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Abstract

The discovery and extension of G-protein-coupled receptor (GPCR) transactivation-
dependent signalling has enormously broadened the GPCR signalling paradigm. GPCRs 
can transactivate protein tyrosine kinase receptors (PTKRs) and serine/threonine kinase 
receptors (S/TKRs), notably the epidermal growth factor receptor (EGFR) and transforming 
growth factor-β type 1 receptor (TGFBR1), respectively. Initial comprehensive mechanistic 
studies suggest that these two transactivation pathways are distinct. Currently, there is a 
focus on GPCR inhibitors as drug targets, and they have proven to be efficacious in vascular 
diseases. With the broadening of GPCR transactivation signalling, it is therefore important 
from a therapeutic perspective to find a common transactivation pathway of EGFR and 
TGFBR1 that can be targeted to inhibit complex pathologies activated by the combined 
action of these receptors. Reactive oxygen species (ROS) are highly reactive molecules and 
they act as second messengers, thus modulating cellular signal transduction pathways. ROS 
are involved in different mechanisms of GPCR transactivation of EGFR. However, the role 
of ROS in GPCR transactivation of TGFBR1 has not yet been studied. In this review, we will 
discuss the involvement of ROS in GPCR transactivation-dependent signalling.

Introduction

G-protein-coupled receptors (GPCRs) are amongst the 
most numerous receptors in biology and they represent 
the largest single class of targets for therapeutic agents (1, 
2). GPCRs are responsible for fundamental physiological 
processes and they are also involved in numerous 
pathophysiological states (3). GPCR signalling was first 
described as what is now referred to as classic or linear cell 

signalling involving transmembrane receptors, G proteins, 
effector molecules and response elements (4, 5). Activation 
of the GPCR by ligands results in the replacement of bound 
GDP by GTP on the Gα subunit followed by dissociation 
of GTP-bound Gα from Gβγ subunit and each interact 
with a variety of effectors including adenylyl cyclase, ion 
channels and phospholipase C (PLC) leading to increases 
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of cyclic adenosine monophosphate (cAMP), calcium and 
protein kinase C (PKC) activity (6, 7, 8).

In addition to this classic/linear signalling, GPCRs can 
transactivate other cell-surface receptors notably protein 
tyrosine kinase receptors (PTKRs) including receptors 
for epidermal growth factor (EGF) (9), platelet-derived 
growth factor (PDGF) (10) and fibroblast growth factor 
(FGF) (11). Transactivation greatly expands the cellular 
responses that can be generated by GPCRs. The initial 
cellular signalling process defined as transactivation was 
identified as lysophosphatidic acid (LPA) acting via its 
GPCR leading to phosphorylation of the downstream ERK 
(and an increase in cellular phosphoERK); this response 
was blocked by the EGF receptor (EGFR) antagonist, 
AG1478, indicating that it arises from transactivation 
of the EGFR (9). Since the original observations, this 
paradigm has recently been expanded to include the 
transactivation of serine/threonine kinase receptors 
(S/TKR) notably transforming growth factor (TGF)-β 
type 1 receptor (TGFBR1). In human vascular smooth 
muscle cells (VSMCs), treatment with thrombin (12, 
13) or endothelin-1 (ET-1) (14, 15) stimulates carboxy 
terminal phosphorylation of the transcription factor 
Smad2. This response was blocked by the TGFBR1 
antagonist, SB431542, indicating that the response arises 
from GPCR transactivation of TGFBR1 (13, 14, 16, 17). 
GPCR transactivation of S/TKR or PTKR modulates gene 
transcription, cell migration and proliferation, secretion 
of hormones, cytokines and matrix molecules and 
changes in cellular phenotype (13, 18, 19).

Reactive oxygen species (ROS) are highly chemically 
reactive species arising from multiple metabolic and 
enzymatic sources inside all cells (20). ROS play a role in 
S/TKR- and PTKR-mediated signalling pathways (21, 22, 
23) and in the GPCR transactivation of growth factor 
receptors (24, 25). Therefore, understanding the role of 
ROS in GPCR transactivation signalling of both S/TKR 
and PTKR may reveal a common therapeutic target for all 
GPCR transactivation-dependent signalling.

ROS are known to be involved in GPCR transactivation 
of PTKR (24, 25, 26) but much less is known of the role 
of ROS in GPCR transactivation of S/TKR. The current 
knowledge of the mechanisms of GPCR transactivation 
of PTKR and S/TKR reveal that these occur by completely 
different biochemical mechanisms and signalling 
pathways (13, 16). For example, matrix metalloproteinases 
(MMPs) are involved in GPCR transactivation of PTKR, 
but they are not involved in transactivation of S/TKR 
which is a process reliant upon Rho/ROCK activation (13, 
16). These differences increase the opportunities for ROS 

as a common intermediate for all GPCR transactivation-
dependent signalling and these issues are addressed in 
this review.

ROS – source and role in cell biology

ROS serve as second messengers to modulate signal 
transduction and gene expression (27). ROS can be 
produced by a variety of systems, including nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase (Nox), 
xanthine oxidase, uncoupled endothelial nitric oxide 
(eNOS) and assorted enzymes in the mitochondrial 
respiratory chain (28, 29, 30). Common examples of 
ROS include superoxide anion (·O2

−), hydrogen peroxide 
(H2O2), hydroxyl radical (·OH), nitric oxide (·NO) and 
peroxynitrite (OONO−) (31, 32).

In mammals, the Nox family is composed of seven 
isoforms including Nox1-5 and dual oxidase (Duox) 1 
and 2 (33). The main function of Nox is to produce ROS 
(34). Of the seven Nox isoforms only 4 (Nox1, Nox2, 
Nox4 and Nox5) catalytic homologues are expressed in 
VSMCs (35, 36). Nox1 and Nox4 are the main sources of 
ROS in VSMCs (37, 38). Nox consists of several subunits 
(membrane-bound and cytosolic) and their enzymatic 
activity requires recruitment of cytosolic subunits to the 
membrane-bound subunits forming a functional enzyme 
complex which utilises NADPH as an electron donor 
leading to the formation of superoxide from molecular 
oxygen (39). In VSMCs, the activity of Nox1 requires the 
binding of the activator subunit (Noxo1) and the organiser 
p47phox to the membrane-bound p22phox (39). Nox2 
can be activated by association of the cytosolic subunits 
(p47phox, p67phox and a small GTPase, Rac-1) with the 
membrane-bound components (40). Nox4 activity can 
be regulated by binding of poldip2 with the p22phox 
subunit (41). Nox5 is activated by intracellular calcium 
binding (35, 42). Overexpression or increased expression 
of one subunit is usually accompanied by an increase in 
expression of others, resulting in an overall increase in 
Nox-mediated ROS production (31). Unlike Nox4 that 
mainly generates hydrogen peroxide, Nox1 and Nox2 
generate superoxide (37).

The superoxide anion is produced by a one electron 
reduction of molecular oxygen via Nox. This unpaired 
electron renders superoxide anions biochemically unstable 
and short-lived (43). Therefore, superoxide rapidly 
converts to hydrogen peroxide either spontaneously 
or catalysed by the cytoplasmic superoxide dismutase 
(SOD) (44). However, the excess in the level of superoxide 
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anion reacts with nitric oxide leading to peroxynitrite 
formation (45). Hydrogen peroxide, the main biological 
ROS (46) is produced by dismutation of superoxide and 
xanthine oxidase enzyme (47). ROS research has focused 
on hydrogen peroxide because it is highly reactive, more 
stable than superoxide anion and can easily diffuse across 
cell membranes (48). In the presence of ferrous ions 
(Fe2+), hydrogen peroxide can be converted to hydroxyl 
radical (49). A second possible fate of hydrogen peroxide 
occurs when myeloperoxidase (MPO) enzyme converts 
hydrogen peroxide to hypochlorous acid. As a protective 
mechanism, cells throughout the body use catalase to 
convert hydrogen peroxide to water (50).

ROS at high concentrations can induce damage to 
proteins, lipids and nucleic acids (51). However, at low 
levels, ROS are known to play a critical role in cellular 
signalling such as regulation of ion channels, protein 
phosphorylation and transcription factors (50). ROS 
can be homeostatically maintained at low physiological 
levels by antioxidant compounds which include enzymes 
such as SOD, glutathione peroxidase (GPx), catalase and 
peroxiredoxin and non-enzymatic compounds such as 
glutathione (GSH) and ascorbic acid (52). The antioxidant 
compounds are responsible for attenuating the harmful 
effects of ROS overproduction and ameliorating oxidative 
stress (53). However, preventing ROS overproduction has 
been proposed as a superior approach in the treatment of 
vascular diseases (34).

The role of ROS and Nox in the classic 
GPCR signalling

GPCR agonists, angiotensin II (AngII) (54), LPA (55), 
ET-1 (56) and thrombin (57) all induce ROS generation 
in VSMCs. As a secondary messenger, ROS can directly 
elicit various downstream signalling cascades, including 
the Ras/mitogen-activated protein kinase (MAPK) and 
phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) 
pathways thus regulating multiple cellular processes 
such as differentiation, proliferation, migration and cell 
survival (58). In rat neonatal cardiomyocytes, hydrogen 
peroxide directly activates Gαi and Gαo (without GPCR 
involvement) causing the liberation of βγ-subunit that 
leads to PI3K activation, which in turn stimulates Akt 
and ERK (59). The in vitro study of cardiomyocytes from 
neonatal rats showed that ROS activates both ERK and 
p38 MAPK (60). Hydrogen peroxide dose dependently 
stimulates the phosphorylation of ERK via Src family 
tyrosine kinases and the Ras-dependent pathway. 
Inhibition of MAPK phosphorylation plays a central 

role in preventing the apoptosis of these cells following 
oxidative stress (60).

Long-term treatment with vasoactive hormone AngII 
simulates Nox activity which leads to superoxide anion 
production and VSMC hypertrophy by AngII, which was 
attenuated by diphenyleneiodonium (DPI) (54). AngII 
stimulates ROS generation in human VSMCs via the 
intracellular phospholipase D (PLD) signalling pathway. 
Partial inhibition of AngII-mediated hydrogen peroxide 
production by two selective PKC inhibitors (calphostin C 
and chelerythrine chloride) suggests that other pathways 
are involved in AngII-mediated ROS production (61). 
In addition, PLC-β-mediated PKC activation has been 
implicated in Phorbol 12,13-dibutyrate (PDBu)-induced 
Nox-dependent ROS production to promote VSMC 
contraction (62). Selective PKC inhibitors GF109203X, 
staurosporine, chelerythrine and calphostin C inhibit 
PDBu-mediated ROS production to the same degree as 
DPI in bovine coronary arteries (62). Treatment with 
the PKC inhibitors and DPI inhibited PDBu induced 
coronary artery contractions. Other possible explanations 
of ROS generation involve the AngII activation of PLC, 
PLD and phospholipase A2 (PLA2) (63), amongst them, 
PLA2 releases arachidonic acid which in turn activates 
production of ROS in VSMCs (64). PLC activated by PIP2 
triggers the IP3-Ca+2 pathway, and DAG activates PKC, 
both participating in the activation of Nox complex 
(54). PLD also causes production of PA and increases 
DAG production, which also activates PKC and Nox (61). 
Alternatively, PIP3 produced by PKC-activating RhoGEF, 
activates Rac-1 and Nox1-generated ROS (65).

Thrombin induces c-Src activation through the GPCR, 
protease-activated receptor-1 (PAR-1) to induce interleukin 
8 expression in epithelial cells (66). The activation of c-Src 
phosphorylates p47phox, allowing the glycoprotein to 
change conformation from its auto-inhibitory resting 
state and translocate to the membrane. Once at the 
membrane, p47phox can interact with membrane-bound 
and cytosolic subunits of Nox and organise the assembly 
of the active enzyme (67, 68, 69). The fundamental role 
of ROS in classic GPCR signalling provides encouraging 
evidence to study the role of ROS in GPCR transactivation 
of other cell-surface receptors notably PTKRs and S/TKRs.

The role of Nox/ROS in GPCR transactivation 
of EGFR

Activation of EGFR triggers various signalling cascades 
which regulates/multiple cell functions such as cell 
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growth and development, proliferation, cytoskeleton 
reorganisation and motility (70, 71). EGF induces 
ROS (hydrogen peroxide) generation in A431 human 
epidermoid carcinoma cells (72). A transient increase 
of intracellular ROS by EGF was inhibited when EGFR 
phosphorylation was inhibited by catalase (72). In rat 
VSMCs, PI3K produces PIP3 which converts Rac-1 to its 
GTP-bound active form. Activated Rac-1 translocates 
and binds to the cytosolic Nox subunit p47phox that is 
attached to membrane-anchored subunits, resulting in 
Nox activation (73). EGF stimulates ROS production via 
PI3K/Src-dependent pathways to promote invasion in 
pancreatic cancer cells (21).

In human epithelial cells, prevention of EGF-induced 
ROS formation by N-acetyl-L-cysteine (NAC) inhibits the 
phosphorylation of Akt, ERK1/2 and c-Jun N-terminal 
kinase (JNK) (74). Consistent with these results, in renal 
epithelial cells, EGFR-mediated ROS production leads to 
phosphorylation of ERK1/2 (75). However, in primary 
human fibroblasts, both ROS and ERK1/2 regulate each 
other’s activity in a vicious cycle (76). The mechanism 
by which ROS regulates MAPK remains unclear; however, 
several studies (77, 78, 79) propose that ROS-mediated 
MAPK activation occurs indirectly via inhibition of MAPK 
phosphatase via reversible oxidation of catalytic-site 
cysteine to produce sulfenic acid.

The ligand-dependent triple membrane passing 
HB-EGF-dependent signalling mechanism represents one 
of the best known mechanisms of GPCR transactivation 
of PTKR. This process involves stimulation of GPCR and 
activation of a MMP or A Disintegrin and A Metalloprotease 
(ADAM) resulting in cleavage and release of a membrane-
anchored pro-heparin-binding-EGF (pro-HB-EGF). 
Subsequently, the free HB-EGF binds and activates EGFR 
in an autocrine and paracrine manner (80, 81). We have 

previously observed in human VSMCs, thrombin via its 
receptor PAR-1 stimulated the phosphorylation of ERK 
(16), and EGFR (13) was inhibited by broad-spectrum 
MMP inhibitor, GM6001, thus demonstrating the 
involvement of the triple membrane passing mechanism 
in PAR-1 transactivation of PTKR.

GPCR transactivation of EGFR can also occur via 
Nox/ROS-dependent mechanisms (Fig.  1) (26). The 
involvement of ROS in GPCR transactivation of EGFR 
has been extensively studied using the GPCR agonists 
such as AngII, LPA and thrombin (82, 83, 84, 85). 
AngII-induced phosphorylation of EGFR and ERK1/2 
in cardiac fibroblasts was attenuated by ROS scavenger 
NAC in a dose-dependent manner (25). AngII stimulated 
hypertrophy of VSMCs is mediated by Nox-derived ROS 
production (86). Pharmacological inhibitors, to PLC, 
PI3K, c-Src, Rac, were involved in AngII-induced Nox 
activation. This was followed with the finding that c-Src 
is required for the assembly of Nox and PKC activated by 
PLC is required for phosphorylation of a serine residue 
in p47phox (87) and is responsible for the first phase of 
ROS generation (86). As the upstream mediator of ROS 
generation, these proteins are deeply involved in ROS-
mediated EGFR transactivation, especially c-Src (88) which 
phosphorylates EGFR on Y845 site (89). AngII induced 
EGFR Tyr1068 and Tyr1173 phosphorylation in a c-Src- 
and Ca+2-dependent manner in VSMCs, overexpression 
of kinase-inactive c-Src or chelation of intracellular Ca+2-
attenuated EGFR transactivation (90).

In cardiomyocytes, silencing of Nox4 inhibited 
ADAM17 expression in AngII transactivation of EGFR (19). 
AngII stimulates an increase in ADAM17 expression which 
induces the release of mature HB-EGF to activate EGFR 
and stimulate cardiac hypertrophy. Furthermore, AngII 
increased intracellular levels of ROS in rat VSMCs (91) 

Figure 1
Schematic representation of known and 
speculated roles of NADPH oxidase (Nox) and ROS 
in G-protein-coupled receptor (GPCR) 
transactivation of epidermal growth factor 
receptor (EGFR). GPCR transactivation of EGFR 
occurs via an increase in intracellular reactive 
oxygen species (ROS) which in turn (1) activate 
matrix metalloproteinase (MMP) that cleaves 
heparin-binding EGF-like growth factor (pro-HB-
EGF) and release the EGF ligand leading to EGFR 
activation and subsequently phosphorylation of 
downstream intermediate extracellular signal-
regulated kinase1/2 (ERK1/2). GPCR stimulation of 
ROS activates the EGFR (2) via Src-dependent 
pathway and (3) through inhibition of protein 
tyrosine phosphatases (PTPs).
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via Nox1 (38). More recently, in rat aortic VSMCs, AngII 
through angiotensin type 1 receptor (AT1R) activated 
ADP-ribosylation factor 6 (ARF6), a small GTPase, followed 
by activation of Rac1 leading to the upregulation of Nox1 
and its product ROS ultimately resulting in enhanced cell 
proliferation. Using a pharmacological and molecular 
approach, AngII can signal via AT1R/ARF6/Rac1/
Nox1/ROS/EGFR axis (92). AngII signals via β-arrestin 
to regulate ARF6 activation and subsequent receptor 
endocytosis and ultimate cell migration of rat aortic 
VSMCs (93). These observations suggest the involvement 
of β-arrestin and ARF6 in AT1R-initiated ROS-dependent 
EGFR transactivation. In addition, caveolin-1 (Cav1) is 
essential for AT1R-mediated Rac1 activation, which is 
associated with AngII-mediated ROS-dependent EGFR 
transactivation and as a consequence VSMC hypertrophy 
(94). The data reviewed above indicate a role of ROS in 
GPCR transactivation of the EGFR (Fig. 1); however, the 
precise mechanism by which ROS exerts its effects has not 
been fully elucidated.

The role of Nox/ROS in GPCR transactivation 
of TGFBR1

TGF-β is a pleiotropic growth factor and serves as a key 
molecule in the regulation of a broad diversity of cellular 
functions including cell proliferation, differentiation, 
migration and extracellular matrix synthesis (95). TGF-β 
family ligands exert their signal transduction by binding 
to cell-surface receptors, with predominantly intrinsic 
serine/threonine kinase activity. TGF-β via its cognate 
receptor transduces signals via Smad-dependent and 
Smad-independent pathways (96, 97, 98, 99). Here we 
discuss how ROS interferes with Smad-dependent and 
-independent signalling pathways to regulate downstream 
gene expression. Many studies have documented that 
TGF-β generates ROS production in a wide variety of cell 
types including human airway smooth muscle cells (100), 
human lung fibroblasts (101), rat hepatocytes (102), 
pancreatic cancer cells (103) and VSMCs (22).

 In our recent work, we have shown that 
although canonical TGF-β-mediated Smad2 carboxy 
terminal phosphorylation is ROS independent, the 
phosphorylation of the Smad2 linker region by TGF-
β occurrs via ROS-dependent pathway in human 
VSMCs (22). Pharmacological inhibition of ROS/Nox 
with NAC, DPI and apocynin has no effect on carboxy 
terminal phosphorylation of Smad2 (data not published). 
However, DPI and apocynin prevent TGF-β-induced 

phosphorylation of Smad2 linker region (22). Transfection 
of human pulmonary artery SMCs with dominant negative 
Smad2 and Smad3 blocked Nox4 gene expression and 
ROS production caused by TGF-β, suggesting that TGF-β 
triggers Nox4-derived ROS generation via the Smad2/3 
pathway (104). Attenuation of ROS formation by Nox4 
siRNA inhibits TGF-β-mediated Smad3 phosphorylation 
in cardiac fibroblasts, indicating that Nox4 is upstream of 
TGF-β/Smad3 pathway (105).

MAPKs are downstream components of TGF-β 
signalling (106, 107). In human VSMCs, TGF-β mediated 
ROS production leads to the activation of MAPK, ERK and 
p38 (22). Antioxidants, NAC and catalase, suppress ROS 
production by TGF-β and inhibit the phosphorylation of 
ERK1/2 and p38 in rat renal epithelial cells, resulting in 
the prevention of TGF-β-induced epithelial-mesenchymal 
transition (23). TGF-β generated ROS is responsible for 
prevention of HSC-T6 cell proliferation by reducing 
MAPK stimulation. Dihydrolipoic acid, a potent 
antioxidant, inhibits TGF-β-stimulated ERK1/2 and 
JNK phosphorylation (108). ROS can also oxidise and 
in turn inactivate specific MAPK phosphatases (MAP-1 
and MAP-3) causing indirect activation of MAPK (78). 
Activation of pulmonary artery smooth muscle cells 
with TGF-β upregulates Nox4 gene expression and ROS 
production. The PI3K inhibitor, LY294402 supressed the 
gene expression of Nox4 indicating the PI3K/Akt pathway 
is essential in TGF-β-mediated Nox4-dependent cell 
proliferation (109).

The phenomenon of GPCR transactivation 
signalling was expanded approximately a decade ago to 
include activation of S/TKR notably the TGFBR1. GPCR 
transactivation of the TGFBR1 occurs via completely 
different mechanisms as compared to EGFR transactivation. 
GPCR transactivation of the TGFBR1 involves cytoskeletal 
rearrangement which activates ROCK signalling leading to 
the activation of integrin dependent signalling. Activated 
integrin binds to the large latent TGF-β complex (LLC) 
causing conformational changes in LLC, which exposes 
the TGF-β ligand (16) (Fig. 2). The role of ROS in GPCR 
transactivation of the TGFBR1 has not yet been explored; 
however, ROS regulates ROCK and integrins.

Recently, we have found that the endogenous 
pharmacological stimulation of ROS in human VSMCs 
activates ROCK, and ROCK inhibitor, Y27632, inhibits 
ROS-dependent phosphorylation of Smad2 carboxy 
terminal (data not published). In rat SMC arteries, ET-1 
increased calcium sensitisation via ROS-dependent Rho/
ROCK signalling pathway. (110). However, in human 
oesophageal adenocarcinoma cells, ROCK2 is upstream 
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of Nox5-derived ROS (111). These findings suggest that 
ROCK signalling is a redox-sensitive pathway and GPCR 
generation of ROS could play a major role in GPCR 
transactivation of TGFBR1 via ROCK signalling.

ROS is also known to activate different integrins 
including integrin α2, integrin α6 and integrin β3, where 
hydrogen peroxide upregulates the gene expression 
of integrins in epithelial cells (112). ROS are involved 
in integrin activation and integrins are involved in 
transactivation of TGFBR1; however, the role of ROS 
in GPCR transactivation of TGFBR1 has not been 
investigated. Hence, although ROS involvement in GPCR-
mediated transactivation of PTKRs such as EGFR is well 
known, the role of ROS in TGFBR1 transactivation by 
GPCR will be a completely novel area of investigation.

Conclusion

ROS are involved in physiological and pathophysiological 
actions of VSMCs, including proliferation, secretion of 
inflammatory cytokines, extracellular matrix production, 
contraction and differentiation (65). Oxidative stress is 
the one of the major contributors to the pathophysiology 
of many diseases, including cardiovascular diseases 
(CVDs) such as atherosclerosis (113). Atherosclerosis is 
a chronic inflammatory disorder characterised by lipids 
and fibrous element accumulation over many years, in 
medium to large blood vessels (114). Atherosclerosis 
represents the major underlying aetiology of most CVDs 
including coronary artery disease, stroke, cerebrovascular 
disease and peripheral artery disease (Lusis et  al. 2004). 
There are three major mechanisms by which ROS are 
proposed to induce CVDs, oxidation of low-density 
lipoprotein (LDL), inhibition of nitric oxide vasodilation 
and intracellular signalling activation via ion channels, 
protein phosphorylation and transcription factors (27, 
115). VSMCs are involved in all stages of atherosclerotic 
plaque development. With the early development 

of atherosclerosis, VSMCs lose contractility increase 
proliferation and increase proteoglycan expression (116, 
117) and in advanced stages of disease dedifferentiated 
VSMCs proliferate and migrate contributing to the fibrous 
cap and stabilising the plaque.

Several clinical studies of antioxidants have been 
unsuccessful in improving cardiovascular events in 
moderate-to-high-risk patients (118, 119). For instance, 
the Heart Outcomes Prevention Evaluation (HOPE) study 
demonstrated that up to 6 years of daily intake of vitamin 
E had no beneficial effects on cardiovascular outcomes 
in high-risk patients (120). One of potential reasons of 
antioxidant limitations is the difficulties of targeting 
precise intracellular signalling pathways which leading to 
the oxidative stress (121). Thus, there is a need to further 
investigate which signalling pathways disrupted by high 
levels of ROS leading to the development of atherosclerosis 
might represent preferred targets for preventing the 
pathophysiological actions of ROS.

The GPCR signalling paradigm has been expanded 
to include GPCR transactivation of PTKRs and S/TKRs 
notably EGFR and TGFBR1, respectively. While GPCR 
transactivation of EGFR requires MMP stimulation, 
the activation of TGFBR1 occurs through cytoskeletal 
rearrangement which activates ROCK signalling and cell-
surface integrins (13, 16, 122). We previously found that 
the GPCR agonist thrombin transactivates the EGFR and 
TGFBR1 to stimulate the expression of enzymes involved 
in the hyperelongation of glycosaminoglycan chains on 
the proteoglycan, biglycan (123, 124) which is associated 
with increased lipid retention in the vessel wall initiating 
atherosclerosis (125, 126). We have described that 
GPCR transactivation of either receptor is occurring via 
completely different mechanisms and the identification 
of a common mechanism can attenuate all GPCR-
mediated GAG chain elongation (127, 128). However, 
established data for GPCR transactivation of PTKRs and 
newly emerging data for mechanisms of S/TKRs indicates 
that ROS may be involved in both transactivation 

Figure 2
Schematic representation of the mechanism of 
G-protein-coupled receptor (GPCR) transactivation 
of transforming growth factor-β type 1 receptor 
(TGFBR1). GPCR transactivation of TGFBR1 occurs 
via cytoskeletal rearrangement which activates 
Rho-associated protein kinase (RhoA/ROCK) 
signalling and cell-surface integrin. Activated 
integrin binds to and activates the large latent 
TGF-β complex (LLC), leading to the subsequent 
phosphorylation of the downstream intermediate 
Smad2 in the carboxy terminal.
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mechanisms and as such ROS would represent the first 
common mechanism and hence the first potential target 
to prevent all transactivation signalling.

The relevance of this work relates to the role of ROS in 
accelerating atherosclerosis and promoting CVDs and the 
potential of targeting ROS-related mechanisms to prevent 
CVD. Clinical trials of a broad range of antioxidants have 
been unsuccessful in demonstrating a benefit occurring 
as a reduction in CVD events in the treated cohort. This 
has been the topic of considerable controversy for many 
years with multiple credible and substantive proposals 
offered to provide explanations for the failed efficacy of 
antioxidant strategies (129). These explanations relate to 
the chemistry and pharmacokinetics of antioxidants and 
generally the complexity of the regulation of the redox 
state of cell and its impact on cellular functioning.

We are proposing that a deeper understanding of the 
impact of redox state and also the role of ROS in cellular 
signalling of the processes associated with the initiation 
and progression of atherosclerosis is required such that a 
more specific target may be identified. ROS and specifically 
their downstream signalling pathways may be identified 
as a superior therapeutic target compared to the somewhat 
blunt use of high-dose antioxidants. This concept is 
presented in the context of GPCR transactivation of cell-
surface kinase receptors as a recently expanded paradigm 
of GPCR signalling whose therapeutic potential is not yet 
to be fully understood.
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