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ABSTRACT: Humans prefer visual representations for the
analysis of large databases. In this work, we suggest a method
for the visualization of the chemical reaction space. Our technique
uses the t-SNE approach that is parameterized using a deep neural
network (parametric t-SNE). We demonstrated that the parametric
t-SNE combined with reaction difference fingerprints could
provide a tool for the projection of chemical reactions on a low-
dimensional manifold for easy exploration of reaction space. We
showed that the global reaction landscape projected on a 2D plane
corresponds well with the already known reaction types. The application of a pretrained parametric t-SNE model to new reactions
allows chemists to study these reactions in a global reaction space. We validated the feasibility of this approach for two commercial
drugs, darunavir and montelukast. We believe that our method can help to explore reaction space and will inspire chemists to find
new reactions and synthetic ways.

1. INTRODUCTION

Chemical space is the fundamental concept of organic
chemistry. One can regard it as a set of all possible molecules
that can exist and satisfy the predefined conditions. If someone
regards only small molecules (below 500 Da), there are more
than 1060 compounds, and that is an enormous number.1

Chemical reactions are tools that make it possible to traverse
through the chemical space to reach new chemical compounds.
There are more than 300 name reactions in organic chemistry
that have a precise definition,2 for example, Suzuki coupling,3

Grignard reaction, and so forth. At the same time, there are
about 108 described chemical reactions according to the largest
chemical reaction database CASREACT.4 This known reaction
set is too large to analyze it using humans’ expertise solely.
Researchers need new computational approaches to support
the exploration of the chemical reaction space.
However, the space of chemical reactions appears to have

quite a complicated structure. It is hard to attribute many
reactions to a certain type as they may be carried out with
surprising agents or result in unexpected products.5−7 The
current landscape of drugs is biased toward specific molecular
scaffolds and overpopulated with certain shapes that are
reachable with reactions chemists are used to (e.g., amide bond
formation and SNAr reactions).

8 The detailed exploration can
mitigate these shortcomings and boost drug discovery. New
methods for the visualization of reaction space can provide
useful insights to chemists and lead to a better understanding
of nature. We believe that, in the “big-data” era, these methods
should have the ability to extract information directly from
data.

Among various machine learning techniques, the dimension-
ality reduction of multidimensional space for visualization
purposes is particularly popular in cheminformatics. Medicinal
chemists use this technique to better understand the chemical
data.9 The dimensionality reduction methods can be either
linear or non-linear. Linear methods assume that the
multidimensional data points are located near a linear manifold
of lower dimensionality, whereas non-linear methods allow
non-linear manifolds. Linear methods include principal
component analysis (PCA),10 canonical correlations analysis
(CCA),11 multidimensional scaling (MDS),12 and many
others.13 PCA is the most common linear approach; it aims
to find the directions with the highest variation in the original
multidimensional space. This method is fast and deterministic,
but its performance is limited because of its linear nature. Non-
linear methods include t-distributed stochastic neighbor
embedding (t-SNE),14 self-organizing maps (SOMs),15 gen-
erative topographic mapping (GTM),16 and others.17 Chen
and Gasteiger18 successfully used SOMs to obtain a map of
chemical reaction space with distinct regions corresponding to
reactions of aliphatic substitution, double C−C bond acylation,
and arene acylation. The GTM method has been successfully
applied in drug design.19 It was also recently used to visualize
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chemical reactions embedded into the latent space of a
generative variational autoencoder.20 The t-SNE method was
used to explore the structure of bioactive organic molecules
data sets.21 Probst and Reymond proposed a fresh view on
chemical space mapping to non-Euclidean domains: tree map
(TMAP).22 This method is based on the visualization of
minimum spanning trees. In the following research,23

Schwaller et al. proposed neural-based vector representations
of chemical reactions and used these vectors for TMAP
visualization of the reaction space in a fully data-driven way.
In this paper, we describe the application of the parametric t-

SNE method to explore chemical reaction space. First, we
describe several parametric t-SNE models trained on chemical
reactions extracted from US patents. Then, we evaluate the
performance of visualizations using a reference data set with
predefined chemical reaction classes. Also, we explore the
reaction space to reveal the regions comprising reactions
united by the same chemical meaning, such as common
reagents or the type of reaction. Finally, we use our approach
to overview a set of reactions leading to the synthesis of some
commercial drugs. We believe that our technique can provide a
sensible overview of the chemical reaction space through
similar types gathering in distinct clusters. This visualization
technique can provide some chemical insights or aid in
synthesis planning to speed up chemists’ work.

2. RESULTS AND DISCUSSION
Our goal was to create a method for chemists to navigate in
reaction space. A good visualization algorithm should group
similar reactions in well-shaped clusters, and these clusters
should at least be chemically reasonable.
First, we experimented with models trained on reaction

difference fingerprints and BERT FP. The learning curves of
these models are shown in Figure S1 in Supporting
Information. As these curves indicate, overfitting does not
occur and early stopping is not needed.
The accuracy scores of class separation with a LightGBM

classifier are given in Table 1. First, we compare the

performance of difference fingerprints from RDKit and
BERT fingerprints. Our experiments revealed that the
influence of the type of difference fingerprints on the qualities
of projections is negligible. However, topological torsion
descriptors demonstrated marginally better performance of
the reaction class discrimination (Table 1).
One can also see that the class separation accuracy decreases

with higher perplexity values. However, multi-scale models
outperform models with particular perplexities as they manage

to “take the best” from all the projections with different values
of this hyperparameter.
Figure 1 demonstrates the map of data set B produced with

multi-scale t-SNE model trained on difference topological
torsion reaction fingerprints. This model has subjectively the
best visual quality and the highest accuracy score of class
separation (Table 1).
Each point in the projection represents a reaction. The map

in Figure 1 shows a number of clusters, many of which are
well-shaped, separate, and uniformly colored, albeit there are
regions without a definite structure. One can see that there are
some compounds or fragments which are present in every
reaction within a cluster. These “core” structures in a reaction
are agents or reactants’ substructures, and they have a heavy
influence on the resulting coordinates. This can be explained
regarding the formula for difference fingerprints. The
subtraction of product fingerprints from reagent fingerprints
leads to a vector representing the vectored form of fragments’
rearrangements. One can think of it as the quantified essence
of the chemical reaction itself. Larger clusters unite reactions
with common reagents, for example, acetic acid, and small
dense clusters correspond to reactions involving infrequent
reagents (Figure 1). Sometimes, the set of “core” agents in
reactions in a cluster defines a specific recognizable reaction
type (Figure 2); however, it is not always the case. The
projection (Figure 2) contains clusters for Suzuki coupling,
Stille reaction, Mitsunobu reaction, Wittig reaction, and so
forth.
The noise in the reaction data sets affects the resulting

projections. Commonly, it leads to the fission of large clusters
into smaller ones. In this case, clusters share the same general
reaction type but comprise reactions written with different
amounts of detail. An illustrative example is shown in Figure 2
where one can see the cluster for Suzuki coupling that splits
into two smaller clusters. One of them comprises less-detailed
reactions, where only a reactant and an organoboron molecule
are present. There are reactions with full details in another
cluster: a base or a catalyst is denoted.
The scores from Table 1 suggest that BERT FP performs a

bit worse compared to difference fingerprints. The map of
chemical reaction space obtained with BERT FP is shown in
Figure S2 in the Supporting Information. One can see well-
shaped clusters on projections built on BERT FP. However,
visually, these clusters are broader and have lower resolution.
This fact limits the ability to see details. One should note that
BERT FP demonstrated good performance in similar TMAP
visualization,23 and the reason why the performance of BERT
FP declines in parametric t-SNE visualization requires further
study.
One can use any reasonable distance function for the

calculation of distances in high-dimensional space. The Jaccard
(or Tanimoto) coefficient is broadly used in chemoinformatics
to calculate the similarity between molecules. However, our
experiments with Jaccard similarity revealed that this metric
provides lower performance and results in less-structured
clusters (see Figure S4 in Supporting Information). Moreover,
the Jaccard index for non-binary vectors has greater computa-
tional complexity than Euclidean distance, limiting the batch
size. In contrast, the usage of large batches commonly benefits
the parametric t-SNE algorithm. This is the reason why we are
using only Euclidean distance in all experiments described in
this paper.

Table 1. Accuracy Scores (%) for Classification of Reactions
with an External LightGBM Classifier on Top of Projections
Based on Difference Fingerprints From the RDKit and
BERT FPa

fingerprint and descriptors types

perplexity MorganFP AtomPairFP Topological Torsion BERT FP

10 84.0 83.1 86.4 78.1
30 83.5 82.8 85.8 77.2
100 82.9 81.3 85.1 76.0
500 79.2 75.5 81.4 71.8
multi-scale 84.3 83.1 87.0 77.5

aA value in bold is the best score. The accuracy scores correspond to
models trained for 80 epochs.
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We found that the visualization quality heavily depends on
the reaction’s representation. For the majority of reactions, the
same reagents can be written either as agents or reactants.
Because we did not use agents’ fingerprints for training (wa =
0), we had to standardize the representation and define all
agents as reactants. Our observations showed that stand-
ardization improves the visual quality: large unstructured
clusters become clearer, and some small clusters merge on a
reasonable basis.
All the results discussed so far were obtained with a neural

network of four layers. We also experimented with different
number of layers. Table 2 shows the accuracy scores of class
separation for multi-scale models trained for 80 epochs on
BERT FP and reaction difference fingerprints based on
topological torsion descriptors. In the latter case, four layers
show the best performance. In the former case, the model with
five layers is the best by only a little margin.
To demonstrate our method’s applicability to the medicinal

chemistry challenges, we studied and visualized the final stages
of the synthesis of two known drugs, darunavir and
montelukast. Darunavir is a protease inhibitor that is used
for the effective treatment of HIV-1 infection.24 Montelukast is
a leukotriene receptor antagonist used as part of an asthma
therapy regimen and to treat seasonal allergic rhinitis.25 The
structures of darunavir and montelukast are shown in Figure 3.
The information about last synthetic stages was taken from the
Reaxys26 database.
In Figure 4, purple and gray circles represent the reactions

corresponding to the final stages of the synthesis of darunavir
and montelukast. One can regard it as a “global landscape of
chemical reactions,” on which the synthetic pathways can be
represented in an illustrative way. The reaction points for both
drugs are present in various parts of the reaction space.
Exploring this map, one can analyze the typical kinds of

chemical reactions used for the synthesis of a compound.
However, more importantly, one can inspect the ways that
have been unexplored yet. For example, after studying the map
in Figure 4, one can discuss new possible synthetic ways to
darunavir and montelukast, including Wittig reaction,
Mitsunobu reaction, and amide formation with HOBt and a
carbodiimide. We believe that our method could help a
chemist to gain insights into some unexplored synthetic
pathways of certain compounds.
The robustness of machine learning models is a concerning

point in chemoinformatics.27 We performed experiments with
cross-validation to evaluate the stability of the method with
respect to training data. We trained one of our models on six
folds of the data set A. The model was based on difference
topological torsion descriptors with perplexity set to 10. We
trained the networks for 10 epochs because it was enough for
the stable projection. Each fold for training comprised five-
sixth of the data set A, and the holdout parts did not overlap
between folds. The test subsets consisted of about 160,000
reactions. The scores for class separation for all six models are
listed in Table 3.
All six models demonstrate quite similar performance with a

score of 84%. A visual comparison of the projections showed
that although the overall shape of the picture is subjected to
fluctuations, the chemical sense of clusters is preserved
between folds. We can conclude that a parametric t-SNE
model based on difference topological torsion fingerprints for a
reaction is robust with respect to the changes in the training
data imposed by cross-validation. We think that this would be
true for models based on other reaction fingerprints.
The parametric t-SNE method allows one to explore

synthetic ways leading to the compounds of interest in an
illustrative manner. However, as we mentioned before, the
visual quality of the projections depends on the quality of the

Figure 1. Projection of the data set B produced with a multi-scale parametric t-SNE model trained on topological torsion difference fingerprints.
Colors reflect classes of reactions. Typical representative compounds are emphasized for some of the clusters. The clusters unite reactions that
share typical molecules or fragments representative for that cluster. The points are quite densely located in the center of the map; therefore, for a
closer study, a zoom-in is required, as in Figure 2.
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training data. We believe that the primary way for improving
our models is the standardization and curation of raw reaction
data. The alternative option is the usage of BERT fingerprints,

which is described in23 because they do not require a
predefined split of reactants, reagents, and agents.
We also conducted experiments to understand the

applicability of structural fingerprints for the visualization of
the reaction space. The experiments revealed that structural
fingerprints are not suitable for producing t-SNE maps with
well-separated clusters. In Figure S3 (in Supporting Informa-
tion), a parametric t-SNE projection is shown for a model
trained on structural Morgan fingerprints with perplexity 30 for
80 epochs. One can see that the reactions are totally mixed up.
The separability of reaction classes measured with the same
LightGBM classifier as in Table 1 is 52.3%. All reactions are
mixed without a definite structure. Structural fingerprints are
essentially a cumulative fingerprint of all the molecular
structures involved in a reaction. This does not reflect in any
way the difference between reagents and products.

Figure 2. (a) Projection of data set B produced with a multi-scale parametric t-SNE model trained on topological torsion difference fingerprints.
Colors reflect classes of reactions. Some clusters corresponding to reactions of particular recognizable type are highlighted by rounded rectangles.
(b) Zoom-in of a projection’s region is highlighted by a black rectangle. Some clusters corresponding to concrete reaction schemes are highlighted
by black circles.

Table 2. Accuracy Scores (%) for Classification of Reactions
with an External LightGBM Classifier on Top of Projections
Based on BERT FP and Reaction Difference Fingerprints
Based on Topological Torsion Descriptorsa

reactions representation

number of layers Topological Torsion difference BERT FP

2 83.71 72.15
3 85.59 75.35
4 87.03 77.47
5 87.01 78.28

aA value in bold is the best score. The accuracy scores correspond to
multi-scale models trained for 80 epochs.
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3. CONCLUSIONS
In this work, we demonstrated a method for the exploration of
the reaction space. Our findings revealed that the parametric t-
SNE method combined with difference fingerprints provides a
basis for such a method. We studied two approaches of
representing chemical reactions: structural and difference
fingerprints. Our experiments showed that the structural
fingerprints do not afford the discrimination ability, and the
projections on the base of structural fingerprints are mixed. In
contrast, the models build on top of the difference fingerprints
can project to form well-shaped clusters with clear chemical
meaning. These clusters correspond to known classes of
chemical reactions. We believe that Morgan fingerprints are
the optimal choice for reaction difference fingerprints, albeit
quantitative evaluation of projection performance revealed that
the models based on topological torsion descriptors provide
marginally better projections than other types of difference
fingerprints. The parametric t-SNE model can be easily applied
to new reactions, and this fact opens the doors for chemists to
investigate their own data sets of reactions on the global
reaction landscape. We found that parametric multi-scale t-
SNE outperforms vanilla t-SNE. Given the fact that multi-scale
t-SNE does not require perplexity fine tuning, it seems to be
preferable for visualization. We also studied the theoretical
feasibility of this method for the investigation of the synthetic
routes for two commercial drugs. We propose a set of potential
reactions for the synthesis of these molecules. We suppose that
our method can be a powerful tool for the study of the
landscape of reaction space and will inspire new findings in
studying chemical reactions and synthetic ways.

4. MATERIALS AND METHODS
4.1. Data sets. In our work, we used the freely available

chemical reaction data set created by Lowe.28 It contains about
2 million organic reactions in the recent update.29 To train the
machine learning models, we utilized the slightly adjusted data

set, which was used by Schwaller et al. to predict products of a
reaction using a seq2seq model.30 This data set, further
referred to as data set A, contains SMILES-strings for single
product reactions with atom mapping. Also, there are no
duplicates in this data set.
To assess the visualization performance, we used a data set

from the paper by Schneider et al.31 It comprises 50,000
reactions represented as standardized SMILES-strings. These
reactions were labeled with one of the 10 classes (oxidations,
reductions, C−C bond formations, heteroatom acylations,
deprotections, etc.) The authors have labeled these reactions
automatically using NameRxn software (version 2.1.84). The
NameRxn algorithm is based on expert-defined SMIRKS
patterns.32 We only took reactions from this data set that are
not present in the training data and that comprise no more
than 13 reactants. The final test data set consisted of 20,157
reactions, and we denote this data set as data set B.

4.2. Parametric t-SNE. The method of t-SNE,14 originally
described in 2008, is a common approach in multidimensional
data visualization. However, it has two major shortcomings.
First, one cannot apply a prepared t-SNE model to new data.
Second, the application of this method is limited only to
relatively small data sets. In practice, it is only viable for data
sets comprising 105 or less multi-dimensional points, even with
Barnes-Hut approximation33 on modern computers. In our
work, we used parametric t-SNE.34 This approach allows to
apply a prepared model to new reactions and requires modest
computational resources. In the original t-SNE, the coordinates
of the embedding points in the lower-dimensional space are
optimized directly. In parametric t-SNE, a neural network with
adjustable weights is used to project higher-dimensional space
to the lower-dimensional one. The loss function of the neural
network corresponds to the divergence between high- and low-
dimensional data relations. At each training iteration, a batch
of data points is picked to calculate a distance matrix d for all
points in the batch with a predefined metric. The matrix d has

Figure 3. Structures of darunavir (A) and montelukast (B).
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size n × n, where n is the batch size. Then, the distance matrix
is used to calculate the matrix of the conditional probability
distribution p in a high-dimensional space (eq 1)
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One can interpret a row of the pij matrix as a Gaussian
probability distribution over the batch such that the point j will
be picked as a neighbor for the point i. Decrease in σi leads to
the reduction in the number of nearest neighbors that have
non-zero probabilities. All σi parameters are adjusted to
achieve the desirable perplexity of distributions in all rows.
One can regard the perplexity as an approximate number of

neighbors taken into consideration in the original space. It is a
hyperparameter of the algorithm. There is a connection
between perplexity P and Shannon’s entropy H of a
distribution (eq 2)

H p p

P

log

2

j

N

ij ij

H

1

∑= −

=

=

(2)

Similar to eq 1, a probability distribution matrix q is built for
low-dimensional embedding points (eq 3)
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where d(yi − yj) is the distance between the embedding points
yi and yj and α is the number of degrees of freedom of the t-
distribution. This distribution is heavy-tailed, and it helps to

Figure 4. Map of single-step reactions leading to darunavir and montelukast drugs (purple and gray circles) is depicted on the global landscape of
the reaction data set B. Clusters 1, 2, and 3 represent some reaction types that can be used for the synthesis of these drugs, but currently, there are
no signs that these reactions have been used yet (no gray and purple circles in regions 1, 2, and 3). Therefore, there is an open possibility to extend
the landscape of synthetic ways to these drugs.

Table 3. Accuracy Scores (%) for Classification of Reactions
with an External LightGBM Classifier for Identical Models
Trained on Six Folds of the Original Training Data set

fold no. 1 2 3 4 5 6
accuracy score, % 83.86 84.17 83.84 84.40 83.90 84.15
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overcome the “crowding” problem.14 In our work, we defined
α equal to one.
The choice of perplexity is arbitrary, and it strongly affects

the lower-dimensional picture. At small perplexity values, a
model focuses on preserving local neighborhoods while
neglecting large-scale data interactions. At the same time,
large values impair reproduction of small neighborhoods.
These problems can be addressed by using multi-scale t-
SNE.35 In multi-scale t-SNE, conditional probabilities pij are
calculated with eq 4
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where N is number of points in the batch. The conditional
probability matrix is averaged over a range of perplexities,
allowing a model to find a proper balance between
reconstruction of both local neighborhoods in higher-dimen-
sional space and its global structure.
The weights of the neural network are optimized by

backpropagation, minimizing the Kullback−Leibler divergence
L between distributions in a high-dimensional space and in a
low-dimensional space (eq 5)

L p
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4.3. Model Training. We used a fully connected neural
network as a projection function in parametric t-SNE. The
information about the network architecture and the
optimization procedure is given in the Supporting Information
of this article. We trained several models on data set A with
different hyperparameters and reaction representations. Data
set A was split into subsets for training and validation to
control overfitting and apply early stopping if necessary. The
validation subset consisted of 150,000 reactions.
As reaction vector representations, we used several types of

reaction fingerprints available in the RDKit package and
reaction fingerprints based on the embeddings computed using
BERT models recently proposed by Schwaller et al.23 (further
denoted as BERT FP). The BERT FP is obtained directly from
a reaction SMILES string, while reaction fingerprints from the
RDKit are constructed from molecular fingerprints of
individual compounds involved in a reaction. We experimented
with two common types of reaction fingerprints: structural
fingerprints and difference fingerprints. The fingerprints
available in the RDKit are Morgan Fingerprints (also known
as extended-connectivity fingerprints, ECFP),36 atom pair
fingerprints (AtomPairFP),37 and topological torsion descrip-
tors.38 One can regard a chemical reaction as a map between a
set of reactants (reagents) and a set of products. Catalysts,
solvents, and other molecules that are not involved in
rearrangements of atoms directly on the way from reactants
to products are regarded as agents. By calculating and
combining compounds’ fingerprints, one can obtain finger-
print-based representations of chemical reactions. Structural
fingerprints are obtained by concatenating fingerprint vectors
for reactants, products, and, optionally, agents. Difference
fingerprints are based on the linear combination of fingerprints
for products, reactants, and agents (eq 6)
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here wna stands for a non-agent weight and wa for an agent
weight. In our experiments, agents were not included in the
reaction fingerprints, so wa = 0.
To calculate distances between points in higher-dimensional

space prior to computing the conditional probability matrix, we
used Euclidean distance and Jaccard dissimilarity. In the
former case, models were trained with a batch size of 5000 and
500 in the latter case. Jaccard dissimilarity between vectors x
and y is calculated with eq 7 for binary vectors and with eq 8
for vectors in general

d x y
x y
x y

( , ) 1= −
| ∩ |
| ∪ | (7)
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x y

x y
x y( , ) 1

min( , )

max( , )
i i i

i i i

= −
∑
∑ (8)

In low-dimensional space, Euclidean distance was used.
We experimented with models trained with different

perplexity values, 10, 30, 100, and 500. In addition to this,
we also explored multi-scale models. We trained our models on
GPU because it significantly boosts the training speed
compared to the non-parametric t-SNE working on CPU.

4.4. Evaluation. We used B for the visual evaluation of the
quality of reaction mapping. Because this data set contains
predefined classes for reactions, one can use it as a reference
point to evaluate the projection’s performance. From a bird’s
view, our idea was to classify reactions only from their places in
the resulting maps and compare them with the known
classification. This approach follows the fundamental chemical
tenet: similar compounds (in our case, reactions) should
provide similar properties. We performed this experiment for
several parametric t-SNE models to reveal their abilities to
discriminate between reaction classes. These models vary in
both hyper-parameters and types of fingerprints. We assessed
the discrimination ability quantitatively with a gradient
boosting model built on top of the 2D projections. We
utilized the LightGBM39 Python package. We trained a
gradient boosting classifier with a set of fixed hyperparameters
on every parametric t-SNE projection. The accuracy score for
classification was used as the measure of class separability. Our
observations reveal that the maps with better visual clusters
separation have larger accuracy scores.
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