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Abstract

Organoids enable in vitro modeling of complex developmental pro-
cesses and disease pathologies. Like most 3D cultures, organoids
lack sufficient oxygen supply and therefore experience cellular
stress. These negative effects are particularly prominent in com-
plex models, such as brain organoids, and can affect lineage com-
mitment. Here, we analyze brain organoid and fetal single-cell
RNA sequencing (scRNAseq) data from published and new data-
sets, totaling about 190,000 cells. We identify a unique stress sig-
nature in the data from all organoid samples, but not in fetal
samples. We demonstrate that cell stress is limited to a defined
subpopulation of cells that is unique to organoids and does not
affect neuronal specification or maturation. We have developed a
computational algorithm, Gruffi, which uses granular functional
filtering to identify and remove stressed cells from any organoid
scRNAseq dataset in an unbiased manner. We validated our
method using six additional datasets from different organoid pro-
tocols and early brains, and show its usefulness to other organoid
systems including retinal organoids. Our data show that the
adverse effects of cell stress can be corrected by bioinformatic
analysis for improved delineation of developmental trajectories
and resemblance to in vivo data.
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Introduction

Organoids are 3D stem cell cultures that enable human tissue mod-

eling with unprecedented structure and complexity (Eiraku

et al, 2008; Kadoshima et al, 2013; Lancaster et al, 2013; Pas�ca
et al, 2015; Qian et al, 2016). At the same time, single-cell tran-

scriptomics has become widely used for their characterization.

Alongside these recent technological breakthroughs, it has become

clear that 3D tissue culture is affected by limited oxygen and nutri-

ent supply to the center of the tissue.

As most models lack functional vascularization (Garreta

et al, 2021), and therefore rely on limited passive transport across the

tissue, diffusion-limited hypoxia is an intrinsic problem in organoids.

Nutrient- and in particular oxygen-limitation are long-known phenom-

ena in tissue models (Malda et al, 2007; Volkmer et al, 2008). Oxygen

restriction causes widespread metabolic changes by activating the

hypoxia-, glycolysis-, and ER stress- pathways; furthermore, it affects

differentiation and proliferation (K€ultz, 2005; Mohyeldin et al, 2010).

Brain organoids are among the most complex and physically

largest organoids and are therefore most affected by the limited

nutrient supply of the center (Qian et al, 2019). Nevertheless, this

problem has only been recently addressed (Mansour et al, 2018;

Giandomenico et al, 2019; Bhaduri et al, 2020; Qian et al, 2020),

and its extent is still debated.

It therefore remains an open question if stress is a global or a

local issue, thus, how much it affects the 3D tissue culture model. A

recent paper claimed that in vitro conditions lead to a pervasive

stress across the whole organoid, causing immaturity, misspecifica-

tion, and dissimilarity to fetal tissue (Bhaduri et al, 2020). These

observations contrast with the previous understanding of spatially

limited stress (Qian et al, 2019). This raises the question: How
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should we handle the data affected by an artificial stress signature?

It is unclear if stress is an “acute” signature on top of a cell’s origi-

nal identity, or if stress is leading to a completely different cellular

state. While the same stress pathways are also active in the fetal

brain, reports disagree on whether it is equivalent to those observed

in vitro (Bhaduri et al, 2020; Gordon et al, 2021).

Experimental solutions emerged in protocols which increase con-

vection with bioreactors, orbital shakers, or microfluidics. Despite

these efforts, 3D cultures above ~ 500 lm radius develop a necrotic

core with healthy tissue limited to the surface ~ 100–300 lm. Fur-

ther developments involve organoid implantation in vivo resulting in

subsequent vascularization (Mansour et al, 2018), in vitro induction

of vasculature (Cakir et al, 2019), section culture (Giandomenico

et al, 2019; Qian et al, 2020), or bioengineering solutions (Garreta

et al, 2021). These approaches aim to increase nutrient supply, but

neither is currently as scalable as the standard organoid culture,

which therefore remains the mainstay of organoid research. Until a

widely applicable and scalable experimental solution emerges, tissue

health and cellular stress persist as a problem for the field.

While most large single-cell RNA–seq studies on diverse brain

organoid systems have reported glycolytic or ER-stressed clusters

(Kanton et al, 2019; Velasco et al, 2019; Tanaka et al, 2020), there

is no consensus on how to identify them, what is happening in these

cells, or what the effects of stressed cells on the organoid are. To

measure the prevalence and consequences of stress in brain orga-

noids, we analyzed differentiation, maturation, and identity of

~ 160,000 single cells from newly presented and published cortical

and cerebral organoid (together: brain organoids) datasets.

We found stressed cells in all organoid samples, forming a dis-

tinct subpopulation. Beyond stress pathway activity, stressed cells

showed widespread transcriptional changes that we refer to as the

“stressed-state.” We do not find this stressed state in vivo; therefore,

it is likely an artifact. Eliminating artificial cell populations is essen-

tial to truly recapitulate in vivo conditions. As stressed cells are cur-

rently unavoidable, we developed granular functional filtering

(Gruffi), an unbiased computational algorithm to isolate stressed

cells. Gruffi can clarify developmental trajectories and increase simi-

larity of in vitro datasets to the fetal brain.

Results

A distinct population of ER-stressed- and glycolytic-cells exist in
all analyzed organoids

We reanalyzed recent, landmark single-cell transcriptomics studies and

performed new experiments (Kanton et al, 2019; Velasco et al, 2019;

Bhaduri et al, 2020; Khan et al, 2020; Eichm€uller et al, 2022; Fig 1A)

to answer three questions: What stress pathways are active in orga-

noids? Does stress occur in all or only certain organoid protocols? Is cel-

lular stress limited to a group of cells or is it pervasive?

We included all those mature, wild-type samples that were pre-

pared on the 10× Chromium single-cell platform starting from .fastq

files using the same pipeline (Materials and Methods). To focus on

stress in the neural lineage, we removed all cells that are not part of

brain development and are a result of mispatterning, sometimes

observed in organoids. For a proportional representation of datasets,

we subsampled ~ 160,000 from a total of 300,000 cells.

Cellular stress can lead to a perturbation of essential processes,

thus affecting cell quality in scRNAseq. Therefore, we applied a min-

imal filtering, keeping all cells with > 500 genes, < 20%

mitochondrial- and 30% ribosomal-reads (Ilicic et al, 2016; Luecken

& Theis, 2019). This resulted in a median depth of 3,651 UMI/cell

(Materials and Methods). We integrated and analyzed the resulting

datasets in Seurat (v4) and found the previously reported cell types

(Fig 1B). The UMAP separated dividing cells and glia cells from neu-

rons (horizontally) and excitatory- from interneurons (vertically).

Besides, there were multiple clusters in the center of the UMAP,

which were less well-defined by marker gene expression.

Stress is a common hallmark of the two largest unidentified
clusters

Differential gene expression and QC-metric analysis revealed that

the “unidentified” two central clusters (stressed neurons and

stressed progenitors, Fig 1B) consisted of cells strongly expressing

stress markers and low-quality cells (Figs 1C and D, and EV1A and

B). The stress genes were part of endoplasmic reticulum (ER) stress:

CHOP (or DDIT3), XBP1, DDIT4, P4HB (Rashid et al, 2015); glycoly-

sis (ENO, HK2, PGK1, GAPDH), and hypoxia: PDK1, PHD, GLUT1 (or

SLC2A1; Lee et al, 2020; Figs 1C–D and EV1C–J).

To better understand the nature of stress in these cells, we analyzed

all significantly differentially enriched genes in the stress-clusters

(Materials and Methods). We found that, in either cluster, more than

half of the top 50 coding genes were part of “response to stress”

(GO:0006950), and apoptosis-related terms were among the strongest

enriched terms (Dataset EV1, Materials and Methods). The biggest

enriched stress pathways were “regulation of cell death,”

(GO:0010941) “response to hypoxia,” (GO:0001666) and “response to

endoplasmic reticulum stress” (GO:0034976). Surprisingly, metabolic

terms were both among the strongest and largest enriched terms, high-

lighting that metabolic shift is a hallmark of stressed cells in organoids.

We then calculated the GO-term enrichment within the 150

strongest enriched coding genes of both stress clusters together and

▸Figure 1. A distinct population of ER-stressed- and glycolytic-cells exist in all analyzed organoids.

A The list of samples and datasets analyzed in this study encompasses mature cortical organoids from multiple key publications.
B UMAP embedding of the integrated dataset. Clustering with cell-type annotation shows the expected neural cell types, but also reveals two stressed subpopulations.
C, D (C) Key marker genes for glycolysis, hypoxia or (D) ER-stress are specifically enriched in stress clusters.
E Protein–protein interaction map of GO-term enrichments on the top 150 stressed-cluster enriched genes (by log fold change). Highlighted terms: Cellular response

to stress (red, GO:0033554, 2e-07, 0.47); Response to hypoxia (blue, GO:0001666, 3e-10, 0.9); Response to unfolded protein (yellow, GO:0006986, 2e-06, 0.97); Gly-
colytic process (limegreen, GO:0006096, 1e-05, 1.36); Protein localization to endoplasmic reticulum (cyan, GO:0070972, FDR: 2e-20, strength 1.35)—covering nearly
the same ribosomal genes as: Translational initiation (GO:0006413, 2e-20, 1.35).

F, G (F) WGCNA analysis (see Appendix Fig S1 for other modules) of variable genes identifies a gene module specific to stressed cells, (G) which is enriched in stress related terms.
H Percentage of low-quality cells; cells in stressed-neuron and -progenitor clusters and their union, quantified across all datasets.
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visualized these on the protein–protein interaction (PPI) map

(Fig 1E, Materials and Methods). We highlighted enriched GO-terms

(FDR < 5e-7) forming connected PPI clusters, revealing the interplay

of glycolysis, hypoxia, unfolded protein response, and translation

with the general stress response (Fig 1E, Dataset EV1). To identify

all genes co-regulated with stress, we applied scWGCNA (single-cell

weighted gene co-expression network analysis (Morabito

et al, 2021)) and found 12 gene modules (Appendix Fig S1A), one

of which was specific to stressed cells (stress module, Fig 1F). Gene

set enrichment analysis (GSEA) on the stress module identified the

strongest enrichment for “response to hypoxia,” “cellular response

to ER stress,” and GO-terms of glycolytic processes further highlight-

ing the relevance of these pathways in stressed cells (Fig 1G,

Appendix Fig S1B). To test whether stress occurred in all samples,

we quantified the contribution of each dataset to the stress clusters.

We found that all datasets contained stressed cells with a median of

13%, but highly variable fraction (50% CV, Fig 1H). Thus, stressed

cells are characterized by deregulation of defined pathways and a

general feature of organoids regardless of conditions, laboratory of

origin or protocol used.

While the initial clustering-based approach identified cells with

stress signatures, it had three major limitations. First, while some

clusters are too large and comprise mixed populations

(Appendix Fig S1C), others can be too small to find marker genes

by differential gene expression analysis (DGEA). Second, cluster

boundaries are often not well-defined, especially when dealing with

developmental trajectories. Third, the resulting limitations in DGEA

obstruct the identification of stress genes, so that results vary by the

dataset and parameters used. Together, these limitations affecting

DGEA could explain why previous studies identified disparate gene

sets, such as “Glycolytic cells” in (Nowakowski et al, 2017; Kanton

et al, 2019) vs. “ER stressed cells” in (Bhaduri et al, 2020; Tanaka

et al, 2020). To overcome these issues, we tested different cluster-

ing resolutions (Appendix Fig S1D). As none of these could separate

the distinct populations of cells within “Stressed Neurons” (Fig 1B),

we concluded that a new approach is needed to identify and exclude

stressed cells.

Granular functional filtering identifies stressed cells unbiasedly

Functional scoring highlights cellular stress regardless of
cluster boundaries
To universally identify stressed cells, we established a sample- and

data-independent definition for stressed genes. Using gene lists from

well-characterized pathways defined as GO-terms (Materials and

Methods), we aggregated information from all genes per pathway

by an expression-scoring method widely used for cell cycle scoring

(Tirosh et al, 2016). Therein, we downloaded gene lists per GO-

term from Ensembl, calculated their average expression, and nor-

malized it to randomly sampled control genes of matching expres-

sion level (Materials and Methods). Finally, we evaluated whether

functional scoring helps to characterize stressed cells. We found that

high scores for “glycolytic process” (GO:0006096) and “response to

endoplasmic reticulum stress” (GO:0034976) were the strongest sig-

natures of stress-clusters (Fig 2A) and provided clearer separation

between stressed and non-stressed cells than cluster boundaries.

Importantly, high scores marked mostly overlapping cell popula-

tions. The coactivation of additional scores, such as “response to

starvation” (GO:0042594, Fig EV1F) and “cellular response to

hypoxia” (GO:0071456, Fig EV1G) corroborated a complex stress-

identity. Comparing neuronal and glial cell types revealed that all

nondividing glial cells showed higher ER stress scores (Fig 2B). We

therefore designed our algorithm to accommodate for cell-type-

specific background when identifying stressed cells.

Change of cellular identity in stressed cells
Besides increased stress-gene expression, stress clusters were char-

acterized by low expression of pan-neural markers (NEUROD6,

DCX, MAP2, NCAM1, and ELAVL4; Appendix Fig S1E). To test

whether this marker depletion is also reflected by a general change

in glial or neural fates, we extended our scoring approach. We cal-

culated scores for the two cardinal cell states in neural development,

“neurogenesis” (GO:0022008), and “gliogenesis” (GO:0042063).

Both terms were depleted in stressed cells (Fig 2A). Compared to

both glial and neural clusters, stressed cells also showed remarkably

low scores for “cell differentiation” (GO:0030154), and “forebrain

development” (GO:0030900), suggesting that stressed cells are in a

metabolic survival state characterized by a lack of specification to

neurons or glia (Appendix Fig S2A and B). Thus, chronic stress in

organoids comes at the expense of neurogenic cell differentiation

and leads to an undifferentiated, metabolic, and stressed cell-state

that we refer to as the “stress identity.”

Granular evaluation overcomes noise inherent to single-cell data
Single-cell gene expression measurements are inherently noisy.

While GO-scores are computed across multiple genes per cell, these

may still suffer from high variability and noise. Indeed, some cells

within the stress-clusters showed low stress-scores, even if cluster-

ing together (Fig 2A). At the same time, sporadic cells in well-

defined cell types showed high stress-scores. These cells expressed

stress genes inconsistently, but expressed respective cell-type mark-

ers, which are otherwise absent in stress-identity cells.

To overcome variability in single-cell measurements, one can

either denoise the data, for example, by model-based imputations,

or group cells and evaluate them together. Many different imputa-

tion methods have been developed recently; however, imputed

values often vary (Hou et al, 2020), and they can induce false sig-

nals (Andrews & Hemberg, 2018). This is probably due to the

complexity of the imputation problem. We therefore took a group-

ing approach where we partitioned cells into groups of 100–200

cells by ultrahigh-resolution SNN-clustering in PCA-space (Materi-

als and Methods) resulting in small groups of cells that we term

granules.

The ultrahigh-resolution clustering approach can overcome the

problems of boundaries by breaking down the data into minute

groups of cells. To get sufficient coverage for robust gene scoring,

and because clustering creates some very small granules, we added

a reclassification step, where cells in granules with < 30 cells are

reassigned to the closest granule above threshold (Materials and

Methods).

To test the granular approach, we compared stressed cells identi-

fied by Gruffi’s granular method (gSC) and stressed cells identified

on single-cell scores (scSC). We contrasted cells only identified by

either, both or neither of the approaches, thus validating whether

top stress markers alone is superior in filtering stressed cells. scSC

were evenly scattered across all clusters, while most gSC were close
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to the previously identified stress clusters and the cells identified by

both methods (Appendix Fig S2C). By definition, single-cell selec-

tion on stress scores identified the cells with highest stress-scores.

Thus, we tested whether the scSC-only selected cells had other hall-

marks of stressed cells. scSC cells showed less of all other features

defining stress-identity: lack of cell differentiation, lower mitochon-

drial, and higher ribosomal mRNA content (Appendix Fig S2D–I).

In contrast, granular identification found cells that shared these fea-

tures with cells identified by both methods and showed strong

stress-identity (Appendix Fig S2D–I). Thus, single-cell scoring based

on top stress markers alone is not sufficient to identify stressed cells.

While the intersection of both scSC and gSC classification showed

strong stress-identity, this was also the case for gSC-only cells. We

implemented both methods in Gruffi, but we concluded that the

granular approach is more suitable if one aims to exclude stress-

identity, whereas the single-cell approach is more suitable if one

aims to simply find cells with the highest stress gene expression,

but otherwise properly specified cells.

Granules

995 granules, median size: 156

Granule Average Score

Glycolysis (GO:0006096)

Stress Idenitfication

Combining Glycolysis

Normal

0.25
0.50
0.75
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1.25
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Response to ER stress Glycolytic process Neurogenesis GliogenesisA

B

EDC F

Figure 2. Granular functional filtering identifies stressed cells unbiasedly.

Granular functional filtering identifies stressed cells unbiasedly.
A Gene-set scores per cell for the two strongest stress signatures (ER-stress and glycolysis) and the two cardinal processes in the developing brain (neurogenesis and gli-

ogenesis). The complementary expression signatures suggest a mutually exclusive neural- or stressed- fate.
B Overview of Gruffi’s stress classification. After preprocessing steps including the computation of PCA and UMAP embeddings, a gene ontology pathway is selected,

respective gene sets are retrieved, and per cell GO-scores are calculated. At the same time, an ideal clustering resolution is estimated, such that cells are assigned to
granules of (in median) ~ 100–200 cells, and small clusters (< 30) are reclassified. Next, to overcome high variability and detection noise caused by single-cell resolu-
tion, average and cell number normalized granule scores are calculated, and respective score-thresholds are estimated based on the score’s dispersion. Finally,
stressed granules are identified by a combination of scores, and isolated from the dataset for separate analysis or dataset cleaning and further downstream analysis
is possible.

C Gruffi defined 995 granules by snn-clustering containing a median of 156 cells.
D Granule scores for glycolysis shown on UMAP.
E Three-dimensional stress score threshold estimation by Gruffi using default setting, requiring high glycolytic and ER-stress, low gliogenesis score to define stressed cells.
F Stressed cells classified by Gruffi based on ER-stress, glycolysis and gliogenesis are highlighted on the UMAP.
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Granular functional filtering (Gruffi) isolates and removes
stressed cells
As clustering-based identification failed to detect stressed cells

specifically and robustly, we built on the concepts above and devel-

oped granular functional filtering or Gruffi (Fig 2B). Gruffi takes a

number of gene ontology pathways (1) to obtain corresponding gene

sets (2), and computes cell-wise GO scores (2). At the same time, it

identifies a suitable resolution by parameter search (I), clusters cells

into granules (small clusters) (II), and reassigns cells of too small

granules (III). Merging these, it then computes the multiple granule

scores (4), estimates a threshold separating stressed and non-

stressed cells (5) and assigns a “stress” label integrating multiple

scores (6).

To uniformly determine the prevalence of stressed cells across

organoids and protocols, we applied Gruffi to the integrated orga-

noid dataset. After pathway scores calculation, Gruffi identified the

clustering resolution where the median cluster size is 154 cells,

resulting in 995 granules, after reassignment (Fig 2C). Stress identi-

fication must be robust across all datasets; therefore, we incorpo-

rated three scores: the two most specific pathways: “glycolytic

process” (GO:0006096) and “response to endoplasmic reticulum

stress” (GO:0034976), and a negative filter on “gliogenesis”

(GO:0042043) score accounting for the higher native expression of

ER genes in glia. The addition of further negative filters did not

improve identification; however, we implemented this option in our

algorithm.

Gruffi then calculated the average and cell number normalized

functional scores per granule resulting in a 3-dimensional functional

score for each granule (Fig 2D–E). This combinatorial approach is

flexible to the type and number of scores used, which may be useful

for applications beyond its original scope. Next, Gruffi estimated the

thresholds separating stressed from normal cells, accounting for

score variability among non-stressed cells (Materials and Methods).

At this point, the retrieved thresholds can and are advised to be

inspected and refined via the implemented interactive Shiny App

interface. Throughout our analysis presented here, we did not adjust

manually the thresholds estimated by Gruffi. Finally, combining all

thresholds, Gruffi classified stressed and non-stressed cells (Fig 2F),

which largely overlapped with the expression of key stress markers,

and with high stress scores (Fig 1C).

Finally, we investigated how Gruffi compares to simple

approaches for quality control. Therein, we looked at the effect of

excluding cells based on different thresholds of low UMI-count, high

mitochondrial, or high ribosomal UMI-fractions (Materials and

Methods). These metrics are often used to exclude low-quality,

dying, and outlier cells. While low-read count cells were enriched

among stressed cells, this metric was not sufficient to remove stress-

identity cells, and it resulted in biased depletion of specific cell types

at higher stringency (Appendix Fig S3A–C). Similarly, high mito-

chondrial or ribosomal UMI-fractions were not specific to stressed

cells. The mitochondrial cutoff is often used to filter dying cells. The

lack of overlap with stressed cells suggest that hypoxic stress does

not lead to cell death detectable by scRNAseq. As for read count,

strict filtering thresholds either removed or depleted other specific

cell types (Appendix Fig S3D–I). Thus, simple quality control met-

rics were not sufficient to remove stressed cells. While this sug-

gested that Gruffi was superior in identification of stress-identity

cells, we continued the in-depth analysis of stress in organoids.

Stress-identity is restricted to a subpopulation, which is not
present in vivo

Stressed cells show a profound transcriptomic change
As all samples had stress-identity cells, we searched for their defin-

ing features and their consequences on the whole organoid. Stressed

cells fell in two distinct clusters with either a more glial or a more

neuronal character (Fig 1). We therefore divided Gruffi’s stressed

cells into these two categories to investigate the heterogeneity of

stress response in organoids (Materials and Methods). We quanti-

fied the total expression of mitochondrially encoded genes and of

ribosomal mRNAs, which correspond, respectively, to ~ 2% and

~ 10% of the total transcriptome, respectively. These are widely

used to assess quality and cell state in scRNAseq (Luecken &

Theis, 2019). We hypothesized that chronic hypoxia and glycolysis

diminish the need for oxidative phosphorylation, which may trans-

late to fewer mitochondrial UMIs. Indeed, stressed neurons showed

52%, whereas stressed progenitors showed a 25% reduction in

mitochondrial read fractions, as compared to their non-stressed

counterparts (Fig 3A). In contrast, ribosomal mRNA fractions were

40% and 23% higher, respectively (Appendix Table S1), perhaps to

compensate for ER-dysfunction (Bonferroni corrected Dunn’s test

P.adj < 5e-7 in all cases).

Increased catabolism in stressed cells
As stressed cells had a decrease in mitochondrial mRNAs, we looked

for transcriptomic signatures for the active degradation of mitochon-

dria. To that end, we applied Gruffi’s scoring method for relevant GO

terms, in four broad categories of cells (Appendix Fig S4A) and found

opposite trends: Both stressed populations (progenitors and neurons)

showed on average positive scores for “autophagy of the mitochon-

drion” (GO:0000422), while normal cells did not (Fig 3A, P.adj < 1e-

100 in all cases). At the same time, the groups scored similarly for “au-

tophagy” (GO:0006914; Appendix Fig S4B and Table S1).

Translation in ER-stressed cells might lead to protein degradation

via the ubiquitin-dependent ERAD pathway. Therefore, we calcu-

lated the corresponding score (GO:0030433), and as for mitophagy,

found that stressed cells scored positively, while normal cells scored

negatively (Fig 3A, Appendix Table S1). Altogether, these changes

show that stress induces major changes in the cell’s physiology and

metabolism that go beyond acute stress response.

As a complementary approach to GO-term defined pathway

scores, we turned to PROGENy, which derives pathway-responsive

genes from a large compendium of perturbation experiments and

assigns a Z-score normalized activity to each pathway (Schubert

et al, 2018). Therein, we analyzed cell types by clustering

PROGENy’s activity-score across signaling pathways and clusters.

We found that stressed cells form an outgroup and are marked by

the upregulation of Hypoxia and VEGF pathways, and the downreg-

ulation of the PI3K pathway, highlighting oxygen deficiency and

quiescence (Fig 3B, Appendix Fig S4C–E, Materials and Methods).

To ask how stressed cells identified by Gruffi differ from those

detected by the na€ıve clustering-based approach (Fig 1), we subcat-

egorized the stressed clusters into cells identified by Gruffi or cells

in the stressed clusters but not classified by Gruffi. The complete

lack of separation of cells found by only the na€ıve approach con-

trasted the salient stress features found by Gruffi (Fig 3B). This sug-

gests that a clustering-based approach is impractical for excluding
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Figure 3. Stress has a profound, yet limited transcriptional effect, and stress-identity is not present in vivo.

A Functional consequences of stress on the transcriptome. Mitochondrial (MT) mRNAs were decreased (top), while ribosomal mRNA were increased in stressed neurons
and progenitors (second from top). Mitochondrial autophagy was increased in stressed cells, possibly explaining the reduced MT-mRNA (third from top). Increased
protein degradation via the ERAD pathway in the ER is a likely reason for increased ribosomal reads. All differences were significant on Kruskal–Wallis test (P = 0) fol-
lowed up by a Bonferroni corrected Dunn’s test (P.adj < 1e-100 for all, except %ribo: Prog. vs. Str. Neurons; P.adj < 5e7). Group averages and relative changes quanti-
fied in Dataset EV4.

B Activity of multiple pathways defined by PROGENy clearly separates stressed cells. Hypoxia is the only uniquely activated pathway in stressed cells. Hierarchical
clustering based on pathways independently validates that stressed clusters as identified by Gruffi are distinct from other cell types. Stressed neurons and progenitors
were divided into cells that are part of the stress cluster and identified by Gruffi [Stressed N./P. (Gruffi)], or cells that are part of the stress cluster but not identified in
Gruffi (Clustering).

C Correlation of fetal reference to organoid clusters. Only clusters that are found in both datasets and stressed cells are shown. Gene modules of co-regulated genes
were computed in the fetal reference data. Aggregated expression per cluster and module was correlated. The color code marks the origin of the clusters (blue for fetal
and yellow for organoid). Stressed neuron and progenitor clusters are marked in red. Fetal clusters correspond to original clusters with adjusted names (Polioudakis
et al, 2019).

D CCA Integration of ~ 24 K fetal cells and an equal number of randomly sampled organoid cells from Fig 1B show that most cell types intermingle. Cluster annotation
represents the original annotation of the fetal dataset. Gray points represent organoid cells.

E Gruffi’s single-cell pathway scores for ER-stress (GO:0034976), glycolytic process (GO:0006096) and gliogenesis (GO:0042063) on UMAP. Granule clustering at resolu-
tion 37 (determined by Gruffi), resulting in 249 granules with a median of 193 cells per granule, after reassignment of small clusters.

F Stressed-cell assignment by Gruffi identifies the vast majority of stressed cells in organoid samples.
G Quantification of F. In total, 5,171 cells (10.68% of all cells) were identified as stressed. Five hundred and three of these are fetal (2.16% of fetal cells) and 4,648 cells

are from the organoid datasets (19.2% of organoid cells).
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stressed cells as it is variable between datasets and would exclude

non-stressed cells, further supporting the versatility of Gruffi.

The presence of stressed cells does not affect specification and
maturation of non-stressed neurons
A previous study reported that stress in organoids leads to impaired

cell-type fidelity, and incomplete maturation as a global phe-

nomenon in organoids (Bhaduri et al, 2020). To test those effects,

we compared cell types in the organoid datasets to fetal cortical

data of comparable age (de la Torre-Ubieta et al, 2018; Polioudakis

et al, 2019; Materials and Methods). We defined the fetal brain as

the reference data and constructed modules from co-expressed

genes (Dataset EV2, Materials and Methods) as described before

(Trapnell et al, 2014). The resulting 65 aggregated gene modules

were used to calculate Pearson’s correlation across clusters and

visualized in a heatmap (Fig 3C). Major cell types (excitatory neu-

rons, interneurons, and progenitors) formed the largest clusters

across the dataset. Most organoid cell types pairwise best matched

the corresponding fetal cell type, indicating that organoids undergo

proper cell-type specification unlike suggested previously (Bhaduri

et al, 2020). Stressed neurons, however, were uncorrelated to all

cell types, except stressed progenitors (Fig 3C). This dissimilarity

to all fetal and organoid cell types, along with the analyses above,

indicated that stress neurons lost most of their identity and formed

a new transcriptional cell-state. Interestingly, while stressed pro-

genitors showed a similarity to stressed neurons, they also showed

a strong progenitor identity, suggesting either an increased robust-

ness or more distinct transcriptome of the progenitor state. Alto-

gether, we found no evidence of impaired cell-type fidelity in

organoids, as cell types in organoids match respective cell types

in vivo, and that stressed cells show little resemblance to cell types

found in the fetal cortex.

Stressed cells in organoids have no fetal counterpart
Stressed cells might also exist in vivo, even if they did not form a

recognized cluster in published studies. While some previous

reports have argued that stressed cells similar to organoids exist

in vivo (Tanaka et al, 2020; Gordon et al, 2021), others claim that it

is an artifactual population specific to organoids (Bhaduri

et al, 2020). Therefore, we integrated the fetal brain dataset with a

matching number of randomly downsampled cells from the orga-

noid dataset. Using the published fetal cell-type annotation, we

found that the organoid dataset was generally well recapitulating

the fetal data (Fig 3D). At the same time, CGE and MGE (caudal and

medial ganglionic eminences) interneuron differences and deep

layer excitatory neuron differentiation were clearer in fetal data.

Interestingly, there were two populations entirely of organoid

origin: a population near the neural trajectory (I) and a progenitor

population (II, Fig 3D). To test for stress identity, we calculated

stress scores as before, and found that precisely these populations

score high for ER stress and glycolysis (Fig 3E). To quantify stressed

cells and validate our method on both datasets, we ran Gruffi on the

integrated object. This identified stressed cells almost exclusively in

the two aforementioned populations and almost exclusively in orga-

noid samples (Fig 3F–G). Notably, the few stressed cells identified

in vivo did not share the characteristic enrichment of hypoxia that

was found in organoid cells (Appendix Fig S4F). This suggests that

stress-identity cells are specific to the in vitro culture condition.

Our analyses focused on mature organoids, in which hypoxia is a

well-known problem. To test whether similar stress is indeed not

present in the human brain, we additionally investigated published

samples of early brain development (Fig EV2A, Carnegie Stage 12–

22; Eze et al, 2021). Gruffi classification revealed that there were no

stressed cells during early stages of development (Fig EV2B),

whereas the GO term’s genes were still detected (Fig EV2C).

Notably, there was no population that was uniquely enriched in

stress GO terms, and overall scores were low (Fig EV2D and E).

Thus, stress is neither found in early radial glia nor at later stages

during development. Altogether, our analysis suggests that stress-

identity is an in vitro artifact, and there is minimal to no stress-

identity in vivo.

Stressed cells do not affect the maturation of other cells, but
their removal improves data quality and interpretability

The removal of stressed cells reveals clear trajectories that
recapitulate fetal neurodevelopment
Removing stressed cells might create a better model of the fetal

brain development. Stress genes majorly contribute to variable

genes, which determine both clustering and visualization (Luecken

& Theis, 2019). In the organoid integration dataset, 22 from the top

50 and 36 from the top 100 variable genes were enriched in

“Response to stress” (GO:0006950; FDR: 3.4e-3 & 2e-3). We there-

fore removed all stressed and low-quality cells, reidentified variable

genes, and recalculated all dependent representations (PCA, UMAP,

snn-graph) and downstream analysis with identical parameters.

Starting from the progenitors, the resulting UMAP revealed three

trajectories (“E,” “I,” and “MB” in Fig 4A and B), representing corti-

cal excitatory, cortical inhibitory, and midbrain neurons, respec-

tively. Before removing stressed cells, no midbrain trajectory was

visible although midbrain cells were obviously present (Fig 1B).

Instead, midbrain cells were linked to their progenitors only by a

small, separated population of the “yellow” cluster. After stressed

cell removal, these trajectories now lead to distinct populations of

mature neurons, as opposed to the continuum of connected clusters

before Gruffi (before stress removal). Notably, this lineage separa-

tion recapitulates fetal neurodevelopment.

To ensure the robustness of our approach, we repeated the anal-

ysis on a single dataset (Fig EV3A–D), as well as downsampling the

full dataset to ~ 8,200 cells, which is the typical output of a single

10× experiment (Fig 4C–D). Both analyses revealed that expected

lineage trajectories are missing or broken in the UMAPs before

Gruffi (midbrain in Fig 4A, and excitatory neurons in Fig 4C), but

they are correctly recovered after running Gruffi (B, D). Correct and

continuous trajectories in low-dimensional representations are

essential for most pseudotime methods that use these as basis for

pseudotemporal cell assignment.

Prior to integrating organoid datasets, non-telencephalic cells

found in some organoids had to be removed (Materials and Meth-

ods). To investigate the relationship between properly specified

telencephalic lineages, non-telencephalic mis-differentiation, and

stressed cells we reanalyzed individual examples and the effect of

integration (Appendix Fig S5). Non-telencephalic cells were very

distant from the neuronal lineage and could be easily distinguished

in individual datasets (Appendix Fig S5A–C). However, combining

mis-differentiated samples with pure telencephalic datasets resulted
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in the artificial merging of these rare unwanted cell types with glia,

demonstrating the need for prior cleaning (Appendix Fig S5D–F). In

contrast to non-telencephalic cells, stressed cells were more closely

related to the neuronal lineage. This aligns with a model in which

non-telencephalic cells fail to undergo neural induction early during

organoid differentiation, whereas stressed cells emerge during telen-

cephalic differentiation at later stages (Appendix Fig S5G–I). To

ensure proper integration and cleaning, individual datasets should

first be evaluated, and mis-differentiated cells must be removed.

Then, stressed cells can be detected and filtered out after integra-

tion. This results in an improved cell-type separation as evidenced

by a larger distance between terminally differentiated cell types

(Fig 4E, Appendix Fig S5J–L).

To test whether our method can be applied to an independent

dataset, we reanalyzed the data from a recent publication reporting

a large “undefined” cluster (Samarasinghe et al, 2021). We ran

Gruffi on the precomputed R data object obtained from the authors

and marked stressed cells (Fig EV4A and B). This dataset is particu-

larly well suited to demonstrate the versatility of Gruffi, as it con-

tained secretory choroid plexus cells, which are undergoing high

physiological ER-stress due to secretion. We therefore derived a

choroid plexus score as an additional negative filter score. As no

GO-term exists for choroid plexus, we turned to the recent publica-

tion of choroid plexus organoids (Pellegrini et al, 2020) identified

marker genes, and derived the choroid plexus score (Materials and

Methods). Gruffi labeled 74% of the “Undefined” cluster as stressed

and an average of 1% of cells from other clusters (Dataset EV3). To

ensure proper stress identification, we then performed DGEA on

stressed vs. non-stressed cell and GO-term enrichment on all

enriched coding genes (Materials and Methods). Visualization of

enrichments on the protein interaction network using STRING

(Fig EV4C) showed that apoptosis, stress, unfolded protein

response, and hypoxia dominate cells identified as stressed in this

dataset as well.

In the organoid field, a considerable effort has gone into improv-

ing culture conditions. This way complex problems could be stud-

ied, like the relationship of vascular and brain cells using induced

endothelial cells (Cakir et al, 2019), or cortical layering (Qian

et al, 2020) and axon projection (Giandomenico et al, 2019) in

organoid slice culture. To test whether these methodologies reduced

stressed cells in organoids, we applied Gruffi to the published data-

sets (Appendix Fig S6). Non-telencephalic cell types such as

endothelial cells in (Cakir et al, 2019) were not classified as stressed

(Appendix Fig S6A–C). Despite these improved culture conditions,

stressed cells were present in all three datasets. This was confirmed

by the activity of the relevant pathways, key stress genes, and inde-

pendent PROGENy analysis, suggesting that stress remains a preva-

lent problem of in vitro culture (Appendix Fig S6A–J). Notably,

stressed cells made up similar fractions of the datasets as for orga-

noids generated with standard protocols (Appendix Fig S6K and L).

These data suggest that while improved methods are useful for

investigating processes that are difficult to study in classical orga-

noid preparations, they nevertheless contain stress-identity cells.

Organoids show proper cell-type specification along the
excitatory lineage
A previous study reported that stress in organoids not only leads to

impaired cell-type fidelity but also leads to incomplete maturation

(Bhaduri et al, 2020). To investigate whether stressed-identity cells

affect specification along the excitatory lineage, we compared pro-

genitor and neuron signatures (Materials and Methods,

Dataset EV4). This led to the expected bimodal separation of the

fetal samples (Fig EV5A). As this dataset was used to derive the sig-

natures, we confirmed the separation of neurons vs progenitors

◀ Figure 4. Stressed cells do not affect the maturation of other cells, but their removal improves data quality and interpretability.

A, B UMAPs of the integrated organoid dataset before Gruffi (A), and after Gruffi (B). Dotted arrow in (A) highlights the broken trajectory in the development of midbrain
cells. Dashed arrows in (B) highlight the developmental trajectories of interneurons, midbrain neurons, and cortical excitatory neurons. Clustering and colors are
the same as in (Fig 1A).

C, D We repeated the analysis on a smaller subset of the data downsampled to ~ 8,200 cells, a typical outcome of a single 10× experiment (this subset does not contain
midbrain neurons). Note that almost any lineage relationship could be inferred from the representation before Gruffi (A), but not the IPC to excitatory neurons
relationship (dotted line). After Gruffi (B) the lineage trajectories show the known relationships allowing, for instance, pseudotime calculations.

E Exemplary workflow of Gruffi in dataset integration and analysis on the subset of datasets analyzed in Appendix Fig S5: after mis-differentiation pre-filtering (1)
cells are integrated (2). Gruffi identifies stressed cells (3), that are removed (4). After re-integration (5) the separation of cell types of interest improves, as evidenced
by an increase in the distance between cell types (heatmap).

F Progenitor- (x-axis) vs. excitatory neuron- (y-axis) scores on mid-gestational fetal cells (Polioudakis et al, 2019, Fig EV5B) identifies two separate populations. Each
cell is colored based on neuronal or progenitor cell cluster identity. Color depicts progenitors (green), intermediate progenitor cells (IPC, red) and neurons (blue). In
addition, the density of progenitors (blue to yellow) and neurons (blue to red) is shown. The margins of the plot depict the density distribution of the three different
cell types across the progenitor (x-axis, top) and neuron (y-axis, right) score.

G Example dataset showing impaired cell subtype specification, as described in a previous study (Bhaduri et al, 2020).
H Subtype specification of all datasets analyzed in this study. While most neurons and progenitors show high values of the respective scores, there are some cells

without specification to either neurons or progenitors (see Fig EV5C-F for individual datasets).
I Subtype specification after filtering out stressed cells. The remaining cells specify properly to neurons and progenitors, with only IPCs localizing between the two

populations (see Fig EV5C-F for individual datasets).
J Clustering of dorsal lineage cells of datasets grown in two separate media conditions (Materials and Methods). Pseudotime analysis was performed from

progenitors (cluster 1) to upper layer (cluster 8) and deep layer neurons (cluster 9, see Fig EV5G for pseudotime plot).
K The maturation along pseudotime is measured as the mean pseudotime value of neurons (y-axis) and plotted against the percentage of stressed cells identified in

the datasets (x-axis). The color code shows the two different media formulations of individual datasets (marked by different symbols) and the linear regression
model (line with CI). The percentage of stressed cells did not correlate with the maturation difference of non-stressed neurons.

L Maturation of deep layer excitatory neurons (DL-EN) in two different media formulations. Cells are color coded for clusters (J) and plotted along the pseudotime (x-
axis). The density-count of cells along pseudotime is shown behind the dots (yellow area for H-medium, purple area for L-medium, right y-axis). The position of the
points reflects the expression of a module of co-regulated genes enriched in DL-EN (left y-axis, Fig EV5H). While proper maturation indicated by expression of the
DL-EN module occurs in both media conditions, in L-medium maturation is much more frequent (see Fig EV5I-K for upper layer ENs and for individual datasets).
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using an independent fetal dataset with multiple samples around

mid-gestation (Figs 4F and EV5B). Next, we asked how organoid

samples separate using those signatures. We calculated signature

scores on Bhaduri et al organoid datasets and reproduced the previ-

ously reported lack of specification (Fig 4G). In contrast, when test-

ing the other datasets analyzed in this study, we detected a fetal-like

specification (Figs 4H and EV5C–F), suggesting proper specification

in most organoid datasets.

Nevertheless, organoid cells still separated less than fetal cells,

and more cells were scoring low on both progenitor and neural

axes. As stressed cells are characterized by the lack of both glial and

neural signatures (Fig 2A), we hypothesized that stressed cells may

populate the area between neurons and progenitors. After annotat-

ing stressed cells, we found two populations in between progenitors

and neurons: stressed cells and intermediate progenitors, or IPCs.

After stress removal, most of those remaining cells are IPCs (Fig 4I,

in red), which are indeed a transitory stage between glia and neu-

rons. Altogether, we find no evidence for general misspecification in

organoids. Instead, progenitors and excitatory neurons properly sep-

arate, while two specific populations, IPCs, and stressed cells, lack

specific neuronal or progenitor signatures.

The presence of stressed cells does not affect the maturation of
other cell types
Besides a lack of cell-type specification, incomplete maturation due

to stress was previously suggested (Bhaduri et al, 2020). As a posi-

tive control for maturation, we took two media conditions that

affected maturation (Eichm€uller et al, 2022). While the original

organoid medium contains high concentrations of nutrients and

amino acids and thus supports progenitor expansion, it is less suit-

able for neuronal maturation. A low-nutrient media composition, in

contrast, based on a defined 2D neuron culture medium (Bardy

et al, 2015) more closely resembles the cortical environment and

enabled further maturation of neurons.

To test whether stress affects maturation, we grew pairwise

matched samples in the two different media conditions and ana-

lyzed them together (Fig 4J). We calculated the pseudo-temporal

trajectory of the excitatory lineage and graded each dataset for mat-

uration along this trajectory (Fig EV5G, Materials and Methods).

Our results showed that the fraction of stressed cells does not

explain maturation differences (Fig 4K), but the choice of media

does: low-nutrient media improved neural maturation. To under-

stand the impact on maturation on single-cell level, we plotted indi-

vidual cells along the maturation trajectory, split by media

condition (Fig 4L). In addition, to assess expression changes associ-

ated with mature states, we generate scores for mature neurons

(Figs 4L and EV5H–J, Dataset EV5). This revealed that while orga-

noids grown in either condition had abundant excitatory neurons,

those in high-nutrient media remained mostly immature, while

organoids grown in low-nutrient media contained more mature neu-

rons (Figs 4L and EV5J–L). In sum, the presence and abundance of

stressed cells in a sample have negligible effects on neural matura-

tion, while measurable differences arise by the choice of media.

Gruffi can be applied to other organoid systems
In our analyses, we focused on brain organoids as they are among

the most diverse and largest organoid systems. However, to test

whether Gruffi can be used in the context of other systems, we

applied it to a recent publication of retinal organoids (Sridhar

et al, 2020). To this end, we used mature (205-day-olds) retinal

organoids as well as two fetal reference datasets (Fig EV6A–C). To

consider the different stressors and metabolic pathways of the

retina, we optimized the stress scoring by including a different stress

selecting score instead of glycolysis (“cellular response to hypox-

ia”), as well as an additional negative filter (RGC score, Materials

and Methods, Fig EV6D–H). Gruffi identified abundant stressed cells

in the retinal organoids, whereas they were rare in fetal retina sam-

ples. Notably, stressed cells were mainly localized to clusters that

were strongly biased toward organoid cells and showed the hypoxia

pathway activation also found in stressed to identity cells in brain

organoids (Fig EV6I–N). Thus, the prevalent stressors and the

unique metabolic pathways of each system should be considered in

the stress score selection. If done so, Gruffi can also be applied to

any dataset outside of brain organoids.

Discussion

Brain organoids generate complex, structured tissue in vitro (Eiraku

et al, 2008; Kadoshima et al, 2013; Lancaster et al, 2013; Pas�ca
et al, 2015; Qian et al, 2016). Besides their tremendous potential for

modeling human diseases (Sidhaye & Knoblich, 2021), it is critical

to understand and account for their limitations. Here, we showed

that a population of stressed cells exists in all analyzed organoid

samples, as a biologically distinct population, which is not found

in vivo. We provide an in-depth analysis of these cells that hopefully

will help to decipher the needs of 3D tissue in culture.

While an experimental solution is the end goal, stress is present

in published and current experiments. We found that neither

endothelial co-culture, nor slice-culture eliminated stressed cells,

underlining that experimental solutions are challenging. For exam-

ple, for media to flow through vasculature, the vascular system

must be free of any closure, and the diameter of vessels must either

permit flow without direct pumping or requires such. For slice cul-

ture, continued cell proliferation leads to the thickening of the tissue

and might be recreating the original problem. This could be

addressed by re-slicing as in (Qian et al, 2020), but either other

stressors, or the persistence of stress-identity cells leads to a detect-

able population of ER-stressed- and hypoxic-cells.

To tackle this issue, we developed Gruffi, an in silico tool to

bioinformatically identify and remove these cells, based on stress

pathway activity scoring. Gruffi comes with a graphical and interac-

tive interface. It integrates into a typical single-cell analysis work-

flow using Seurat but can be used in other pipelines as well. The

resulting stress-decontaminated samples displayed a clearer repre-

sentation of the fetal neural development and showed higher simi-

larity to in vivo samples. Even if future organoid protocols may

resolve cellular stress, earlier published data still suffer from stress,

which negatively impacts data integration. Gruffi, however, can

recover such data for comparison, reducing the need for performing

new experiments.

We observed diverse stress pathway activity, and it is important

to understand how they are connected on a cell biological level. Our

results are compatible with earlier observations that the organoid

core, but not surface, is hypoxic (Qian et al, 2019), explaining why

stress characterizes only in a defined set of cells. This is further

� 2022 The Authors The EMBO Journal 41: e111118 | 2022 11 of 18

�Abel V�ertesy et al The EMBO Journal



supported by a recent preprint employing spatial transcriptomics to

identify hypoxic metabolic programs in the organoid core (Uzqiano

et al, 2022).

The central role of hypoxia can explain the other transcriptional

changes. The lack of oxygen triggers a metabolic shift, from oxida-

tive phosphorylation to anaerobic glycolysis. Hypoxia also triggers

ER stress, in two ways. First, glycolysis is much less efficient in

energy production, leading to energy depletion, and consequently a

stronger metabolite transport is needed. These transporters are

secreted via the ER-pathway (Loike et al, 1992), triggering the

unfolded protein response (UPR; Lee et al, 2020). At the same time,

the depletion of energy leads to a pH imbalance, affecting organelles

that rely on ATP-dependent transporters for ion homeostasis

(Chiche et al, 2010).

Our results are consistent with a previous observation that acute

hypoxia in cortical spheroids triggers a strong ER-stress response

(Pașca et al, 2019). However, a simplistic, one-dimensional

distance-to-surface model of nutrient availability cannot explain the

heterogeneity of stress marker expression. It is an interesting future

direction to determine different cellular niches, for example, by local

variation in oxygen and nutrient levels. Similarly, an interesting

question for future studies is how cellular heterogeneity leads to the

differential expression of stress markers in close neighboring cells.

Importantly, stress identification is just the first application and

proof of principle for granular functional filtering. This flexible

framework can be extended to many other applications in single-cell

analysis. As long as cells form an identity, so that they group

together in any low-dimensional representation and co-express a

defined gene set (GO-terms, KEGG-pathways, etc.), the cells can be

identified, studied and removed. Here, we applied Gruffi to remove

stressed cells from brain organoid datasets, but we think that there

are many other applications possible, such as selecting cells from a

lineage or cells responding to a treatment. Currently, brain organoids

are the largest and longest-cultured 3D organoid systems and are

therefore particularly affected by stress. As 3D tissue models and

investigations become ever more sophisticated, cell culture-induced

artifacts are more important to account for. Therefore, we expect that

our approach will find many applications beyond its original scope.

Materials and Methods

Experiments

Stem cell culture
We obtained the “HPSI0114i-rozh_5” (female) line from the HipSci

catalog (Streeter et al, 2017), hiPSC cells were cultured following

the HipSci guidelines. We also grew organoids from the feeder-free

human ES cell line (H9; WA09 from WiCell, Female). The two iPSC

Lines SCCF – 177 (177J clone#8, female) and SCCF – 178 (178J

clone#5, male) were generated at the IMBA Stem Cell Core Facility

and are part of the IPSC Biobank. The study was approved by the

local ethics committee of the Medical University of Vienna (MUV).

After informed consent, a skin biopsy was taken from three healthy

donors, and fibroblasts were isolated for iPSC reprogramming. iPSC

lines were generated using the Sendai virus (CytoTuneTM-iPS 2.0

Sendai Reprogramming Kit, Thermo Fisher Scientific) carrying the

Yamanaka reprogramming factors OCT3/4, SOX2, c-MYC and KLF4

factors. All cell lines were used within 10 passages from last STR

profiling and tested regularly for mycoplasma contamination. We

additionally used the above cell lines (177 and 178) for the media

comparison experiments (Fig 4). The cell lines were evaluated and

cultured as the HipSci lines. Briefly, cells were seeded on vitronectin

(Stemcell Technologies, cat#07180) coated plates and fed every day

with E8 essential media. Cells were passaged as single cells using

Accutase (Sigma) with Revitacell cell supplement (1/100, Invitro-

gen, cat#A2644501), and grew until 70% confluency, then we

replated. Cultured cell lines were routinely tested for mycoplasma

contamination by PCR (Janetzko et al, 2014).

Organoid culture
Organoids were generated as described in Esk et al (2020). Briefly,

150 ll/well of Essential 8 media supplemented with RevitaCell (1/

100) containing the corresponding cell suspension for 9,000 cells/

well were plated for each cell line using low attachment 96-well

plates (Sigma CLS7007). Briefly, the protocol entailed the following

steps: On day 3, media was replaced to Essential 8 media and from

day 6 on, embryoid bodies were transferred to neural induction

media (NI) and 200 ll/well was exchanged every day. On day 10,

when embryoid bodies are about 500–600 lm in thickness and neu-

roepithelium is evident, the aggregates were transferred to 10-cm

dishes and embedded in matrigel (MG) droplets. On day 13 and 14,

the media was changed to Improved Differentiation Media without

ascorbic acid (Imp-A) containing 3 lM CHIR. After that, the media

was replaced every 3–4 days. On day 19, the dishes were transferred

to an orbital shaker. On day 25, the organoids were fed with

Improved Differentiation media with ascorbic acid (Imp+A) and the

media was replaced every 3–4 days. On day 40, the two different

culture methods (Brainphys & Imp+A) diverged. The “Imp+A” orga-

noids were further cultured in Imp+A supplemented with 1%MG,

BDNF (20 ng/ml), GDNF (20 ng/ml) db-cAMP (1 mM). The “Brain-

phys” (BP) organoids were gradually transitioned to BP media in

three feeding steps: 75–25%: 50–50%, 25–75% (Imp+A & BP). From

that point, they were cultured in BP supplemented with 1%MG,

BDNF (20 ng/ml), GDNF (20 ng/ml) db-cAMP (1 mM).

Media composition
NImedia: Neural Inductionmedium consisting of DMEM/F12 (Thermo

Fisher Scientific) with 1% N2 Supplement (Thermo Fisher Scientific),

1%MEM-NEAA (Sigma Aldrich), 1% Glutamax (Thermo Fisher Scien-

tific) and 1 lg/ml Heparin. Imp-A: of 50% DMEM/F12 (Thermo Fisher

Scientific), 50% Neurobasal (Thermo Fisher Scientific), 0.5% N2 Sup-

plement (Thermo Fisher Scientific), 2% B27—Vitamin A (Thermo

Fisher Scientific), 1% Glutamax (Thermo Fisher Scientific), 0.5%

MEM-NEAA (Sigma Aldrich), 50 lM 2-ME solution, 1% Penicillin/

Streptomycin (Sigma Aldrich) and 0.025% Insulin solution (Sigma

Aldrich). Imp + A (HN): Imp-A with 2.5 mM Ascorbic Acid, 2 g/l

Bicarbonate (Sigma Aldrich). BP (LN): BrainPhys Neuronal Medium

(Stem Cell Technologies), 2% B27 + A (50×, Thermo Fisher Scientific),

1% N2 supplement (Thermo Fisher Scientific), 200 nM Ascorbic Acid

(Sigma Aldrich), 0.2% CD Lipid Concentrate (Thermo Fisher Scien-

tific), 7.4% glucose, and 1%Penicillin/Streptomycin.

Single-cell sequencing
Organoids were cultured to 120 days, then washed in PBS and dis-

sociated using the gentleMACS Dissociator (Miltenyi Biotec) in
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program NTDK1 using the enzyme mix: Trypsin (Sigma Aldrich)/

Accutase (Sigma Aldrich; 1:1) containing 10 U/ml DNaseI (Thermo

Fisher Scientific). The washed cell suspension was passed through a

70 lm cell strainer.

In the newly generated datasets, we pooled cells from samples

from four different genotypes and were combined in a lane (other

cell lines used for other purposes). We additionally used sample bar-

coding using lipid-anchor barcoding following instructions as in

(McGinnis et al, 2019) with reagents kindly provided by the

authors, but we relied on SNP-based cell line demultiplexing as

described in (Kang et al, 2018; described in the following section)

and sample barcoding was not used.

Cells were counted and the suspension was loaded onto a Chro-

mium Single Cell 30 B Chip (10× Genomics, PN-1000073) and pro-

cessed through the Chromium controller to generate single-cell

GEMs (Gel Beads in Emulsion). scRNA-seq libraries were prepared

with the Chromium Single Cell 30 Library & Gel Bead Kit v.3 (10×

Genomics, PN-1000075). Ready 10× libraries were sequenced paired

end (R1:28, R2: 89 cycles) on NovaSeq (Illumina).

Data analysis

Public datasets
We used the following public datasets for this study: dbGaP Study

Accession: phs001836.v1.p1. (de la Torre-Ubieta et al, 2018; Poliou-

dakis et al, 2019); ENA PRJEB33917 (Kanton et al, 2019); GEO

GSE132672 (Bhaduri et al, 2020); EGA EGAD00001006332 (Eichm€uller

et al, 2022); GEO GSE129519 (Velasco et al, 2019); GEO GSE124174

(Giandomenico et al, 2019); GEO GSE134049 (Cakir et al, 2019);

GEO GSE137941 (Qian et al, 2020); from UCSC Cell Browser (Eze

et al, 2021); GEO GSE142526 (Sridhar et al, 2020).

Cell line demultiplexing
For pooled 10× GEX libraries, the donor cell-line of the assayed cells

was determined by genotype-based demultiplexing using souporcell

(Heaton et al, 2020). The pipeline was run with default settings, pro-

viding all donor genotypes through the known_genotypes parameter,

and providing the cellranger bam, the cellranger filtered barcodes file,

and the reference fasta as input. Donor genotype vcfs were pre-

generated using HaplotypeCaller from the Genome Analysis Toolkit

(GATK) v4.1.2.0 on bwa mem 0.7.17 aligned WGS reads following the

nf-core/sarek v2.5.1 pipeline. WGS reads were obtained from respec-

tive sources: (i) SRA database for H9/SRR6377128, (ii) from the ENA

database for the HIPSCI line rozh_5/ERR1871976 or (iii)WGS data gen-

erated by the IMBA stem-cell facility for SCCF—177 (177J clone#8,

female) and SCCF—178 (178J clone#5, male).

Single-cell analysis
We first aligned reads to the GRCh38 human reference genome with

Cell Ranger 3.1 (10× Genomics) using pre-mRNA gene models and

default parameters to produce the cell-by-gene, unique molecular

identifier (UMI) count matrix. UMI counts were then analyzed in R,

using the Seurat v4. We filtered for high-quality cells based on the

number of genes detected (> 500). Thereafter, expression matrices

of high-quality cells were normalized (“LogNormalize”) and scaled

to a total expression of 10 K UMI for each cell. Regression of vari-

ables at this step did not improve clustering results; hence, no vari-

ables were regressed or removed.

Non-telencephalic cell exclusion
Before integration datasets were checked for quality, as certain IPS

lines are prone to mis-differentiation. As a consequence, multiple

datasets included non-telencephalic cells that would interfere with the

CCA integration; henceforth, we applied initial filtering for CNS cells

(Appendix Fig S5). To exclude mis-differentiated cells, we used a

recently published fetal organ atlas (Cao et al, 2020). Processed data

were downloaded, and cell-type annotation was modified to reflect

major cell types for a basic classification. All CNS cell types were

grouped together under one annotation to determine properly speci-

fied clusters. Next, an xgboost classifier was trained to distinguish

major cell types on the RNA assay data using the top variable genes of

the fetal dataset with parameters determined by cross-validation. This

classifier was applied to each dataset: (i) Datasets were preprocessed

individually and clustered in UMAP space; (ii) The expression of the

RNA assay was used to classify each cell according to the cell groups

of the training dataset; (iii) Classification was summarized per cluster;

and (iv) all clusters that were not classified as CNS cells and were clus-

tering separate of neuronal lineages were filtered out. The cleaned

datasets were used for CCA integration.

To establish the maximal mitochondrial-, and ribosomal RNA

fractions, we plotted these against feature counts and each other,

and set thresholds to remove extreme outliers. A group of cells

showed a distinctly high ribosomal fraction (> 30%). We found that

these cells correspond to one cluster coming from one dataset

(Velasco organoid 21, Dataset EV1) and are non-neural in gene

expression. We used the same threshold value for maximal mito-

chondrial read fraction for simplicity.

Downstream analysis
Variable genes were identified by Seurat’s FindVariableFeatures

implementation (“FastLogVMR”). Next, we aligned and merged

sequencing libraries by Seurat’s canonical correlation analysis or

CCA (dimensions: 50; Butler et al, 2018) using the intersection vari-

able genes across datasets.

Next, principal components were calculated on the variable

genes, and the first 50 components were then used to calculate

UMAP coordinates. For clustering, we used Seurat’s implementation

of snn/Louvain clustering. Therein, we first calculate the k-nearest-

neighbor (knn) graph of cells in PCA-space (dimensions:50). Based

on Jaccard similarity scores on the knn graph, the shared nearest

neighbor (snn) graph is computed. Louvain clustering on the snn

graph identified clusters of cells. Differentially expressed genes were

identified by Wilcoxon-test, and filtered for P-values below 0.001,

and fold change larger than 2.

We found a group of 1,304 interneurons that formed a separate

cluster on the very top of the UMAP (Fig 1). These constituted

7.61% of all interneurons and were 94% originating from the Kan-

ton S3 dataset. Both interneuron clusters showed similar expression

of classic interneuron markers, and pairwise differential gene

expression analysis showed no meaningful differences. Therefore,

we lumped these two clusters together.

Differential gene expression analysis (DGEA)
We used the Wilcoxon test via the FindAllMarkers() and FindMarkers

() to identify differentially expressed genes, with the folllowing param-

eters: return.thresh = 0.001; min.pct = 0.1; min.diff.pct = 0.01; min.-

cells.group = 100; min.cells.feature = 100; logfc.threshold = 0.25.
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GO-term enrichment
GO-term enrichment was performed on coding, differentially

expressed genes, using the STRING toolkit (Szklarczyk et al, 2019).

Enriched terms were filtered by false discovery rate (FDR), so that

the Benjamini–Hochberg multiple testing corrected P-values < 0.05.

Next, terms were ranked by Enrichment Strength, that is the Log10

(observed/expected) codung gene count. Where “expected” is the

number of proteins with a given annotation that is expected in a

random gene set of the same size.

Integration of organoid and fetal data
We obtained raw data for fetal cortical single-cell datasets covering

age comparable to organoid datasets (de la Torre-Ubieta

et al, 2018; Polioudakis et al, 2019), preprocessed and analyzed it,

the same way as we did for the organoids. The individual

sequencing lanes were merged per fetal datasets and integrated

with Seurat, as before. The integrated organoid dataset was uni-

formly downsampled to 24,211 cells, to match the total sample

size of the fetal datasets. The resulting individual (original) data-

sets were then reference-integrated to the fetal dataset as follows:

First, 3,000 integration anchors were computed with Seurat’s

SelectIntegrationFeatures() and FindIntegrationAnchors() functions,

where the fetal datasets were defined as reference. By default, the

integration by IntegrateData() was performed using CCA, setting

parameter k.weight to 50. Further steps, such as the determination

of variable features, scaling, the computation of PCA and UMAP

embeddings and the SNN Graph were performed as for the orga-

noid integration.

Effect of different basic QC filtering parameters
The integrated dataset containing all cells above 500 UMIs was ana-

lyzed with different cutoffs for basic metrics that are often used in

QC: UMI count, fraction of mitochondrial, and fraction of ribosomal

reads (Appendix Fig S3). Different UMI count cutoffs were applied

to the integrated dataset, and the fraction of cells lost in each cluster

of (Fig 1A) was quantified. Next, the fraction of UMIs from the

mitochondrial DNA was quantified per cell (MT* genes), and cells

were binned into very-high (> 20%), high (20% > x > 10%), and

normal bins. Cells corresponding to each class were visualized on

the umap and contrasted to stressed cells. The same analysis was

repeated for ribosomal transcripts (RPL* and RPS* genes). Cells

with very-high (> 30%) ribosomal content was visualized on the

UMAP of the unfiltered integrated object. This cutoff was used to

generate (Fig 1A). Cells with high (x > 20%) ribosomal content was

visualized on the UMAP of (Fig 1A) and the fraction of cells lost per

cell type at this threshold was quantified.

Analysis of early radial glia
The (Eze et al, 2021) dataset was downloaded the UCSC Cell

Browser, filtered for cells with a gene count higher than 500 and less

than 15% mitochondrial reads and analyzed using Seurat as

described above including log-normalization, scaling, the computa-

tion of the 2000 most variable genes and PCA computation

(Fig EV2). The UMAP coordinates were used as provided by the

authors. The detected genes for the GO-terms of interest were com-

pared with the organoid integration dataset to ensure similarity.

Gruffi stress scoring was applied. To compare granule-wise scores

in the fetal and organoid dataset, the scores for each of the relevant

GO-terms were aggregated per granule and colored for Gruffi stress

annotation as shown in Fig EV2E.

Individual analysis of Velasco 7 dataset
The dataset was filtered for high-quality cells with a higher gene

count than 1,000 and analyzed using Seurat as described above

including log-normalization, scaling, the computation of the 2,000

most variable genes, PCA and UMAP embedding computation

(Fig EV3).

Effect of integration with non-telencephalic cells
The Velasco 5 dataset was plotted individually without non-

telencephalic cell exclusion, and cells were colored based on non-

telencephalic cell classifier (Appendix Fig S5). A cluster-wise corre-

lation to the (Cao et al, 2020) reference data was performed to sup-

port cell-type annotation. To represent distance of different cell

types in a linear way, we used PCA space (Appendix Fig S5 and

Fig 4E). To account for different weights of PCs, each PC was multi-

plied by the standard deviation it explained. This weighted Eucli-

dean distance was presented as a heatmap using pheatmap 1.0.12,

or as a graph embedding visualizing similarity with edge strengths

(Epskamp et al, 2012). Differences in GO-terms among variable fea-

tures were visualized using revigo (Supek et al, 2011) and clus-

terProfiler 4.2.2 and enrichplot 1.14.2 (Wu et al, 2021). GO terms

were calculated comparing both datasets in clusterProfiler, and

only those that were unique to each condition were plotted with

enrichplot.

Effect of different culture conditions on stressed cells
Datasets for: (Cakir et al, 2019), (Giandomenico et al, 2019), and

(Qian et al, 2020) were downloaded from GEO (see “Public data-

sets” section) and filtered for cells with more than 500 genes and

< 15% mitochondrial reads (Appendix Fig S6). Processing was per-

formed in Seurat and Gruffi was applied as for other analyses. For

the Qian et al, dataset the target granule size was set to lower.me-

dian = 75 and upper.median = 150 to optimize granule size in this

smaller dataset. PROGENy pathway scoring and visualization was

performed as for other analyses.

Application of Gruffi to retinal dataset
Datasets from (Sridhar et al, 2020) were downloaded from GEO

(see “Public datasets” section), and cell-wise metadata annotation

was kindly provided by the authors (Fig EV6). Processing was per-

formed in Seurat, and Gruffi was applied. As RGCs showed strong

glycolysis in fetal datasets, a phenomenon already described (Liu &

Prokosch, 2021), we decided this score was not suitable for filtering.

We selected genes that are specific for RGCs as an additional score

(ISL1, SNCG, RBPMS; Langer et al, 2018). After applying scWGCNA

as done previously, we selected “cellular response to hypoxia” as

new second stress score. Thus, Gruffi was used with response to

hypoxia and response to ER-stress as positive, and with gliogenesis

and the RGC score as negative selectors. All other analyses were

performed as detailed for other Figures.

The Gruffi package

The Gruffi package contains all functions for the identification,

inspection, and filtering of stressed cells using command line or
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graphical user interface (Shiny app). Gruffi functions encompass the

following major steps as in (Fig 2B): (1–3) Accession of GO-term

gene sets and single-cell stress scoring; (I–III) Data partition into

granules and small-granule reclassification; (4) Aggregate score cal-

culation per ensemble; (5) Automatic estimation of stress threshold,

with possible manual adjustment and inspection; (6) Stressed cell

assignment and filtering.

Single-cell scoring
We defined specific GO-terms relevant for functional processes in

stress and differentiation. Gene lists for each GO-term were down-

loaded from Ensembl via BiomaRt (Durinck et al, 2009) and inter-

sected with detected genes. Alternative database access is also

implemented (see R-package documentation). We then generalized

a widely used cell-cycle scoring method based on aggregated gene

set activity (Tirosh et al, 2016) and used its implementation in Seu-

rat (AddModuleScore). Briefly, in the AddModuleScore function, the

following steps have been implemented as in the original: (i) Take a

target set of genes; (ii) Calculate their average expression; and (iii)

Create control sets of genes. The control gene-sets are used to con-

trol for the cell-to-cell variability in quality and depth. To create the

control sets, first all genes are binned by expression levels (25 bins),

then for each gene in the target set, randomly select 100 genes from

its expression bin, and finally (iv) subtract the average of control

from each target gene. The expression binning is important, because

expression levels affect the variability of gene expression (Tirosh

et al, 2016). Gene lists of “glycolytic process” (GO:0006096) and

“response to endoplasmic reticulum stress” (GO:0034976) were

downloaded and intersected with detected genes, then used to eval-

uate stress state.

Data partitioning and reclassification
Gene detection in single cells is noisy. To overcome this noise, we

grouped cells into small clusters (that we call granules) by high-

resolution snn-clustering (as in the manuscript, using the algorithm of

Seurat). Gruffi’s aut.res.clustering() performs a simple parameter

search (for clustering-resolution) that results in a median of 100–200

cells per granule, which we call the optimal resolution, as clusters

contain a statistically robust number of cells. All these parameters are

also manually customizable. Next, clustering is performed at the

determined resolution, resulting in cells separated into 100’s of gran-

ules, depending on the size of the dataset. Finally, all cells in granules

with < 30 cells are reassigned to the nearest cluster center in the 3D

UMAP space (Euclidean distance) using reassign.small.clusters().

Thresholding and stress annotation
Finally, the average GO-scores for each granule were calculated,

and stress level per granule was evaluated. We propose two possible

methods to estimate an upper threshold for the assignment of

stressed granules for one GO term. (a) Determining manually, based

on the expression of stress genes and stress score values on UMAP.

Based on these, an empirical quantile (90% if observing 10%

stressed cells) as threshold can be assigned. (b) Automatic stress

threshold estimation by Shiny.GO.thresh(). For this, we refer to cell

number normalized, mean GO scores per granule. In the following

this will be referred to as granule score. We assume that: (b1) The

granules consist of a statistically sufficient number of cells. (b2) GO

scores of non-stressed cells independently follow the same unknown

distribution. (b3) GO scores of stressed cells are significantly higher

than GO scores of non-stressed cells. (b4) The dataset consists of

more non-stressed than stressed cells. Assumptions (b1) and (b2)

together with cell number normalization allow us to use the central

limit theorem and hence fit a normal distribution to the granule

scores of non-stressed granules. Based on (b3) and (b4) we con-

clude that respective non-stressed GO-scores are small, and the

mean of the normal distribution can be estimated by the median of

granule scores. The standard variation of the normal distribution is

now estimated only w.r.t. to GO scores smaller than the median of

granule scores. Now, the theoretical 99% quantile of the fitted nor-

mal distribution can be computed and used as an upper threshold.

Assumption (b1) is fulfilled by the automatic clustering resolu-

tion search and the reassignment of cell granules with less than 30

cells. Although we based our analysis on thresholds retrieved by

this method, as we cannot assure that assumptions (b2) to (b4) hold

true, we highly recommend further inspections and refinements of

suggested thresholds in any case. To do so, we propose to visually

monitor further manual adjustments via the implemented Shiny

App interface.

When considering a combination of GO terms, for example,

response to endoplasmic reticulum stress and glycolytic process, we

combine the respective thresholds such that a cell is assigned as

stressed if either upper threshold is crossed. In case one additionally

wants to include a GO term for non-stressed cells, for example, glio-

genesis, the above threshold method can be applied, too, but in this

case, granules with a score higher than the threshold are assigned

as non-stressed. Finally, based on the thresholds on each score,

stressed cells are annotated and can be excluded from the dataset.

Other analyses

Protein–protein interaction maps
We selected all genes enriched in either stress clusters, and jointly

ranked them by descending log2FC. We selected the top 150 coding

genes, and visualized the “high-confidence” connected component

of the protein–protein interaction network using the STRING data-

base (v11.5; Szklarczyk et al, 2019), links denoting the confidence

of connection (permalink: bxso1NJafq8R).

Pathway visualization using ShinyGO and KEGG
The top 150 coding genes (as above) were provided for ShinyGO

v0.741 (Ge et al, 2020) with default parameters and the background

gene list of all 26,439 detected genes (from the RNA assay).

ShinyGO’s visualized enriched KEGG pathways using Pathview and

relevant pathways were selected.

Comparison of granular and single-cell scoring
For granular scoring, we used the annotation and approach from

(Fig 2). For single-cell scoring, we used the exact same approach,

but skipped the granule average calculation of stress scores, and

instead, we calculated the stress threshold on single-cell scores. For

fair comparison, we adjusted the quantile cutoff parameter in the

single-cell scoring, so that it results in a similar number of stressed

cells, as in the granular approach. We then took the symmetric dif-

ference of these to find cells only flagged by either, but not both

methods. Group median values for were plotted for the four cate-

gories (Both, gSC, scSC, Non-stressed).
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The separation of stressed neurons
Stressed cells clearly separated into two major groups, as also seen in

(Fig 1). Therefore, we separated Gruffi’s classification into two cate-

gories. Low-resolution clustering (res.0.1.ordered) separated glia

(cl.1–2) from neurons (remaining clusters) both better (less clustering

artifacts) and simpler than higher resolutions (0.3, 0.5). Intersecting

this binary annotation with Gruffi’s stress annotation (T, F), separated

cells into the four clusters: Neurons, Stressed Neurons, Stressed Pro-

genitors, Progenitors, visible in (Appendix Fig S4B).

Progeny pathway activity scoring
Progeny pathways scoring was performed as in vignette, with the

following parameters top 200 genes. To visualize the differences

between stressed cells identified by typical clustering (Fig 1B) and

Gruffi (Fig 2F), we separated “Stressed Neurons” and “Stressed

Prog.” clusters into subsets identified, or not identified by Gruffi,

yielding four groups: “Stressed Prog. (Clustering),” “Stressed

Prog. (Gruffi),” “Stressed Neurons (Clustering),” “Stressed Neu-

rons (Gruffi)” (Appendix Fig S4C). As progeny failed to run on

the full object, we randomly downsampled the full dataset to

33.3% of the cells (> 50 K cells). We visualized the scores using

pheatmap with ward.D2 hierarchical clustering and separated the

three most distinct clusters. For (Fig 3B) we displayed all clusters

> 2% of all cells (Appendix Fig S4D), and all clusters are dis-

played in (Appendix Fig S4E).

Choroid Plexus scoring and stress identification in
Samarasinghe et al
We obtained the Seurat R object of (Pellegrini et al, 2020) from

cells.ucsc.edu and performed DGEA by Wilcoxon test in Seurat. We

used the clustering presented in the paper and contrasted “mature

choroid plexus” to all other clusters. We calculated a choroid plexus

score from the resulting 192 genes (log2fc > 1, P.adj < 0.01, pct.expr

> 33%, Dataset EV4) and provided this to Gruffi as a negative score

(like gliogenesis). We then calculated differential gene expression

on stressed cells vs. non-stressed cells, as identified by Gruffi. The

resulting 16 genes (log2fc > 1, P.adj < 0.01) were then analyzed in

STRINGdb as before (permalink: bwEKXY7CP0p8).

Neural and glial identity scores for cell-type specification
As previously (Bhaduri et al, 2020), we grouped all neural or pro-

genitor classes to define the respective signatures in fetal samples,

based on DGE analysis. After intersection with genes that are

detected in organoid datasets, the top 30 genes were used for EN, or

progenitor signatures (Dataset EV5). From these, per-cell subtype

scores were calculated using the AddModuleScore() function of Seu-

rat. XY-scatter density plots were drawn by plotting a progenitor

score and a neuronal score on the X and Y axis, respectively. The

cells were colored based on cell-type reflecting progenitors, neu-

ronal cells, and intermediate progenitors (IPCs), which would physi-

ologically be an intermediate state.

Pseudotime analysis of maturation
For analysis of the “dorsal lineage maturation,” datasets of pairwise

H- and L-medium organoids were integrated as outlined above. The

datasets were then transferred to monocle3 and UMAP was calcu-

lated with three dimensions. The trajectory graph was constructed

on the three-dimensional dataset from progenitors to mature

neurons. To compare the maturation of gene expression modules of

co-regulated genes were calculated with the find_gene_modules()

function. A module for upper layer and deep layer neurons was

selected for each mature dataset (Dataset EV5). To plot maturation

in the different datasets, each cell was plotted along pseudotime (x)

versus the expression of the respective score (y).

Data availability

The single-cell RNA-sequencing data have been uploaded to gene

expression omnibus (GEO) under reference number GSE205554

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE205554).

We used publicly available raw sequencing data from the following

publications (Cakir et al, 2019; Giandomenico et al, 2019; Kanton

et al, 2019; Polioudakis et al, 2019; Velasco et al, 2019; Bhaduri

et al, 2020; Qian et al, 2020; Sridhar et al, 2020; Eze et al, 2021;

Eichm€uller et al, 2022) and obtained wild-type patient data from the

authors of complying with ethical and data safety requirements

(Khan et al, 2020; Samarasinghe et al, 2021). The Gruffi package is

made available under github.com/jn-goe/gruffi. The code for analy-

sis will be accessible on Github: github.com/vertesy/Limited.Stress.

in.Brain.organoids. The following custom function libraries were

used for the analysis: Stringendo, ReadWriter, CodeAndRoll2, Mark-

downHelpers, ggExpress, Seurat.Utils, all freely available under

github.com/vertesy.

Expanded View for this article is available online.
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