in assay buffer pH 2-12 for
two hours at 37°C. pH was then adjusted to pH 4.0 and activity was measured at 37°C. D. Temperature stability of pepG1. pepG1 was incubated
at 50°C (black), 60°C (grey) and 70°C (light grey) for up to one hour, cooled to 4°C on ice and assayed at 37°C, pH 4.0. Stability is measured
relative to samples incubated on ice.
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Table 2 Class-specific inhibitors effect on pepG1 activity
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pepG1 was incubated for 30 min with the below inhibitors at pH 4.0 (10 min, pH 4.5 for E-64). The remaining activity was assayed

at 37°C.
Inhibitor Class-specific inhibitor Concentration (mM) Relative activity
Pepstatin Aspartic 0.005 092
EDTA Metallo 10 093
PMSF Serine 10 0.94
E-64 Cysteine 1 0.99

Relative activity is relative to the activity of pepG1 without inhibitor present.

mechanism is comparable to the fungal enzymes of this
family. In addition, the crystal structure of SGP identified
seven highly conserved motifs of the polypeptide chain
clustered around the active and substrate-binding site of
SGP [14]. These motifs are highly conserved in pepGlI.
Furthermore, protein structure prediction of pepG1 by
Phyre [17] found SGP and AGP to be the closest homo-
logs, which was supported by homology modeling of
pepGl. Very high structural similarities were observed
between the homology model of pepG1 and the crystal
structures of AGP and SGP [14,15]. A number of protein
signatures have been linked to G1 peptidases and three
out of four are present in pepG1, despite the otherwise
low sequence homology between pepG1 and the fungal
G1 peptidases. The fourth signature could be identified
by manual alignment and annotation of pepG1l. The
above bioinformatic studies of pepG1 clearly support the
entry of pepGl into the peptidase family G1.

To further validate the identity of pepG1, pepG1 was
cloned into the expression host B. subtilis. Following
expression and purification of pepGl, the pH and tem-
perature optima of the peptidase and its stability were
tested. In agreement with all G1 peptidases, pepG1l
exhibited highest activity in acidic conditions. pepG1
was found to be resistant towards serine, cysteine,
metallo and aspartic class-specific inhibitors, including
pepstatin. Insensitivity to Pepstatin is a hallmark feature
of all G1 peptidases.

Blast searches of the pepG1 sequence at NCBI identi-
fied several other putative bacterial G1 peptidases. If

Table 3 Effect of divalent cations on pepG1 activity

pepG1 was incubated for 30 min with the below cations at pH 4.0.
The remaining activity was assayed at 37°C, pH 4.0

Cation Concentration (mM) Relative activity
cut 5 14
Fe’* 5 10
Zn*t 5 1.1
Mg®* 5 10
Mn?* 5 10
Ca** 5 10

pepG1 activity in citric acid buffer pH 4.0 was set at 1.0

disregarding pepG1 homologs from related Alicycloba-
cillus species, new pepG1l homologs are found in the
bacterias Amycolatopsis mediterranei, Geobacillus sp.
and Catenulispora acidiphila along with archaeal homo-
logs from Acidilobus saccharovorans and Picrophilus
torridus. All of these homologs are between 40-50%
identical to pepG1 and the active site residues, Q and E,
that together form the catalytic dyad [14,15], are con-
served in all homologs. The in vivo function of G1 pep-
tidases in bacteria and archaea is presently unknown.
The majority of the fungal species secreting G1 pepti-
dases are pathogens [6-9], in which the peptidases are
most likely used to facilitate host tissue penetration and
colonization by degrading structural proteins of the
plant cell wall [29]. The habitat of many of the microor-
ganisms secreting G1 peptidases is soil or in some cases
more extreme habitats, such as high temperature acidic
environments. An obvious function could be scavenging
as suggested by Fiitterer et al, who sequenced and anno-
tated the genome of the thermoacidophilic archaea,
Picrophilus torridus [30].

The characterization of pepG1l presented in this
manuscript along with the demonstrated presence of
putative G1 peptidase homologs in an increasing num-
ber of non-fungal organisms strongly suggests that the
non-fungal peptidase G1 homologs assigned to the
MEROPS peptidase family G1 are correctly annotated.

Methods

Bioinformatics

All annotated and putative family G1 peptidases (except
the non-peptidase homologues) in the MEROPS pepti-
dase database (version 9.1) [2] as well as putative G1
peptidases identified by blast search at NCBI were
aligned using ClustalX version 2.0.11. Bootstrapped
maximum likelihood (100 iterations) phylogenetic tree
was generated using ClustalX and PhyML 3.0 aLRT
http://www.phylogeny.fr[31], respectively. Phylogenetic
trees were visualized using TreeView http://taxonomy.
zoology.gla.ac.uk/rod/treeview.html[32]. Protein signa-
tures in the bacterial and archaeal peptidases were iden-
tified using InterProScan [22] and ProDom ([33].
Sequence logo of the protein signature PR00977 was
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visualized using WebLogo version 2.8.2 [34]. A model
spanning residues 65-263 of pepG1 was generated using
SWISS MODEL [18]. The model structure was based on
the PBD-file 2ifw and subsequently verified using PRO-
CHECK [19,20] and Ramachandran maps generated by
PDBSum [35]. PYMOL http://www.pymol.org was used
for visualizing the model structure of pepGl.

Bacterial strain and culture conditions

Alicyclobacillus sp. DSM 15716 was grown on ATBA-1
agar pH 4.5 (400 ml of 0.625% Tryptone (Difco), 0.625%
amylopectin (ICN) and 2.5% agar, granulated (Difco)
mixed with 100 ml of 0.1% ammonium sulfate, 0.25%
magnesium sulfate, 0.125% calcium chloride and 1.5%
potassium dihydrogen phosphate) at 60°C overnight.

Cloning of pepG1 into Bacillus subtilis MB1053

The gene encoding pepGI was amplified by PCR from
genomic DNA of Alicyclobacillus sp. DSM 15716 and
integrated by homologous recombination in B. subtilis
MB1053 (amyE, apr, npr), in which the native subtilisin
peptidase has been knocked out (W003/0956658).
Homologous recombination was done using an integra-
tion cassette consisting of two regions (with
homology to the integration site on the B. subtilis gen-
ome) that together flanked pepG1 under control of a tri-
ple promoter. The triple promoter system consists of
the promoters from Bacillus licheniformis alpha-amylase
gene (amyL), Bacillus amyloliquefaciens alpha-amylase
gene (amyQ), and the Bacillus thuringiensis cryllIA pro-
moter [36]. The two flanking regions were amplified
from a modified B. subtilis MB1053 strain in which the
Spectinomycin gene has been replaced with a marker
gene encoding Chloramphenicol and a gene encoding
the subtilisin protease, SAVINASE™. The 5’-flanking
region covers the yfimD gene to the SAVINASE™-signal-
peptide (included) and introduces an overhang to
pepGl1. The 3’-flanking region located downstreams
from the SAVINASE™gene covers Pel(end)-yflS-citS and
introduces an overhang to the 3’-end of pepGI. The B.
subtilis MB1053 cell strain was made competent accord-
ing to Yasbin et al [37].

Nucleotide sequence analysis

The DNA sequences from both strands were determined
with the BigDye Terminator v3.1 Cycle Sequencing Kit
(Perkin Elmer) and Applied Biosystems 3730 XL DNA
analyzer according to manufacturer’s instructions.

Selection of constructs for purification

The construct was grown in three different liquid media,
PS-1 (10% sucrose (Danisco), 4% Soymeal (Cargill), 1%
Na,HPO4¢12H,0, 0.5% CaCO3; and 0.01% Dowfax
63N10), Call8 (4% Yeast extract (Difco), 0.13%
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MgS0O4+7H,0, 5% Maltodextrin (Roquette), 2% Na,H-
PO,4¢12H,0, 0.67% Na,MoO, Trace metal solution and
0.01% Dowfax 63N10) and SK-1 M (4% Sodium Caseinate
(MD-Food), 20% Maltodextrin, 5% Soybean meal and
0.01% Dowfax 63N10), all supplemented with 6 mg/L
chloramphenicol. Fermentations were performed on rotary
shaking tables in 500 ml baffled Erlenmeyer flasks each
containing 100 ml liquid media at 37°C and 30°C. Samples
were taken at day 2, 3 and 4 from Cal18 media and day 4,
5 and 6 from PS-1 and SK-1 M and analyzed for activity.
The activity was determined by a spot test of 20 pl super-
natant in 1% agarose plates at pH 3.4 with 0.1% AZCL-
Collagen. The plates were incubated at 50°C over-night
and activity was visible as a blue halo around the spots.

Fermentation and purification of A. sp. pepG1
Fermentation of B. subtilis expression clone was per-
formed on a rotary shaking table in 500 ml baffled
Erlenmeyer flasks each containing 100 ml PS-1 media
supplemented with 6 mg/L chloramphenicol. The clone
was grown for five days at 37°C. Culture broth was cen-
trifuged (20000 x g, 20 min) and the supernatant was
filtered through a Seitz EKS filter plate. The EKS filtrate
was adjusted to a pH of 4.0 with citric acid and heated
to 70°C with continued stirring in a water bath. The
solution was immediately placed on ice after the tem-
perature reached 70°C. The precipitate was removed by
a second filtration using a Seitz EKS filter plate. (NHy)
35S0, was added to a final concentration of 1.6 M and
the pool was applied to a Butyl-Toyopearl 650 S column
(bed volume 30 ml) equilibrated in 20 mM CH3;COOH/
NaOH, 1.6 M (NH,),SOy, pH 4.5. After washing the
column extensively with the equilibration buffer, protein
elution was done with a linear gradient between the
equilibration buffer and 20 mM CH3;COOH/NaOH, pH
4.5 with 25% 2-propanol. Fractions from the column
were analyzed for protease activity at pH 4.0, 37°C and
fractions with activity were pooled. The pooled fractions
were transferred to 20 mM CH3;COOH/NaOH, pH 5.5
on a G25 sephadex column and applied to a Source
30Q column (bed volume of 40 ml) equilibrated in the
same buffer. After washing the column thoroughly with
the equilibration buffer, the protease was eluted with a
linear NaCl gradient (0 to 0.5 M) in the same buffer.
Fractions from the column were analyzed for protease
activity (pH 4.0, 37°C). An additional elution with 1.0 M
NaCl, 20 mM CH3;COOH/NaOH, pH 5.5 was per-
formed in order to release the remaining pepG1l from
the column and fractions with activity were pooled. The
slightly colored pool was treated with 1% (w/v) activated
charcoal for 5 minutes and then passed through a 0.45
pum filter. The purity of the filtrate was analyzed by
SDS-page and protein concentrations determined using
Bradford protein assay.
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N-terminal sequencing

Automated Edman degradation of purified pepG1 was
accomplished with a Perkin-Elmer ABI 494HT sequen-
cer with online microbore phenylthiohydantoin-amino
acid detection.

Enzyme assays

Protease enzyme activity was assayed using Protazyme
OL (crosslinked and dyed collagen from Megazyme).
A Protazyme OL tablet was suspended in 2.0 ml 0.01%
Triton X-100 by gentle stirring. 500 ul of the Protazyme
suspension and 500 pl assay buffer (100 mM succinic
acid, 100 mM HEPES, 100 mM CHES, 100 mM CABS,
1 mM CacCl,, 150 mM KCI, 0.01% Triton X-100 pH 4.0)
were mixed in an Eppendorf tube and placed on ice. 20
ul protease sample was added and the assay initiated by
transferring the Eppendorf tube to an Eppendorf ther-
momixer set at the assay temperature. The tube was
incubated for 15 min on the Eppendorf thermomixer at
its highest shaking rate (1400 rpm) and the reaction was
stopped by transferring the tube back into the ice bath.
The samples were then centrifuged in an icecold centri-
fuge for 3 min at 20,000 g and 200 pL supernatant was
measured at ODgso. A buffer blind without enzyme was
included in the assay. ODgs59(Enzyme) - ODgso(buffer
blind) was used to express enzyme activity.

The above assay was used to determine the pH and
temperature effect on activity, pH stability and tempera-
ture stability. pepG1 temperature stability was deter-
mined by incubating the enzyme at 50°C, 60°C and 70°
C. Samples were taken after 10, 30 and 60 minutes of
incubation, cooled on ice and assayed at 37°C, pH 4.0 in
order to determine residual activity. pH stability was
determined by diluting pepG1 5x in assay buffer pH 2-
12 (total volume 100 pl) followed by incubation at 37°C
for 2 hours. After incubation, 440 pl assay buffer pH 4.0
was added and assay was performed as described above.
pH of the assay buffer was adjusted by addition of either
NaOH or HCL

Effect of divalent metal ions on A. sp. pepG1 activity
Purified A. sp. pepG1 protease (20 pl) was incubated for
30 min in 500 pl citric acid buffer pH 4.0 (33 mM citric
acid/17 mM sodium citrate and 0.01% Triton X-100)
containing 5 mM concentrations of divalent ions. These
samples were then assayed for activity with Protazyme
OL suspended in 500 ul of citric acid buffer pH 4.0 con-
taining a 5 mM concentration of the divalent ion at 37°
C for 15 min.

Inhibitor studies on A. sp. pepG1
Purified A. sp. pepG1 protease (20 pl) was incubated
with the inhibitors, Pepstatin, EDTA and PMSF, for
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30 min in 500 pl universal buffer pH 4.0. E-64 treatment
of pepG1l was carried out for 10 min in 20 mM
CH3COOH/NaOH, 1 mM CaCl2, pH 4.5. All samples
were assayed for residual activity with Protazyme OL
tablets at pH 4.0 (pH 4.5 for E-64), 37°C with the inhibi-
tors present at the same concentrations as during the
incubation.

Accession numbers

Family G1 peptidase pepG1I from Alicyclobacillus sp.
DSM 15716 [GenBank: HM011103].

Additional material

Additional file 1: Glutamic peptidases from MEROPS family G1. A
schematic overview of all glutamic peptidases including accession
numbers.
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