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Introduction
The reprogramming of cancer cell metabolism is increasingly 
appreciated for its central role in enabling the growth of the pri-
mary tumor as well as its metastasis to distant organs (1–3). These 
metabolic dependencies may be exploited not only to diagnose 
cancer but also to target cancer cells, while reducing side effects 
(3–5). Biomarkers predicting therapeutic efficacy have enabled 
the administration of targeted therapies to substantially improve 
the survival of a subset of patients with lung cancer and other 
poor-prognosis tumors in recent years (6, 7). This demonstrates 
the potential of metabolic biomarkers as a fundamental compo-
nent in a precision medicine framework in the treatment of the 
most aggressive cancers.

Metabolic rewiring of cancer cells occurs through diverse 
pathways in a highly context-dependent manner (8–14). However, 
pan-cancer analyses have identified that some metabolic changes 
are common among different tumor types with distinct etiologies, 
despite being mediated by myriad transcriptional changes (15, 16). 
Understanding the etiology of cancer biomarkers and the implica-
tions of this metabolic rewiring in tumor progression may further 
reveal therapeutic opportunities for exploiting these metabolic 

dependencies to more effectively target aggressive disease (4, 17). 
For example, argininosuccinate synthase 1 (ASS1), and ornithine 
transcarbamylase (OTC) expression status have been used to 
identify patients who are likely to benefit from arginine-targeted 
therapies, including arginine deiminase and PEG-arginase thera-
pies, which are showing great promise in improving the sensitivity 
of a subset of lung and liver tumors to standard-of-care therapies 
(18–20). Specific companion biomarkers for arginine auxotrophic 
tumors will be important in identifying patients who will most 
benefit from this therapy (20).

The metabolite creatine riboside (CR) (Figure 1A) was first 
identified in an untargeted metabolomics analysis of urine sam-
ples from patients with non–small cell lung cancer (NSCLC) and 
population controls, in whom elevated levels of this metabolite 
were associated with poor patient survival, particularly in patients 
with early-stage disease (21). This recently identified metabolite 
is also associated with an increased risk of developing lung cancer 
upon, and prior to, a lung cancer diagnosis (22), suggesting that it 
may result from early metabolic changes.

Recently, urinary CR has also been identified as a biomarker 
of risk and prognosis in adrenocortical (23) and liver (24) cancer. 
The metabolic reprogramming of these different tumor types 
remains diverse (4, 17), yet current data suggest that CR may act as 
a surrogate marker for a common metabolic program associated 
with tumorigenesis and tumor progression. However, because the 
etiology of CR was hitherto unknown, it was unclear whether the 
metabolic reprogramming associated with CR may be exploited 
for therapeutic benefit. By combining a multiomics analysis with 
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correlation of tumoral CR with matched urinary concentrations 
from the same patient (Spearman’s correlation r = 0.6, P = 0.006, 
Supplemental Figure 1B), indicating that urinary CR concentra-
tions reflect intratumoral CR concentrations. In contrast, there 
was no association between tumoral CR levels and the clinico-
demographic factors associated with lung cancer outcomes (26) 
(Supplemental Table 1).

To confirm that CR was enriched in tumor tissue, we spatially 
mapped CR levels in NSCLC tumor and matched nontumor tissue 
sections using matrix-assisted laser desorption/ionization (MAL-
DI) imaging MS (Figure 1, C and D, and Supplemental Figure 1C). 
This confirmed that CR was significantly enriched within tumor 
tissue compared with levels in immediately adjacent (Supple-
mental Figure 1G) as well as noninvolved, nontumor (Figure 1, C 
and D) tissue, thus significantly correlating with our quantitative 
LC-MS/MS assay (Supplemental Figure 1, D and E) and further 
supporting the assertion that urinary CR is a surrogate measure of 
the intratumoral CR concentration. Importantly, CR was not dif-
ferentially abundant in inflamed, necrotic, or mucinous regions of 
lung tissue (Supplemental Figure 1F).

The observation of tumor-enriched CR was further validated 
with the analysis of human cancer cell lines. We detected high-
er levels of CR in human NSCLC and hepatocellular carcinoma 
(HCC) cell lines compared with normal and immortalized nontu-
morigenic primary human bronchial epithelial cells (Figure 2A). 
Importantly, CR was not detected in conditioned media or cell-

functional studies in lung and liver cancer, this study reveals CR 
as a tumor-derived biomarker of arginine dependence and poor 
prognosis in patients with these diverse cancer types. CR-asso-
ciated metabolism supports cancer cell proliferation and defines 
tumors with reduced macrophage and CD8+ cell infiltration. The 
metabolic vulnerabilities of CRhi tumors may be targeted by exist-
ing and developing therapies in patients with a poor prognosis 
across multiple cancer types.

Results
CR is a tumor-derived biomarker. Previously, we had shown that 
CR levels (Figure 1A) were increased in the urine of patients 
with NSCLC (21) and increased with tumor size (22). However, 
CR concentrations could not be precisely quantified in different 
biospecimens because of the lack of a synthetic standard for this 
metabolite. We therefore synthesized an analytical standard and 
developed a precise liquid chromatography–tandem mass spec-
trometry (LC-MS/MS) assay (25) to quantify the level of CR in 
NSCLC tumor tissue. Using this assay, we confirmed that the CR 
concentration was significantly higher in tumor tissue compared 
with that in adjacent nontumor tissue (P < 0.001, Figure 1B). This 
more precise LC-MS/MS assay confirmed the significant asso-
ciation of high urinary CR levels with poor prognosis in patients 
with lung cancer (log-rank P = 0.017, Supplemental Figure 1A; 
supplemental material available online with this article; https://
doi.org/10.1172/JCI157410DS1) and showed a significant positive 

Figure 1. CR is enriched in tumors. (A) The chemical structure of CR, creatine, and creatinine. (B) The CR concentration was significantly elevated in tumor 
(n = 80) compared with nontumor (n = 67) lung tissue. ****P < 0.0001, by Mann-Whitney U test. (C) Representative images of CR distribution in human 
NSCLC tumor (T) and matched adjacent nontumor (NT) tissue measured by MALDI imaging MS. CRlo and a CRhi tumors are shown with H&E staining after 
imaging in the top panel, and MALDI imaging MS signal of CR distribution within the tissue sections is shown in the lower panel. The MALDI imaging MS 
signal is pseudocolored to indicate CR abundance (range, 0 to 1.01 × 103). Scale bars: 1000 μm. (D) CR enrichment in tumoral compared with nontumoral 
regions of the lung tissue as measured by the integrated CR signal intensity with MALDI imaging MS. n = 10 matched tumor and nontumor samples.  
*P < 0.05., by Mann-Whitney U test.
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pathway, with the first step being the production of guanidinoace-
tate in the kidneys through l-arginine:glycine amidinotransferase 
(AGAT) activity, followed by its conversion to creatine by guanidi-
noacetate N-methyltransferase (GAMT) expressed in hepatocytes 
(27). Creatine is released systemically to be taken up via the cre-
atine transporter SLC6A8 into other cells, such as lung epithelia, 
which lack the expression of AGAT and GAMT necessary for cre-
atine synthesis. Intracellular creatine can then be enzymatically 
phosphorylated to phosphocreatine or spontaneously and passive-
ly cyclized to creatinine and excreted (27). Quantitative analysis of 
tumor and adjacent nontumor lung tissue revealed that tissue CR 
levels positively correlated with both creatine and creatinine levels 
(Figure 3, A and B), suggesting that CR levels reflect creatine met-
abolic dysregulation in tumors. The concentration of creatine and 
creatinine in tumor tissue exceeded that of CR by approximately 
30- and 5-fold, respectively, indicating that CR constituted a rela-
tively small proportion of the total creatine metabolite pool. These 
data support the notion that CR is a tumor-derived metabolite and 
potential biomarker of dysregulated creatine metabolism.

Creatine and creatinine emerged as strong candidate met-
abolic precursors for the creatine moiety of CR because of their 
structural similarity (Figure 1A) and correlation with CR levels 
(Figure 3, A and B). To understand the metabolic synthesis of CR, 
heavy carbons were traced from 13C-creatine and 13C-creatinine 
supplied in cell culture media to the intracellular CR pool. Despite 
the intracellular abundance of exogenously supplied 13C-creatine 

free samples (Figure 2A), indicating that CR is likely a product of 
cellular metabolism. We found no association between CR levels 
and intracellular concentrations of creatine or creatinine (Supple-
mental Figure 1, H and I) or with intracellular concentrations of 
creatinine riboside, the low-abundance cyclized form of CR (Sup-
plemental Figure 1J). The median intracellular CR concentration 
(0.213 pmol/106 cells) was used to stratify NSCLC and bronchial 
cell lines into CRhi and CRlo cell lines (Supplemental Figure 1K) for 
further interrogation of the metabolic characteristics associated 
with high CR levels.

To understand the intracellular kinetics of CR production, 
we monitored the levels of the metabolite in CRhi cells over time. 
We found that the intracellular CR concentration increased over 
time, with a significant increase in the levels only after at least 1 
population-doubling period (at t = 48 h) (Figure 2, B and C), sug-
gesting that a complete cell cycle occurred before CR levels began 
to increase. Supplementation of CRlo and CRhi cell lines with CR 
itself did not alter their proliferation rate (Supplemental Figure 2, 
A–D), despite the detection of extracellularly supplied CR within 
the intracellular metabolite pool (Supplemental Figure 2E), indi-
cating that CR is a cancer cell–derived biomarker that accumulates 
with cell proliferation but does not itself induce functional effects.

CR is formed from creatinine. Structurally, CR is a ribosylated 
form of creatine, leading us to hypothesize that CR may reflect 
dysregulated creatine metabolism within lung and other tumors. 
In healthy tissues, creatine is synthesized from arginine in a 2-step 

Figure 2. CR is enriched in cancer cells. (A) CR was detectable by LC-MS/MS at higher concentrations in cancer cells compared with primary normal and 
immortalized cells. NHBE, normal human bronchial epithelial cells (green); immortalized NHBE, immortalized normal human bronchial epithelial cells 
(white); NSCLC cells (gray); HCC cells (blue). Data indicate the mean ± SD of 3–4 independent experiments. (B and C) Intracellular CR concentrations in 
H460 (B) and A549 (C) cell lines grown over time from the time of plating (t = 0 h), as measured by LC-MS/MS. Data indicate the mean ± SD of 3 indepen-
dent experiments. *P < 0.05 compared with the 12-hour time point for that cell line, by Kruskal-Wallis test.
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Both the oxidative and nonoxidative arms of the PPP can con-
tribute to the formation of ribose intermediates. Culturing cells in 
1,2-13C2-glucose resulted in (M+1) and (M+2) labeling of the intra-
cellular ribose pool and formed both (M+1) CR and (M+2) CR, 
with (M+1) CR predominating (Figure 4, F and G). This indicates 
that, while both the oxidative and nonoxidative PPPs produced 
the precursor to the ribose moiety of CR, the oxidative PPP was 
the major producer of the ribose moiety precursor. The oxidative 
PPP culminates in the production of ribose-5 phosphate, which is 
activated for conjugation with other metabolites or is converted to 
phosphoribosyl pyrophosphate (PRPP) for ribonucleotide produc-
tion and is the likely ribosylation substrate in the formation of CR.

Incubation of creatinine and PPP products in human urine 
samples under various conditions did not produce CR (Supple-
mental Figure 3B), confirming that CR was produced through an 
intracellular catalyzed process and was not an extraction artifact.

Together, these data indicate that creatinine and PPP products 
are the precursors for the metabolite CR and that the conjugation 
of PPP metabolites with creatinine is the rate-limiting step in the 
production of CR.

CR is associated with altered nitrogen metabolism. Having estab-
lished the metabolite precursors for CR, we sought to determine 
the metabolic processes in tumor cells that would give rise to high 
CR levels. Having demonstrated a strong positive correlation 
of urinary and tumoral CR levels, we focused on the association 
of tumoral CR with the metabolic features of tumors. Gene set 
enrichment analysis (GSEA) of global gene expression profiles in 
CRlo and CRhi NSCLC tumors using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database, which contains a wide 
range of metabolic pathways, identified several significantly 
altered pathways (Figure 5, A and B, and Supplemental Table 2). 
These included nonmetabolic pathways such as those for ECM- 
receptor interactions, focal adhesions, and NK cell cytotoxicity, 
which were significantly enriched in CRhi tumors, and for the spli-
ceosome, which was significantly enriched in CRlo tumors (Sup-
plemental Table 2). Of all the metabolic pathways, the pathway for 
downregulation of arginine and proline metabolism was identified 
as the most significantly altered metabolic pathway in CRhi tumors 
(Figure 5A and Supplemental Figure 4A). Urea cycle (CPS1, NAGS, 
ASS1) and creatine metabolism (CKM, GATM) enzymes, which are 
directly interconnected to arginine synthesis and catabolism (5), 
were identified as the most significantly differentially expressed 
genes in this pathway, and leading-edge analysis found that these 
genes overlapped with other significantly downregulated meta-
bolic pathways, namely those for limonene and pinene metabo-
lism and nitrogen metabolism and histidine metabolism (Figure 
5A). Together, this suggests that the altered expression of these 
genes is central to the metabolic features of CRhi tumors.

In accordance with CR being a product of the PPP (Figure 
4), we found that CRhi tumors were also enriched for the pentose 
interconversion pathway, with the core enriched genes including 
the PPP enzyme genes RPE and XYLB and the genes in the UGT 
family of enzymes, including UGT1A8, UGT1A3, and UGDH (Fig-
ure 5B and Supplemental Figure 4E). Upregulation of XYLB in 
CRhi tumors also contributed to upregulation of the glucuronate 
biosynthesis and glycosaminoglycan synthesis pathways in CRhi 
tumors (Figure 5B).

or 13C-creatinine, only 13C-creatinine, and not 13C-creatine, result-
ed in enrichment of the heavy carbon label within CR (Figure 3, C 
and D), indicating that creatinine was the precursor for CR.

To determine whether the creatinine that formed CR was syn-
thesized from arginine or imported from the extracellular envi-
ronment, NSCLC cells were cultured in media containing either 
13C-creatinine or its biosynthetic precursor 13C-arginine, and the 
incorporation of the heavy carbon label into CR was monitored by 
LC-MS/MS. CR was labeled when cells were cultured in 13C-creat-
inine but not 13C-arginine (Figure 3, E and F), revealing that creat-
inine biosynthesis was not a major contributor to the CR pool but 
that instead creatinine imported from the external environment 
was the CR precursor.

When we extended this analysis to creatinine concentrations 
below and above (5 μM–1 mM) the physiological plasma concen-
tration of creatinine (75 μM) (28) using 13C-creatinine, we found 
a positive linear relationship between 13C-CR and 13C-creatinine 
levels in CRhi cell lines (Figure 3, G and H), confirming the direct 
conversion of creatinine into CR. We observed similar results 
in CRhi (Figure 3I) and CRlo (Supplemental Figure 2F) cell lines 
supplemented with up to 5 mM 12C-creatinine, despite compara-
ble concentrations of intracellular creatinine between CRhi and 
CRlo cells (Figure 3J). These findings thus confirmed that CR was 
derived from creatinine and that both tumorigenic and nontum-
origenic cell lines, regardless of their endogenous CR levels, were 
capable of producing CR. Importantly, cells with high endogenous 
CR levels more readily converted creatinine to CR.

The conversion of creatinine to CR was not immediate but 
occurred gradually over time following 1 complete cell cycle (dou-
bling time was ~24 h) (Figure 3K). This resembled the rate of increase 
in CR levels with each population doubling (Figure 2, B and C), indi-
cating that creatinine ribosylation, and not creatinine availability, 
was the rate-limiting step for the conversion of creatinine to CR.

The ribosylation of creatinine from pentose phosphate pathway 
products is the rate-limiting step in CR formation. Ribose itself or 
ribose intermediates derived through the pentose phosphate or 
nucleotide metabolism pathways are major sources of ribosyla-
tion substrates in cells. Culturing cell lines in 13C-glucose but not 
13C-ribose or 13C-cytidine resulted in enrichment of the 13C label in 
CR (Figure 4A), indicating that ribose products derived from glu-
cose metabolism through the pentose phosphate pathway (PPP) 
were the likely precursors of CR. Consistently, we found that glu-
cose starvation abrogated CR production (Figure 4, B and C). As 
expected, the rate of 13C-CR formation from 13C-glucose increased 
progressively after 1 complete cell cycle (Figure 4D), and resem-
bled the time course of CR formation from creatinine (Figure 2, B 
and C, and Figure 3K), confirming that the ribosylation of creati-
nine was the rate-limiting step in CR formation.

To confirm that PPP activity is required for CR formation, cells 
were treated with 6-aminonicotinamide (6-AN), a competitive 
inhibitor of 3-phosphoglycerate dehydrogenase (PHGDH), which 
catalyzes the rate-limiting step of the PPP, and the levels of CR 
were monitored by LC-MS/MS. Inhibition of PHGDH with 6-AN 
markedly reduced the enrichment of 13C within CR (Figure 4E and 
Supplemental Figure 3A), as well as the production of endogenous 
12C-CR (Figure 4E and Supplemental Figure 3A), validating the 
source of the ribose moiety as a product of the PPP.
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Figure 3. Creatinine is a metabolic precursor of CR. Correlation of CR with creatine (A) and creatinine (B) within NSCLC tumor tissues (Spearman’s 
correlation; n = 147 tissue samples). (C and D) Fractional enrichment of CR labeling from 13C-creatine or 13C-creatinine in H460 (C) and A549 (D) cells. Data 
indicate the mean ± SEM of 3 independent experiments. ****P < 0.0001, by 1-way ANOVA with Holm-Šidák correction for multiple comparisons. (E and F) 
Fractional enrichment of CR labeling from 13C-creatinine or 13C-arginine in H460 cells (E) and A549 cells (F). Data indicate the mean ± SEM of 3 independent 
experiments. ****P < 0.0001, by 1-way ANOVA with Holm-Šidák correction for multiple comparisons. The 13C-creatinine treatment group is replicated from 
C and D. (G and H) CR levels increased with increasing creatinine supplementation as measured by the fractional enrichment of CR labeling from 13C-creat-
inine in H460 (G) and A549 (H) cells. Dotted line indicates endogenous serum levels of creatinine (75 μM) in humans. Data indicate the mean ± SEM of 3 
independent experiments. (I) Intracellular CR concentrations in CRlo (blue) and CRhi (red) cell lines with increasing concentrations of exogenously supplied 
creatinine. Data indicate the mean ± SEM of 3 independent experiments (J) Intracellular creatinine concentrations in CRlo (blue) and CRhi (red) cell lines 
with increasing concentrations of exogenously supplied creatinine. Data indicate the mean ± SEM of 3 independent experiments. (K) Time course of the 
fractional enrichment of CR labeling from 13C-creatinine over 72 hours in H460 cells. Data indicate the mean ± SEM of 3 independent experiments.
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Using gene set variation analysis (GSVA) of the core enriched 
genes from the PPP (XYLB, RPE, and TALDO1) and arginine 
metabolism (CPS1, NAGS, ASS1, CKM, AOC1, and GATM), togeth-
er with the rate-limiting enzymes of the PPP (G6PD and PRPS1), 
we confirmed that the PPP was upregulated (Figure 5, C and D) and 
that arginine metabolism was downregulated (Figure 5, E and F) in 
CRhi tumors compared with CRlo tumors in both the lung and liver 
tumors (Supplemental Tables 3 and 4). Applying the PPP signatures 
to the lung adenocarcinoma, squamous NSCLC, and HCC The 
Cancer Genome Atlas (TCGA) cohorts confirmed that the PPP was 
significantly upregulated in tumor tissue compared with nontumor 

tissue across all cancer types 
(Supplemental Figure 4, H–J).

Importantly, in the NCI-MD 
cohort, genes of the mitochon-
drial component of the urea 
cycle, namely CPS1, NAGS, and 
OTC, were the most signifi-
cantly differentially expressed 
genes of the arginine metabo-
lism pathway in CRhi tumors, 
and the mitochondrial compo-
nent of the urea cycle pathway 
was identified as significantly 
downregulated in CRhi lung and 
liver tumors (Figure 5, G and H). 
Metabolic flux through the urea 
cycle relies on activity of both 
the mitochondrial and cytoso-
lic components of the cycle. A 
focused examination of urea 
cycle enzyme expression across 
lung and liver cancer subtypes 
revealed repression of the mito-
chondrial urea cycle mediated 
through different gene expres-
sion programs that functionally 
downregulate mitochondrial 
urea cycle activity. In NSCLC 
and intrahepatic cholangio-
carcinoma of the liver cancer, 
the mitochondrial urea cycle 
enzyme CPS1 was downregu-
lated either directly (Figure 5, 
I and K) or via reduced expres-
sion of NAGS, the enzyme that 
produces its essential cofactor 
N-acetylglutamate, respec-
tively (Figure 5, J and L, and 
Supplemental Figure 4B). Pro-
jection of the CPS1 plus NAGS 
expression score onto TCGA 
squamous NSCLC confirmed 
that CPS1 plus NAGS expres-
sion was significantly lower in 
tumor compared with nontu-
mor tissue, while a substantial 

proportion of lung adenocarcinoma tumors have low CPS1 plus 
NAGS expression compared with nontumor tissue (Supplemental 
Figure 4, K and L). Conversely, in the HCC subtype of liver can-
cer, CRhi tumors showed high expression of CPS1 compared with 
OTC (Figure 5, M and N), a gene expression pattern that prevents 
continued conversion of carbamoyl phosphate into citrulline to 
proceed through the urea cycle and overall results in downregu-
lated mitochondrial urea cycle activity (29). Both downregulated 
CPS1 activity (CRhi NSCLC and intrahepatic cholangiocarcinoma 
tumors) or OTC activity (CRhi HCC tumors) result in severe argi-
nine auxotrophy (29) and therefore reflect a common repression 

Figure 4. PPP products are the metabolic precursors of CR. (A) Fractional enrichment of CR labeling from 
13C-glucose, 13C-ribose, or 13C-cytidine in H460 cells. Data indicate the mean ± SEM of 3 independent experiments. 
****P < 0.0001, by 1-way ANOVA with Dunnett’s multiple-comparison correction. (B and C) CR levels in H460 (B) 
and A549 (C) cells grown under normal culture (+Glucose) conditions or under glucose starvation (–Glucose). Data 
indicate the mean ± SEM of 5 independent experiments. ****P < 0.0001, by Mann-Whitney U test. (D) Fractional 
enrichment of CR labeling from 13C-glucose over time in H460 cells treated with (black line) or without (blue line) 
the PGDH inhibitor 6-AN. Data indicate the mean ± SEM of 3 independent experiments. *P < 0.05, by 2-way  
ANOVA with Holm-Šidák multiple-comparison correction. (E) Relative abundance of unlabeled and labeled CR in 
the presence and absence of 12C-glucose (12C) or 13C-glucose (13C) and 6-AN in H460 cells. Data indicate the mean ± 
SEM of 3 independent experiments. ****P < 0.0001, by 1-way ANOVA with Dunnett’s multiple-comparison correc-
tion. (F and G) Fractional enrichment of CR labeling from unlabeled glucose (12C) or 1,2 -13C2-glucose in H460 (F) and 
A549 (G) cells. Data indicate the mean ± SEM of 3 independent experiments. ***P < 0.001, by Mann-Whitney U 
test comparison of M + 0 levels.
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of mitochondrial urea cycle metabolism in these different cancer 
subtypes. Consistent with this, we observed downregulation of 
the mitochondrial urea cycle in tumor tissue compared with non-
tumor tissue in the TCGA HCC cohort (Supplemental Figure 4M).

In order to validate the metabolic pathways and transcrip-
tional features associated with CR production in additional data 
sets, we applied these transcriptional signatures to RNA-Seq data 
from TCGA lung adenocarcinoma, squamous NSCLC, and HCC 
cohorts and defined CRhi-like tumors as those belonging to the 
highest tertiles for the PPP and for mitochondrial urea cycle dys-
function, whereas CRlo-like tumors were defined as those belong-
ing to the lowest tertiles for the PPP and mitochondrial urea cycle 
dysfunction. GSEA comparing CRhi-like and CRlo-like tumors 
recapitulated the enrichment of the PPP, glucuronate intercon-
versions, and depletion of arginine and proline metabolic path-

ways in CRhi tumors from these different tumor types (Supple-
mental Figure 4, N–S).

Consistently, CRhi cells (A549, H460), unlike CRlo cells 
(H322, H1299, H1650), were highly auxotrophic for arginine, as 
indicated by a significant reduction in cell proliferation when cul-
tured in arginine-free conditions (Figure 6A). Supplementation 
with citrulline, but not ornithine or the nitric oxide donor sodi-
um nitrite, restored the growth of the CRhi cell lines in these argi-
nine-free conditions (Figure 6A), confirming that the mitochon-
drial component, rather than the cytosolic component of the urea 
cycle pathway, was unable to support continued proliferation in 
the absence of exogenous arginine. Consistent with repression of 
mitochondrial urea cycle activity, CRhi cell lines had high steady-
state levels of ornithine (Figure 6B), whereas citrulline (Figure 
6C), arginine (Supplemental Figure 5A), and argininosuccinate 

Figure 5. CR is associated with activation of the PPP and urea cycle dysfunction. (A and B) GSEA of non–small cell lung tumor transcriptional data iden-
tified metabolic pathways that were downregulated in CRhi tumors (A) and enriched in CRhi tumors (B) compared with CRlo tumors. Black bars: –log10(P val-
ues were adjusted for multiple comparisons); red dots: normalized enrichment score (NES). (C–H) Pathway GSVA of pentose phosphate (C and D), arginine 
(E and F), and mitochondrial urea cycle (G and H) metabolic pathways in CRhi tumors (lung, n = 44; liver, n = 58) compared with CRlo tumors (lung, n = 43; 
liver, n = 33) from lung (C, E, and G) and liver (D, F, and H) cancer. *P < 0.05 and ****P < 0.0001, by Mann-Whitney U test. (I–N) CRhi tumors had dysregulat-
ed expression of mitochondrial urea cycle enzymes. Downregulation of CPS1 expression as well as that of its cofactor NAGS was seen in NSCLC (I and J) and 
intrahepatic cholangiocarcinoma (K and L), while HCC had significant upregulation of CPS1 relative to OTC (M and N). *P < 0.05, by Mann-Whitney U test.
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with loss of flux through the mitochondrial component of the urea 
cycle and renders these cells dependent on exogenous arginine  
to maintain proliferation.

The CR metabolic phenotype is characterized by biased nucleotide 
metabolism. Recent studies have highlighted that urea cycle metab-
olism is dysregulated in subsets of multiple tumor types, including 
NSCLC and liver cancer, for which CR has prognostic importance 
and has the potential to create multiple metabolic vulnerabilities by 
inducing changes in amino acid and nitrogen metabolism (5, 30). 
To further characterize the global metabolic vulnerabilities asso-
ciated with dysregulated urea cycle metabolism in CRhi NSCLC 
tumors, we performed global metabolic profiling of the tumor tis-
sues for which intratumoral CR levels had been quantified. Inge-
nuity Pathway Analysis identified that CR levels were significantly 
correlated with altered nitrogen metabolism and, in particular, the 
purine metabolism, amino acid biosynthesis, urea cycle, and oxi-
dative phosphorylation pathways (Figure 6A), as predicted by the 
transcriptional profiles of these tumors (Figure 4).

Purine metabolism was the most significantly correlated 
metabolic change observed in CRhi NSCLC tumors (Figure 7A), 
supported by significant enrichment of purine compared with 

(Supplemental Figure 5B) levels were not significantly different 
compared with Clo cell lines.

In support of the reliance of CRhi cells on arginine metabolism 
through the cytosolic urea cycle, arginine depletion substantially 
reduced CR levels in CRhi (Figure 6, D and E) and CRlo cell lines 
(Supplemental Figure 5C). Under these conditions, citrulline sup-
plementation restored flux through the cytosolic urea cycle, as 
indicated by elevated levels of argininosuccinate and arginine, 
and increased CR concentrations to levels in arginine-replete con-
ditions (Figure 5, D and E, and Supplemental Figure 5, C–G). Simi-
larly, inhibition of flux through the cytosolic urea cycle by N-meth-
yl-d,l-aspartate (MDLA) (competitive inhibitor of rate-limiting 
cytosolic urea cycle enzyme ASS1) (5) treatment also significantly 
reduced CR levels (Figure 6, F and G, and Supplemental Figure 5, 
H and I), indicating that the ribosylation of creatinine was depen-
dent upon active cytosolic urea cycle metabolism.

Notably, arginine deprivation significantly increased intra-
cellular creatinine concentrations (Supplemental Figure 5, D–G), 
indicating that arginine starvation reduces CR production by 
inhibiting creatinine ribosylation, rather than by limiting creat-
inine availability. Together, this confirms that CR is associated 

Figure 6. CR is associated with arginine auxotrophy. (A) Growth of CRhi (red) and CRlo (blue) NSCLC cell lines in response to arginine deprivation alone (–) 
or upon supplementation with ornithine (Orn., 1 mM), citrulline (Cit., 1 mM), or sodium nitrite (NaNO2). Growth was measured with the MTS assay and is 
expressed relative to growth in normal culture conditions. Data indicate the mean ± SEM of 4 independent experiments. *P < 0.05, comparing the means 
of CRlo and CRhi, by 2-way ANOVA with Holm-Šidák multiple-comparison correction. (B and C) Intracellular concentrations of the urea cycle metabolites 
ornithine (B) and citrulline (C) in CRhi (red) and CRlo (blue) NSCLC cell lines compared with immortalized bronchial epithelial cells (HBET1, black). Data 
indicate the mean ± SEM of 3 independent experiments. *P < 0.05, by 1-way ANOVA with Dunnett’s multiple-comparison correction. (D and E) Arginine 
deprivation reduced the production of CR in H460 (D) and A549 (E) NSCLC cell lines. LLOQ, lower limit of quantitation for CR (i.e., lower than the quantifi-
able limit for the LC-MS/MS assay). Data indicate the mean ± SEM of 2–3 independent experiments. (F and G) Inhibition of ASS1 with methyl DL-aspartate 
significantly reduced CR production in H460 (F) and A549 (G) NSCLC cell lines. Data indicate the mean ± SEM of 6 independent experiments. *P < 0.05 and 
***P < 0.001, by 1-way ANOVA with Dunnett’s multiple-comparison correction.
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resulting in a purine/pyrimidine nucleotide imbalance. In this way, 
CR levels were a surrogate for the activity of the mitochondrial urea 
cycle in tumors. The precise mechanism by which a CPS1-mediated 
purine/pyrimidine nucleotide imbalance leads to the ribosylation 
of creatinine to produce CR remains the subject of ongoing studies.

Metabolomics analysis of CRhi tumors also identified sig-
nificant dysregulation of oxidative phosphorylation (Figure 7A), 
which regulates nicotinamide adenine dinucleotide (NAD+) lev-
els for nucleotide synthesis (31–33). To understand how central 
carbon metabolism may be rewired to support purine nucleotide 
synthesis, we performed 13C-glucose tracing experiments, which 
confirmed that CRhi cell lines had significant enrichment of 13C 
into tricarboxylic acid intermediates (Figure 8B and Supplemental 
Figure 6, A–D). Importantly, CRhi cell lines had increased aspartate 
labeling from glucose compared with CRlo cell lines (Figure 8C). 
Aspartate is a limiting metabolite in nucleotide synthesis (32, 33), 
such that increased aspartate synthesis from elevated tricarboxylic 
acid and oxidative phosphorylation activity in CRhi NSCLC tumors 
would support a purine synthesis bias. This is further supported by 
increased oxidative phosphorylation in CRhi cell lines compared 
with CRlo cell lines (Figure 8D). Similarly, depletion of glutamine, a 
metabolite that enables high tricarboxylic activity through anaple-
rotic reactions, significantly reduced CR levels (Figure 8, E and F), 
further indicating a role for high tricarboxylic acid activity in sup-
porting biased nucleotide synthesis in CRhi tumors.

Together, these findings indicate that CRhi tumors have a dis-
tinct metabolic phenotype compared with that of CRlo tumors. In 

pyrimidine metabolites in CRhi NSCLC tumors (Figure 7B). This is 
consistent with recent studies identifying altered CPS1 expression 
in driving a purine/pyrimidine bias (4, 29). CRhi intrahepatic chol-
angiocarcinoma tumors were also enriched for purines compared 
with pyrimidines (Figure 7C), consistent with their downregulated 
CPS1 activity that reduced the supply of carbamoyl phosphate to 
de novo pyrimidine synthesis and enhanced aspartate availability 
for de novo purine synthesis. Conversely, the low expression levels 
of OTC relative to CPS1 in CRhi HCCs (Figure 5N) manifested as 
increased pyrimidine pool sizes compared with purine nucleotide 
pool sizes, as expected (Figure 7D), reflecting the increased sup-
ply of carbamoyl phosphate to carbamoyl-phosphate synthetase 
2 (CAD) and activation of de novo pyrimidine synthesis, as pre-
dicted from our transcriptional analysis (Figure 5). This observa-
tion indicates that the urea cycle dysregulation associated with 
high CR levels produces a purine/pyrimidine bias and nucleotide 
imbalance in lung and liver tumors.

Given the central role for CPS1 in regulating carbamoyl phos-
phate and aspartate availability to balance purine and pyrimidine 
biosynthesis (29, 30), we hypothesized that the purine-to-pyrimi-
dine nucleotide imbalance induced by CPS1 downregulation may 
drive CR production in NSCLC tumors. Indeed, suppression of 
CPS1 expression by RNA interference significantly increased CR 
levels under normal growth conditions (Figure 8A). Maintenance 
of pyrimidine pools by uridine and thymidine supplementation 
abrogated this effect, indicating that downregulation of CPS1 
increased CR production through depletion of pyrimidine pools, 

Figure 7. Urea cycle dysregulation in CRhi tumors is associated with a nucleotide pool imbalance. (A) Ingenuity Pathway Analysis of metabolic pathways 
that correlate with metabolite levels in CRhi NSCLC tumors compared with CRlo NSCLC tumors. (B–D) CRhi tumors had a purine/pyrimidine nucleotide 
balance that was biased toward purines in NSCLC (B, low, n = 9; high, n = 8) and intrahepatic cholangiocarcinoma (C, low, n = 49; high, n = 75) and toward 
pyrimidines in HCC (D, low, n = 42; high, n = 17). *P < 0.05, by Mann-Whitney U test.
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lution of the bulk RNA-Seq expression data from NSCLC tumors 
identified a significant reduction in monocytes and CD4+ memory 
resting T cells in CRhi lung tumors (Supplemental Figure 8C). Mul-
tiplexed immunofluorescence staining supported these findings, 
identifying a strong negative correlation between CR levels mea-
sured by MALDI imaging MS and the number of CD68+ (Spear-
man’s r = –0.72, P = 0.023) and CD8+ T cells (Spearman’s r = –0.65, 
P = 0.049) (Supplemental Figure 8D). Comparatively, there was 
no significant association of CR levels with PD-1+ cells in this anal-
ysis (Supplemental Figure 8D). Together, this analysis indicates 
intrinsic reduction in the level of CD68 + macrophages and CD8+ T 
cells in CRhi lung tumors. The reduced levels of tumor-infiltrating 
macrophages and CD8+ T cells may contribute to a worse prog-
nosis in CRhi tumors (35, 36), warranting further interrogation of 
these relationships in larger cohorts.

To gain insight into the contribution of the CR-associated meta-
bolic phenotype to tumor progression, we examined nonmetabolic 
pathways identified as significantly up- and downregulated in CRhi 
compared with CRlo NSCLC tumors by GSEA. This revealed that 
CRhi tumors were significantly enriched for cell-cycle–regulating 
genes (Figure 9A), with core enrichment of regulators of G1/S tran-
sition (e.g., CDK6, CDC6, CCNE1) and early S-phase progression 

CRhi tumors, dysfunction of the mitochondrial urea cycle pathway 
generated a purine/pyrimidine imbalance that promoted creatinine 
ribosylation. High rates of tricarboxylic acid cycle and oxidative 
phosphorylation activity supplied this nucleotide bias, sustaining 
this metabolic phenotype in CRhi tumors (Supplemental Figure 7).

The CR metabolic phenotype supports rapid proliferation. Having 
established the metabolic remodeling in CRhi tumors, we sought to 
gain further insight into the potential oncogenic reprogramming 
underlying this remodeling. Whole-exome sequencing of NSCLC 
tumors identified driver mutations at a frequency similar to that 
previously reported (Supplemental Figure 8A) (34), however, there 
were no driver mutations uniquely associated with CRhi tumors 
(Supplemental Figure 8B). This is consistent with findings in cell 
lines, in which CR levels were also not significantly associated with 
known driver mutations (Supplemental Table 5). Diverse mutation-
al events probably contribute to the high CR phenotype, analogous 
to the myriad transcriptional changes that converge on individual 
dysregulated pathways across multiple cancer types (15).

The purine/pyrimidine nucleotide bias we identified in CRhi 
tumors has the potential to alter antigen presentation in the tumor 
microenvironment to influence the immunological landscape and 
response to immune checkpoint therapy (30). Cell-type deconvo-

Figure 8. Urea cycle dysregulation drives a nucleotide pool imbalance and high rates of oxidative phosphorylation that promote CR production. (A) 
Suppression of CPS1 expression increased CR levels in normal growth conditions but not when the pyrimidine pools were supplemented. NS, nonsilencing; 
CPS1 KD, CPS1 knockdown; U, uridine supplementation; T, thymidine supplementation. Data indicate the mean ± SEM of 6 independent experiments.  
*P < 0.05, by 1-way ANOVA with Dunnett’s multiple-comparison correction. (B and C) Fractional enrichment of unlabeled malate (B) and aspartate (C) 
from U-13C-glucose in CRhi and CRlo NSCLC cell lines. Data indicate the mean ± SEM of 3 independent experiments. *P < 0.05, by Mann-Whitney U test. (D) 
Oxygen consumption rate in CRhi (red) and CRlo (blue) NSCLC cell lines. Data indicate the mean ± SEM of 5–8 independent experiments. *P < 0.05 and  
**P < 0.01, by Mann-Whitney U test. (E and F) CR levels in normal growth conditions (+Glutamine) and in glutamine deprived culture conditions (–Gluta-
mine) in H460 (E) and A549 (F) cells. Values from normal growth conditions are the same as those presented in Figure 4, B and C. Data indicate the mean 
± SEM of 4–5 independent experiments. ****P < 0.0001, by Mann-Whitney U test.
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Discussion
Metabolic rewiring of cancer cells supports tumor progression and 
represents a potential source of biomarkers for cancer detection 
and treatment response. Understanding the origin of metabolic 
biomarkers enables the personalized and rational design of pre-
cision medicine treatments that exploit metabolic vulnerabilities 
in tumors. This study has revealed that CR, a recently identified 
prognostic metabolite detected in urine, serum, and tissue biospe-
cimens, is a tumor-derived biomarker of altered urea cycle and PPP 
activity that promotes tumor growth across multiple tumor types.

Our analysis identifies CR as a tumor-derived metabolite 
detectable in serum and plasma biospecimens, building on pre-
vious studies of CR as a urinary biomarker of risk and prognosis 
in lung, liver, and adrenocortical carcinoma (21–24). The strong 
positive correlation of urinary CR levels with tumoral CR levels 
enabled us to dissect the metabolic profile of CRhi tumors directly 
at the tissue level. Furthermore, as urinary CR levels strongly cor-
related with tumoral CR levels, the detection of CR as a diagnos-
tic and prognostic biomarker could be conducted in a minimally 
invasive manner by analyzing liquid biopsies. In this way, CR lev-
els may assist in identifying patients with NSCLC or liver cancer at 
high risk of relapse.

Our analysis indicates that CR levels are a surrogate for 
tumor-associated metabolic reprogramming involving hyperacti-
vation of the PPP coupled with dysfunction of the mitochondrial 
component of the urea cycle. While the ability of cells to produce 

(e.g., DBF4), when nucleotide pool imbalances can induce cell-cy-
cle arrest. This is consistent with a purine/pyrimidine bias support-
ing the metabolic demands of rapidly proliferating cells (37). The 
higher proliferation of CRhi tumors was reflected in significantly 
elevated expression of PCNA (Figure 9, B and C), a marker of cell 
proliferation that regulates DNA synthesis (38). We found similar 
results in TCGA adenocarcinoma, squamous NSCLC, and HCC 
cohorts, with CRhi-like tumors enriched for the cell-cycle pathway 
and significantly higher PCNA expression compared with CRlo-like 
tumors (Supplemental Figure 8, F–K). Similarly, CRhi cell lines had 
significantly reduced doubling times compared with CRlo cell lines 
(Figure 9D and Supplemental Figure 6G). Reduced CR levels in 
cells induced into a state of cell-cycle arrest (Figure 9, E and F) con-
firmed that CR levels reflect high rates of cell proliferation. To val-
idate these findings in human lung tumors, we performed immu-
nofluorescence staining for Ki67 in the same tumors for which CR 
levels had been spatially analyzed by MALDI imaging MS (Figure 
1C). The number of Ki67+ cells was significantly and positively cor-
related with the spatial CR signal in these lung tumors (Spearman’s 
r = 0.66, P = 0.036) (Figure 10, A–C). This confirms that CR was 
produced at elevated levels in highly proliferative tumors.

Together, these results identify CR as a biomarker of urea 
cycle dysfunction and nucleotide imbalance in multiple cancer 
types. This metabolic rewiring drives highly proliferative primary 
tumors to promote tumor progression, resulting in poor patient 
survival (Figure 10D).

Figure 9. CR is associated with cell proliferation. (A) GSEA of NSCLC RNA-Seq data identified that CRhi tumors were significantly enriched in the expres-
sion of cell-cycle genes compared with CRlo tumors. P values were determined by Kolmogorov-Smirnov statistic with sample randomization. (B and C) CRhi 
NSCLC (B) and HCC (C) tumors had high PCNA expression. *P < 0.05, by Mann-Whitney U test. (D) Doubling time of NSCLC cell lines as measured by trypan 
blue dye exclusion and cell counts. Data indicate the mean ± SEM of 2 independent experiments. *P < 0.05, by Mann-Whitney U test. (E and F) Intracel-
lular CR levels in H460 (E) and A549 (F) cell lines following cell-cycle arrest induced by 2 mM thymidine. Data indicate the mean ± SEM of 3 independent 
experiments. **P < 0.01, by Mann-Whitney U test. LLOQ, lower limit of quantitation, indicating that the CR concentration was lower than the quantifiable 
limit for the LC-MS/MS assay.
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carbamoyl phosphate diversion to the cytosol to enhance CAD 
activity (5, 29), which is negatively associated with prognosis (41–
43). Furthermore, the association of CR with altered urea cycle 
activity is supported by recent studies showing that creatinine lev-
els and creatine phosphocreatine pathway activity are regulated by 
urea cycle activity (44). Urea cycle dysfunction supports anabolic 
metabolism through the diversion of metabolites toward nucleo-
tide synthesis (5, 30, 37, 45), thus fueling the high rates of cell pro-
liferation associated with high CR levels. A recent study of breast 
cancer revealed that arginine starvation also suppresses oxidative 
phosphorylation and inhibits cellular proliferation via nucleotide 
depletion (46), thereby supporting the association of high CR lev-
els with arginine auxotrophy, a purine/pyrimidine bias, and cancer 
cell proliferation. CR is also a surrogate for hyperactivation of the 
PPP. The widespread dysregulation of the pentose and glucuro-
nate interconversion pathways in multiple tumor types, albeit by 
different transcriptional mechanisms (15), suggests that CR may 

CR is not confined to cancer cells, the reprogramming of these 
metabolic pathways in cancer cells enables them to produce high-
er levels of this metabolite than nontransformed cells. By inte-
grating the pentose phosphate and urea cycle pathways, CR levels 
amplify the disparity between tumoral and healthy metabolism, 
thereby underpinning its potential utility as a sensitive diagnostic 
and prognostic biomarker (21, 22, 24).

This study reveals that high CR levels reflect a diversion of 
mitochondrial urea cycle metabolites to support nucleotide syn-
thesis, resulting in urea cycle dysfunction and arginine auxotrophy 
(30). The urea cycle enzyme CPS1 is central to this metabolic diver-
sion in CRhi tumors. Increased CPS1 expression is associated with 
dysregulated creatine metabolism and PPP activity in NSCLC (29, 
39), supporting the importance of this enzyme in CR production. 
The high expression of CPS1 relative to that of OTC in CRhi HCC 
observed in our study concurs with global proteomics analysis of 
tumor and nontumor tissue (40) and has been shown to result in 

Figure 10. CRhi tumors are highly proliferative. (A) Ki67 immuno-
staining of tumors (DAPI is shown in blue and Ki67 in gray) indicates 
that CRhi tumors were enriched in Ki67+ cells. Scale bars: 1000 μm 
(MALDI mass spectrometry imaging of creatine riboside) and 500 
μm (Ki67 staining). Images are representative of 10 matched tumor 
and nontumor tissues. (B) High-magnification images from A. Scale 
bar: 100 μm. (C) Scatter plot shows a correlation (Spearman’s) of 
the proportion of Ki67+ cells relative to the CR signal determined by 
MALDI imaging MS. (D) Schematic representation of the conse-
quences of metabolic rewiring associated with CRhi tumors.
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(54). Similarly, the association of CR levels with a purine/pyrim-
idine bias suggests that CRhi tumors are also likely to be sensitive 
to existing nucleotide imbalance–targeting therapeutics such as 
methotrexate, whereas pyrimidine synthesis–targeting therapeu-
tics such as pemetrexed and 5-fluorouracil (55) are likely to be 
more effective in CRhi HCC tumors. The association of high CR 
levels with reduced macrophage and CD8+ immune cell infiltrates 
suggests that CR levels may not only reflect an altered immuno-
logical landscape, as seen in tumors with urea cycle dysfunction 
(30), but the potential of arginine-targeted therapies to modu-
late immunotherapy efficacy in lung and other cancers. Further 
investigations of these findings in larger, immunotherapy-focused 
patient cohorts are warranted.

Our analysis clearly indicates that CR levels were enriched 
in tumor compared with nontumor tissue. Our quantitative ana-
lytical method allows for sensitive detection at very low concen-
trations of CR (25) and is therefore capable of detecting very low 
concentrations of this metabolite in urinary samples from noncan-
cer patients. Our data indicate that noncancerous cells, namely 
immortalized bronchial epithelial cells, are capable of producing 
CR when substituted with creatinine and therefore raise the pos-
sibility that normal cells may contribute to the low CR signal seen 
in noncancer patients. However, the conditions under which pro-
liferating epithelial cells would be exposed to the supraphysiolog-
ical creatinine concentrations required to produce low amounts of 
CR are unclear. Our data indicate that CR is produced by highly 
proliferative cells with hyperactivation of the PPP and urea cycle 
dysfunction, which are active metabolic pathways in many nor-
mal cell types. Benign lung nodules and premalignant lesions are 
both associated with hyperplastic changes in lung tissue (56) and 
represent potential sources of CR signal in noncancer patients. 
Importantly, benign lung nodules are detected at relatively high 
frequency in lung cancer screening trials (57, 58). Furthermore, 
premalignant lung lesions have a high regression rate, with 66% 
of lesions spontaneously resolving (59), suggesting that a large 
proportion of patients with premalignant lesions may never be 
identified in the population, particularly in populations with a high 
proportion of current and former smokers, despite the theoretical 
potential for these lesions to produce detectable amounts of CR. 
Similarly, our previous analysis of urinary CR in population con-
trols as part of a prospective analysis identified an association of 
higher CR levels in current compared with former smokers in non-
cancer controls, although there was no association with pack years 
(22). This suggests that acute smoke exposure in the lung may 
contribute to CR production. Tobacco smoke exposure has been 
associated with altered serum concentrations of arginine, orni-
thine, and glutamate as well as other lipid metabolites, although 
the mechanisms underlying these observations remain unknown 
(60). Therefore, smoking-associated alterations in the levels of 
these metabolites may modulate the low levels of CR detected 
in population controls. Tobacco smoke exposure also promotes a 
proinflammatory response in the lung that activates pneumocyte 
proliferation (61, 62). Similarly, ROS induced in the lung as a result 
of tobacco smoke exposure also activate the NFE2-like bZIP tran-
scription factor 2 (NRF2) pathway (63), which has been shown to 
upregulate the PPP (64), potentially linking tobacco smoke expo-
sure to inflammation-associated metabolic reprogramming that 

be useful as a predictive and prognostic biomarker in diverse can-
cer types extending beyond lung and liver cancers.

At the nexus of the urea cycle, pentose phosphate and nucle-
otide synthesis pathways, CR reflects highly integrated and coor-
dinated regulation of these metabolic pathways. For example, flux 
through the cytosolic urea cycle pathway, which remains intact 
in CRhi tumors, activates glycolysis, and supports the production 
of ribose 5-phosphate by the PPP (47), while intermediates of 
de novo synthesis of purine nucleotides, such as 5-aminoimid-
azole-4-carboxamide riboside (AICA riboside), also stimulate 
catabolism of glucose to pentose products (48). Notably, PRPS1, 
which is upregulated in CRhi NSCLC tumors, couples the PPP with 
de novo purine nucleotide synthesis, thereby directly linking the 
PPP with the purine nucleotide bias seen in these tumors. It is well 
established that these metabolic changes support hyperprolifera-
tive cancer cell phenotypes (5, 30, 37, 45, 49) and thus underlie the 
association of CR with aggressive, rapidly proliferating tumors. 
The importance of cell proliferation in CR production may explain 
why CR levels are elevated many years before a lung cancer diag-
nosis (22), when hyperplasia is probably already evident (50–52).

Our rigorous analysis of human biospecimens and in vitro 
studies failed to find evidence that CR could be spontaneously and 
passively formed in cells, indicating instead that CR synthesis is 
likely enzymatically catalyzed, or its formation is driven by elec-
trochemical conditions unique to the intracellular environment. 
CR production requires cell proliferation, and the compartmen-
talization of metabolic precursors or enzymatic reactions during 
specific cell-cycle phases in proliferating cells may explain CR 
kinetics. We propose a model in which a purine/pyrimidine syn-
thesis bias during cell proliferation increases nucleotide metabo-
lism and thereby increases the availability of activated ribose sub-
strates for the ribosylation of creatinine to form CR. This process 
may involve enzymes involved in nucleotide synthesis that show 
altered specificity due to a purine/pyrimidine nucleotide bias. The 
precise mechanism of creatinine ribosylation remains the subject 
of ongoing studies in the laboratory.

The association of CR with urea cycle dysfunction and altered 
nucleotide synthesis has substantial therapeutic implications. 
The arginine auxotrophy induced by urea cycle dysfunction ren-
ders CRhi tumors sensitive to arginine-targeted therapies, which 
are a rapidly emerging and promising approach in the treatment 
of NSCLC, breast, pancreatic, and liver cancers, among others 
(5). The majority of trials testing recombinant human arginase 
or arginine deiminase therapies have used loss of ASS1 expres-
sion as an indicator of therapeutic efficacy (5, 19), however, ASS1 
expression levels alone are not always indicative of therapeutic 
activity (53). Our analysis suggests that CR levels within tumors 
or liquid biopsies may be a companion diagnostic for arginine 
auxotrophic tumors that express ASS1 but may also benefit from 
arginase-based therapies. In this way, a CR biomarker identifies 
a subset of ASS1-competent tumors that are likely to respond to 
arginine-targeted therapies. Furthermore, since CR levels reflect 
the contribution of multiple genes to the dysregulation of the urea 
cycle, CR levels may identify more cancer patients who are likely 
to respond to arginase-based therapies compared with the current 
rationale of using ASS1 expression alone, which fails to identify 
subsets of tumors that will be sensitive to this emerging therapy 
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tion curves of analytical standard solutions (Masslynx, Waters) before 
being normalized to cell numbers.

CR levels were stratified as high or low by the median for lung tis-
sue samples and liver cancer samples, or by the 75th percentile of the 
population control (i.e., cancer-free individuals) levels for urine sam-
ples from patients with lung cancer. Cell lines were classified into CRhi 
and CRlo groups by the median value.

To test the association of driver mutations with CR levels in cell 
lines, mutation data were obtained for each cell line from the Cancer 
Cell Line Encyclopedia, and χ2 tests were performed to assess signifi-
cant associations.

Gas chromatography–coupled MS detection of ribose. Quantitative 
detection of ribose, glucose, and their heavy-labeled forms was per-
formed using gas chromatography–coupled MS (GC-MS). Cell pellets 
and cell media were harvested in 70% (v/v) acetonitrile and DL-nor-
leucine (10 μM) followed by homogenization (Precellys Homogenizer, 
Bertin Instruments). Samples were then centrifuged, and the super-
natant was dried, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) 
derivatized (MilliporeSigma), and resuspended in 50 μL acetonitrile 
for analysis (1 μL injection).

d-ribose, U-13C5 d-ribose, d-glucose, and U-13C6 d-glucose concen-
trations were quantified on an Agilent 6890N gas chromatograph coupled 
to an Agilent 5973 mass-selective detector using standard curves (Agilent 
MassHunter Workstation Software). Chromatographic conditions and 
detection details for each ion are provided in the Supplemental Methods.

RNA-Seq. Total RNA was extracted from lung tissues as previously 
described (67), and RNA-Seq processing was performed as outlined in 
the Supplemental Methods. Batch correction was performed using the 
Combat algorithm from the SVA package (68).

For analysis of TCGA data, RNA-Seq and clinicodemographic 
data on lung adenocarcinoma, lung squamous NSCLC, and HCC were 
downloaded from https://gdc.cancer.gov/about-data/publications/
pancanatlas using survival information from (69). Corresponding 
mutational information was downloaded from GDAC FireHose (43, 
70, 71). Projection of the CR status onto TCGA samples was per-
formed using cancer-type–specific approaches revealed by analysis of 
the NCI-MD cohorts. For projection of the CR status onto TCGA ade-
nocarcinoma and squamous NSCLC samples, (a) samples were tertile 
stratified according to expression of CPS1 plus NAGS, and then (b) a 
PPP expression score was calculated using gene set variation analy-
sis (GSVA). NSCLC samples in the lowest tertile for CPS1 plus NAGS 
expression and the highest tertile for the PPP score were considered 
CRhi-like. NSCLC samples in the highest tertile for CPS1 plus NAGS 
expression and the lowest tertile for the PPP score were considered 
CRlo-like. For projection of the CR status onto TCGA HCC samples, (a) 
samples were tertile stratified according to mitochondrial urea cycle 
activity using GSVA and the mitochondrial urea cycle signature of 
CPS1, OTC, and NAGS, and then (b) a PPP expression score was calcu-
lated using GSVA and the PPP signature G6PD, TALDO1, PRPS1, and 
RPE. HCC samples in the lowest tertile for mitochondrial urea cycle 
activity (i.e., highest in mitochondrial urea cycle dysfunction) and 
the highest tertile for the PPP score were considered CRhi-like. HCC 
samples in the highest tertile for mitochondrial urea cycle activity (i.e., 
lowest in mitochondrial urea cycle dysfunction) and the lowest tertile 
for the PPP score were considered CRlo-like.

For NCI-MD cohort analyses, differential gene expression analy-
sis was performed using EdgeR (72) and Limma (73). Enriched path-

may contribute to CR production. Although CR levels were not 
higher in inflamed intratumoral regions in our analysis, it remains 
to be determined whether widespread lung inflammation from 
acute tobacco smoke exposure may contribute to the very low CR 
levels detected in noncancer patients. The source of the very low 
levels of CR detected in noncancer patients is an area of ongoing 
intense research in the laboratory and will underpin the use of CR 
as a diagnostic biomarker.

Overall, CR is a prognostic tumor-derived metabolite reflect-
ing concomitant urea cycle dysfunction and PPP hyperactivity that 
support cancer cell proliferation. These metabolic vulnerabilities 
may be exploited to identify and more effectively target aggressive 
CRhi tumors that have the worst prognosis in multiple cancer types.

Methods
Materials. Mass spectrometric standards were purchased from Mil-
liporeSigma and Cambridge Isotope Laboratories. CR was custom 
synthesized (25).

Cell culture. All cell lines were obtained internally from the 
NCI-60 panel (H460, A549, A427, HCC78, SKMES1, HUH1, HUH7, 
Hep3B, H3122, H1975, H1650, H1299, H441, H358, H322, H23); were 
purchased from the American Type Culture Collection (ATCC; nor-
mal human bronchial epithelial cells); or were developed in-house 
(HBET1, Beas-2B, and derivatives ; refs. 65, 66). The MHCC97H cell 
line was a gift from Xin Wei Wang (NCI, NIH, Bethesda, Maryland, 
USA). Cell lines were cultured in RPMI 1640 or DMEM (Corning) sup-
plemented with 10% FBS (HyClone) and 2 mM l-glutamine (Gibco, 
Thermo Fisher Scientific). Cell lines obtained from the ATCC or NCI-
60 were directly cultured for use or authenticated by short tandem 
repeat (STR) profiling (ATCC) if they had been obtained more than 6 
months prior to use. All cell lines were tested for mycoplasma contam-
ination every 6 months.

Liquid biospecimen preparation for metabolomics. Urine samples 
were prepared for LC-MS/MS analysis as described previously (24).

Cell line sample preparation for metabolomics. Culture media and 
cells were separately harvested in ice-cold extraction buffer (acetoni-
trile/H2O/methanol [65:30:5, v/v/v], 3 μM DL-2-aminopimelic acid). 
Cell numbers were recorded in parallel. All samples were centrifuged 
and supernatants were sonicated (2 min, Bioruptor, Cosmo Bio), 
freeze-thawed in liquid nitrogen, and filtered (Ostro Protein Precipi-
tation Plate, Waters).

Tissue sample preparation for metabolomics. Frozen lung tissues 
(50–100 mg) were cryo-milled and extracted in cold extraction buffer 
(acetonitrile/H2O/methanol [65:30:5, v/v/v], 3 μM DL-2aminopimelic 
acid). All samples were centrifuged and supernatants were collected 
for LC-MS/MS analysis.

LC-MS/MS metabolomics. To quantitate the metabolite levels in 
cancer cells, culture media, or urine, extracts prepared as described 
above were analyzed by ultraperformance liquid chromatography MS/
MS (UPLC-MS/MS).

Metabolite quantitation was performed by multiple reaction 
monitoring with an Acquity UPLC/Xevo TQ-S Micro System (Waters) 
using a synthetic CR standard (25). For the measurement of urea 
cycle intermediates, the mobile phase was A:50 mM formic acid in 
acetonitrile and B:50 mM formic acid in water, pH 3. Separation was 
achieved on an Acquity UPLC BEH amide column (50 × 2.1 mm, 1.7 
μm, Waters). Metabolite concentrations were calculated using calibra-
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retrieval (Agilent Technologies, catalog S2367). Sections underwent 
serial staining for Ki67 (primary Ab: Cell Signaling Technology, cat-
alog 9027; secondary Ab: Opal Polaris 480, Akoya Biosciences); CD8 
(primary Ab: Abcam, catalog ab101500; secondary Ab: Opal Polaris 
780); CD68 (primary Ab: Agilent Technologies, catalog M0876; sec-
ondary Ab: Opal Polaris 620); and programmed cell death 1 (PD-1) 
(primary Ab: Cell Signaling Technology, catalog 43248; secondary Ab: 
Opal Polaris 570) as outlined in Supplemental Methods. Slides were 
imaged on a Vectra Polaris (Precision Medicine Group). Multiplexed 
images were unmixed using InForm software. Quantitative analysis of 
cell types was performed in QuPath (version 2.3).

Data and code availability. RNA-Seq and whole-exome sequenc-
ing data for NCI-MD lung tumors are available in the NCBI’s Gene 
Expression Omnibus (GEO) database (GEO GSE201221). TCGA and 
NCI-MD liver sample data sets (GEO GSE76297) were accessed as 
described above. All analyses were performed using publicly available 
packages as described above and in the Supplemental Methods.

Statistics. All statistical analyses were performed in Graph-
Pad Prism 7 (GraphPad Software) or R (version 3.6.3). Differences 
between groups were assessed with the Mann-Whitney U test for 
comparison of 2 groups or the Kruskal-Wallis test with Dunn’s cor-
rection for multiple comparisons. Two-way ANOVA with Dunnett’s 
correction for multiple comparisons was used for comparison of 2 
or more groups across multiple variables. The Benjamini-Hochberg 
method was used to correct for multiple comparisons for other analy-
ses. Differences in the distribution of mutations among cell lines and 
their relationship with high and low CR levels were examined using 
Fisher’s exact test. Spearman’s tests were used to determine correla-
tions. Survival analysis was performed using the R packages Survmin-
er and Survival. Data presented as box plots show the median, box 
boundaries indicate the 25th and 75th percentiles, and whiskers show 
the minimum to maximum values. A P value of less than 0.05 was 
considered statistically significant.

Study approval. Lung tumor and nontumor biospecimens from 
the NCI-MD cohort were collected according to procedures approved 
by the NCI, NIH, as described previously (21) (IRB OH98-C-N027). 
Liver cancer biospecimens and data were obtained from the TIGER-
LC cohort as described previously (24, 67). Written informed consent 
from patients was received prior to participation in these studies. The 
clinicodemographic features of these cohorts are outlined in Supple-
mental Tables 1, 3, and 4.
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