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Abstract

Microarray analyses of gene knockouts have traditionally focused on the identification of genes whose mean expression is
different in knockout and wild-type mice. However, recent work suggests that changes in the variability of gene expression
can have important phenotypic consequences as well. Here, in an unbiased sample of publicly available microarray data on
gene expression in various knockouts, highly significant differences from wild-type (either increases or decreases) are noted
in the gene expression coefficients of variation (CVs) of virtually every knockout considered. Examination of the distribution
of gene-by-gene CV differences indicates that these findings are not attributable to a few outlier genes, but rather to
broadly increased or decreased CV in the various knockouts over all the (tens of thousands of) transcripts assayed. These
global differences in variability may reflect either authentic biological effects of the knockouts or merely experimental
inconsistencies. However, regardless of the underlying explanation, the variability differences are of importance as they will
influence both the statistical detection of gene expression changes and, potentially, the knockout phenotype itself.
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Introduction

As with other biological perturbations of interest, the effects of

gene knockouts have conventionally been considered in terms of

the changes elicited in the average quantity of various measurable

attributes. Thus, microarray (and other transcriptome-level)

analyses of gene expression in knockout mice have focused on

the identification of genes whose average RNA expression is

significantly altered from that in wild-type mice. From this

perspective, variability in gene expression is principally of interest

as a component of the statistical tests used to assess the significance

of changes in average expression.

However, recent research supports the notion that such

variability may be, in and of itself, a significant determinant of

phenotype. For instance, changes in gene expression variability

have been associated with several human diseases, including

schizophrenia, Parkinson’s disease, muscular dystrophy, dilated

cardiomyopathy, and lung and colorectal adenocarcinoma [1,2].

Indeed, hyper-variability of gene expression may be a general

property of malignancies [3,4], providing the basis for novel

variability-based cancer diagnostics [3]. Moreover stochastic

variation in gene expression may help drive developmental

processes, by, e.g., generating heterogeneity in an initially

homogenous cell population, thereby permitting differentiation

[4,5,6]. Notably, the intermediary steps linking increased gene

expression variability to an intestinal developmental defect in C.

elegans have been delineated in molecular detail [7].

Here marked differences between gene knockout and wild-type

mice in global gene expression variability are noted in an unbiased

sample of publicly available microarray data. These differences

may derive from actions of the genes knocked out or simply from

dissimilar experimental handling of the knockout compared with

wild-type mice. In either case, though, they have clear implications

for both the statistical analyses of knockout microarray data and,

importantly, the knockout phenotype itself.

Results

Microarray datasets selected for analysis (see Methods for the

inclusion criteria) are listed in Table 1. As anticipated (given that

significantly differentially expressed genes constitute a negligible

fraction in typical microarray experiments), levels of gene

expression in knockouts were tightly correlated with those in

wild-types in these datasets (Fig. 1A). Standard deviation in

knockouts was also highly correlated with that in wild-types

(Fig. 1B). The coefficient of variation (CV) is the ratio of the

standard deviation to the mean. The statistical errors in the mean

and standard deviation jointly contribute to the error in their ratio,

so that the correlation of knockout to wild-type CV was expectedly

lower (Fig. 1C). Examining the relationship between gene

expression level and variability, standard deviation was noted to

essentially increase linearly with mean expression as indicated by

the tight positive correlation between these variables (Fig. 1D).

However, when evaluating relative variability, there was a negative

correlation between mean gene expression level and CV (Fig. 1E).

This latter relationship is presumably attributable to ‘‘noise’’ that

does not vary with gene expression, and which therefore

contributes greater variability relative to the mean at low than at

high expression levels.

In order to ascertain any differences in overall gene expression

variability, the ,45,000 CVs of gene expression in knockouts were

compared to those in wild-types for each of the 25 datasets. (CVs
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rather than standard deviations were used in order to make

variability comparable across genes with different levels of

expression.) Every CV determined in the knockouts ‘‘matched’’

one determined for the same probe set in the wild-types.

Accordingly, the overall variability difference between knockouts

and wild-types in a dataset was quantified by determining the fold-

change in CV (knockout CV/wild-type CV) for each probe set and

then taking the geometric mean of these fold- changes across all

,45,000 probe sets. (Fold-change was used in preference to the

arithmetic difference in CV so as to avoid overweighting of higher

CV-probe sets. As described further below, comparable results to

those reported here were obtained when arithmetic differences

rather than fold-changes were used.). These data were log-

transformed in order to render them amenable to standard

statistical approaches, so that the fold-changes in CV were

represented by the differences between knockouts and wild-types

in log CV, hereafter termed glog CV, and the geometric mean of

the fold-changes by the arithmetic mean of glog CV. Finally,

since individual tissues are estimated to ordinarily express only

about half or fewer of the protein-coding sequences in their

genomes, ([9,10,11]; and see especially [12,13] for estimates

derived from hybridization to Affymetrix microarrays), probe sets

in each dataset that had expression values below the median (see

Methods) were filtered out as likely representing genes not actually

expressed and thus liable to contribute only noise to the analyses.

(As described below, generally comparable results were obtained

when all probe sets were included rather than just those with

expression greater than the median.)

These investigations revealed marked differences between the

knockout and wild-type mice in global gene expression variability.

While datasets were roughly evenly divided between those in

which knockouts manifested decreased variability (14 of 25

datasets) and those in which their variability was increased (11

datasets) – with mean +/2 SEM of glog CV ranging from 2

0.174 +/2 0.004 to 0.210 +/2 0.002 (corresponding to mean

fold-changes in CV (knockout/wild-type) of 0.67 and 1.62,

respectively) (Figs. 2A & 2B) – in virtually every dataset the

change in variability was highly statistically significant (Fig. 2C):

Table 1. Gene Expression Omnibus (GEO) datasets analyzed in this paper, ordered by increasing mean glog CV (see Fig. 2).

Dataset # GEO name Gene knocked out RNA source
Repli-
cates* Reference

Use of litter-
mates**

1 GSE22989 TGFBR2 (transforming growth factor b
receptor, type II)

embryonic palate 5 [15]

2 GSE7676 Pcdh12 (protocadherin 12) placenta 5 [16] y

3 GSE31940 Pex5 gonadal adipose 4 unpublished

4 GSE41558 SRC-2 (steroid receptor coactivator-2) heart 4 [17] y

5 GSE12609 Arx (aristaless-related homeobox) embryonic brain 4 [18]

6 GSE24683 Dicer adipose 4 [19]

7 GSE47205 Mll (mixed lineage leukemia histone
methyltransferase)

hematopoietic stem cells 5 [20]

8 GSE16381 Txnrd1 (thioredoxin reductase 1) liver 4 [21]

9 GSE18326 FoxO3 forebrain neural stem cells 4 [22]

10 GSE27309 sirtuin 3 brown adipose 5 [23] y

11 GSE17985 Dicer oocytes 4 [24]

12 GSE8269 COX-1 (cycloxygenase 1) gestational uterus 4 [25]

13 GSE13807 Dicer embryonic mouse limbs 5 unpublished y

14 GSE31958 Cryptochrome 1 & 2 embryonic fibroblasts 4 [26]

15 GSE8555 Phgdh (D-3-phosphoglycerate
dehydrogenase)

embryonic head 4 [27] y

16 GSE10895 MFP-2 (D-specific multifunctional
protein 2)

liver 4 [28] y

17 GSE15349 myostatin muscle 5 [29]

18 GSE9123 PlagL2 (pleomorphic adenoma
gene-like 2)

embryonic small intestine 4 [30]

19 GSE3843 Glycerol kinase liver 4 [31] y

20 GSE11899 Dicer liver 5 [32]

21 GSE9012 Trim24 (TIF1alpha) liver tumor 5 [33] y

22 GSE7424 GalT (a1,3 galactosyltransferase) transplanted heart 4 [34]

23 GSE27630 Otx2 choroid plexus 4 [35]

24 GSE38988 COX-2 (cycloxygenase 2) pancreas 4 [36]

25 GSE7020 Nix spleen 4 [37]

*Number of biological replicates
**‘‘y’’ denotes datasets for which either the GEO annotation or the relevant publication included a specific statement that the knockout and wild-type mice compared
were littermates (in the case of the other datasets, the use or not of littermates was not specified).
doi:10.1371/journal.pone.0097734.t001

Altered Gene Expression Variability in Knockout Mice
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The p value for glog CV was ,0.05 in all the datasets, ,0.001 in

24 of the 25 datasets, ,1027 in 23, ,10210 in 22, and ,102100 in

12, i.e., almost half the datasets. Comparable results were obtained

when differences in CV (gCV) were considered rather than glog

CV; for instance, the p value for gCV was ,10210 in 22 of the 25

datasets and ,102100 in 10 datasets. Similarly, generally

comparable results were obtained when all genes were included

rather than just those with expression greater than the median: the

p value for glog CV in such analyses was ,10210 in 19 of the 25

datasets and ,102100 in 13 datasets.

If these highly significant differences in variability were

attributable to outliers (genes for which the CV in the knockout

was greatly different from that in the wild-type), with the

variability of the remaining genes not systematically altered, then

it would be expected that the distributions of the ,45,000 glog

CV values in the various datasets would have their center (median)

at approximately zero, with the mean ‘‘tugged’’ by the outliers in a

negative or positive direction (for datasets towards the left and

right end, respectively, of Fig. 2). On the other hand if the variability

differences reflected broadly increased or decreased CV in the

knockouts over most of the assayed genes, then the medians of the

glog CV distributions would tend to concur with the means.

This latter scenario was what was in fact observed: glog CV

distributions, which were largely Gaussian, had their medians mostly

approximately coinciding with their means rather than with zero.

The distributions of three representative datasets are illustrated in

Fig. 3A with the positions of the median (solid vertical line), mean

(midpoint of the superimposed normal curve), and zero (dashed

vertical line) indicated. The correspondence between the medians

and means in the 25 datasets was quantified by computing 95%

confidence intervals for the differences between them (Fig. 3B); in 22

datasets this interval spanned zero, indicating no statistically

significant difference between median and mean. Moreover, in the

case of two of the three datasets that did manifest significant

differences between median and mean, the median was nevertheless

much closer to the mean than to zero, arguing against an overriding

contribution of outliers in even these datasets: the medians and

means were 20.151 and 20.174, respectively, in dataset #1

(numbering from Table 1), and 20.066 and 20.080 in #4 (values for

median and mean in the third dataset, #13, which had a relatively

low p value for glog CV (see Fig. 2C), were 0.003 and 20.006).

Figure 1. Relationships between sample statistics in a representative microarray dataset of gene expression in wild-type and
knockout mice (#19 in Table 1). A, Log mean gene expression (log mean value for each of the ,45,000 probe sets on the microarray) in
knockout vs. log mean in wild-type. B, Log standard deviation (SD) of gene expression in knockout vs. log SD in wild-type. C, Log CV of gene
expression in knockout vs. log CV in wild-type. D, Log SD of expression vs. log mean in wild-type. E, Log CV of expression vs. log mean in wild-type.
SD, standard deviation; KO, knockout; WT, wild-type; r, Pearson’s correlation coefficient.
doi:10.1371/journal.pone.0097734.g001
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Discussion

The findings presented here reveal striking differences between

knockout and wild-type mice in the variability of their gene

expression. These differences generally cannot be ascribed to the

effects of a minority of genes with aberrant expression, but rather

primarily reflect broadly increased or decreased variability in the

knockouts compared with wild-types. How might the knockout of

a gene influence overall gene expression variability? All else equal,

decreasing the number of inputs to a system should reduce its

stability (in the same way that decreasing the number of

observations reduces the precision of the mean). In particular,

genes mediating negative feedback would tend to buffer stochastic

effects, so that their loss could increase variability. Conversely, the

loss of genes participating in positive feedback loops or which are

themselves subject to stochastic regulation might decrease

variability [4,5,6]. The Gene Ontology (GO; www.geneontology.

org; accessed August, 2013) annotations of the genes knocked out

in the studies analyzed in this paper are displayed graphically in

Fig. S1 to allow for visual comparison of functional categorizations

across genes. Using the ‘‘Term Enrichment Tool’’ (www.

geneontology.org; accessed August, 2013), there were no signifi-

cant differences in annotation between the genes whose knockout

was associated with decreased variability and those whose

knockout was associated with increased variability (not shown).

This suggests an absence of sweeping functional distinctions

between these two sets of genes. Notably, knockout of Dicer was

associated with both substantially decreased (dataset #6; knockout

in adipose) and increased (dataset #20; knockout in liver)

variability (Table 1 and Fig. 2). There was also no clear

relationship between the expression levels of the knocked out

genes (in the tissues in which the microarray analyses were

conducted) and their associated variability changes (Fig. S2).

Figure 2. Differences between knockout and wild-type mice in global gene expression variability. A, Mean (across the ,45,000 probe
sets) of the differences (g) between knockout and wild-type in log10 CV in each of the 25 datasets analyzed. B, Mean fold change (knockout/wild-
type) in CV in the 25 datasets (obtained by exponentiating the corresponding mean glog10 CV values). C, Statistical significance of mean glog10 CV
in the 25 datasets, as indicated by the negative log10 of the corresponding p values (termed pp here). (Higher pp values correspond to lower p; e.g., a
pp value of 10 indicates p = 10210 and a pp value of 100 indicates p = 102100.) Dashed lines denote the usual thresholds of statistical significance:
p = 0.05 (corresponding to pp = 1.30), p = 0.01 (pp = 2), & p = 0.001 (pp = 3). Note that the pp values are themselves presented on a log scale so as to
enable comparison across their entire range. Numbering of datasets is as in Table 1: 1, TGFBR2; 2, Pcdh12; 3, Pex5; 4, SRC-2; 5, Arx; 6, Dicer; 7, Mll; 8,
Txnrd1; 9, FoxO3; 10, sirtuin 3; 11, Dicer; 12, COX-1; 13, Dicer; 14, Cryptochrome 1 & 2; 15, Phgdh; 16, MFP-2; 17, myostatin; 18, PlagL2; 19, Glycerol
kinase; 20, Dicer; 21, Trim24; 22, GalT; 23, Otx2; 24, COX-2; 25, Nix. Error bars in panels A & B denote SEM. glog10 CV, difference between knockout
and wild-type in log10 CV; KO, knockout; WT, wild-type; *, datasets affirming use of littermate controls (see Table 1). Please see the text for details.
doi:10.1371/journal.pone.0097734.g002
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Nevertheless, finer-grained distinctions may emerge when larger

sets of genes are considered.

An alternate mechanism whereby knockout of a gene might

affect gene expression variability is broad induction or repression

of gene transcription. Because there is generally an inverse

relationship between expression level and (measured) variability

(see, e.g., Fig. 1E), transcriptional induction of a large number of

genes might be expected to decrease global variability and

transcriptional repression to increase it. Accordingly, the relation-

ship across the datasets between the mean expression difference

between knockouts and wild-types and mean variability difference

was assessed. Mean variability differences were taken from the

data in Figure 2 and mean expression differences for each dataset

were calculated in an analogous manner as the mean across probe

sets of the difference between log10 expression in knockout and

log10 expression in wild-type, filtering out probe sets falling below

a specified expression threshold (this is equivalent to calculating

the geometric mean of the knockout/wild-type expression ratios of

all expressed genes). No significant relationship was noted between

the mean variability differences of datasets and their mean

expression differences (Fig. S3; Pearson’s correlation coefficient

= 0.063, p = 0.766, and Spearman’s correlation coefficient = 0.033,

p = 0.87). This suggests that the observed variability differences

cannot be explained by global changes in expression level.

It is also possible that the observed variability differences merely

represent an artifact of inconsistencies in the experimental

procedures used during generation of the microarray data. For

example, wild-type and knockout mice might not be matched with

respect to genetic background, which might occur most frequently

when experimental animals were insufficiently back-crossed to

render them congenic. Moreover, even if congenics were

generated, if knockouts but not their wild-type controls were

litter- and cage-mates, or vice versa, substantial differences

between the genotypes in the variability (and also mean) of gene

expression could arise. Of note, though, the findings remain

materially the same if one were to consider only those eight of the

25 datasets for which there was an explicit statement (in either

their GEO annotation or associated publication) that knockouts

and wild-types were derived from the same (heterozygote-bred)

litter (and thus were likely cage-mates) (the other 17 datasets

neither asserted nor disclaimed the use of littermates): In all eight

of these datasets (#2, #4, #10, #13, #15, #16, #19, and #21;

Figure 3. Characteristics of glog10 CV distributions. A, Distribution of glog10 CV in three representative datasets (#2, #19, & #25 in Table 1).
Normal curves are superimposed on the histograms; the centers of these curves indicate the positions of the means of the distributions. The solid
vertical lines pass through the medians of the distributions and the dashed vertical lines through zero. B, 95% confidence intervals for the differences
between the means and medians in the 25 datasets. Numbering of datasets is as in Table 1: 1, TGFBR2; 2, Pcdh12; 3, Pex5; 4, SRC-2; 5, Arx; 6, Dicer; 7,
Mll; 8, Txnrd1; 9, FoxO3; 10, sirtuin 3; 11, Dicer; 12, COX-1; 13, Dicer; 14, Cryptochrome 1 & 2; 15, Phgdh; 16, MFP-2; 17, myostatin; 18, PlagL2; 19,
Glycerol kinase; 20, Dicer; 21, Trim24; 22, GalT; 23, Otx2; 24, COX-2; 25, Nix. Please see the text for details.
doi:10.1371/journal.pone.0097734.g003
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numbering from Table 1) the p value for glog CV was ,0.001; p

was ,1027 in seven of the eight, ,10210 in six, and ,102100 in

three (Table 1 and Fig. 2).

However, regardless of the reason for it, any altered variability

in knockouts is of practical importance. The statistical significance

of an observed difference in gene expression levels is generally

ascertained by assessing the magnitude of the difference relative to

the estimated variability of gene expression in the conditions being

compared. Thus mis-estimation of gene expression variability will

contribute to mis-identification of differentially expressed genes.

Previously described statistical methods that can accommodate

global variability differences [14] ought to prove useful in this regard.

Importantly, the effects of altered variability on the knockout

phenotype itself may also need to be considered. While increased

variability might prove deleterious in contributing to deviations

from a homeostatic equilibrium, decreased variability might also

prove deleterious in limiting the capacity to adapt to environ-

mental fluctuations [4,5,6]. Moreover, since there is not necessar-

ily (or even typically) a linear relationship between gene expression

and phenotype, certain traits may emerge only at the extremes of

the range of gene expression. Such traits would be observed more

frequently under conditions of increased expression variability

even if mean expression remained constant (this consideration

would generally apply in the case of categorical as opposed to

continuous outcomes). Clearly, an improved understanding of

gene expression variability changes in knockout mice would be of

use in disentangling their pathophysiology and, thus, their

implications for human disease.

Methods

Selection of microarray datasets
Microarray datasets involving comparison of gene expression in

knockout and wild-type mice were obtained in July 2013 from the

Gene Expression Omnibus (GEO [8]; http://www.ncbi.nlm.nih.

gov/geo), a public repository of high throughput functional

genomic data. The Affymetrix Mouse Genome 430 2.0 micro-

array, was overwhelmingly the mouse sequence platform most

frequently represented in GEO; datasets using this platform

comprised over 34,000 independent experimental samples, more

than the number comprised by the next five most frequently

represented mouse platforms combined. Accordingly, for ease of

comparisons across datasets, searches were restricted to this

platform, termed GPL1261 in the GEO nomenclature. While the

great majority of knockout-associated microarray experiments in

GEO had three or fewer replicates, I sought to retrieve data with

four or five biological replicates so as to achieve greater precision in

the estimation of statistical parameters. Since GEO cannot be

searched by the number of replicates, but only by the total number

of samples in a dataset, I searched for datasets with eight or ten

samples, corresponding, respectively, to four or five replicates in

cases of simple comparisons of gene expression in wild-types and

knockouts (but potentially to different numbers of replicates for other

experimental designs). Finally, I used the keywords ‘‘knockout,’’

‘‘null,’’ ‘‘deletion,’’ and ‘‘lacking,’’ to identify analyses of knockouts.

Thus, the final GEO query took the form: ‘‘GPL1261 AND (8

OR 10[Number of Samples]) AND (knockout OR null OR

deletion OR lacking).’’ Of the 61 datasets located by this query, 34

were discarded for having fewer than four biological replicates or

for not involving comparison of gene expression in knockout and

wild-type tissue. Of the remaining 27, two additional datasets were

discarded because ,22% of gene expression values in one and

,40% in the other were negative (none of the other datasets had

any negative values), leaving 25 datasets, listed in Table 1, that

were included in the analyses reported here.

Calculations and statistics
The 430 2.0 microarray contains ,45,000 ‘‘probe sets’’ (groups

of array features derived from a common sequence) intended to

represent up to 39,000 well-annotated transcripts (http://www.

affymetrix.com; accessed July, 2013); following sample hybridiza-

tion and image processing, each probe set generates a single data

point denoting the relative expression level of the corresponding

sequence. For each dataset analyzed, the mean, standard

deviation, and coefficient of variation (CV; ratio of standard

deviation to mean) of gene expression levels (probe set values) in

wild-type and knockout tissue were computed for each of the

,45,000 probe sets, followed by calculation, for each probe set, of

the difference between wild-type and knockout in log10 CV,

hereafter referred to as delta (g) log CV (see the Results for the

rationale for this choice). The mean value (across the ,45,000

probe sets) of glog CV was calculated and its significance

computed using a one sample, two-tailed t-test (under the null

hypothesis of no difference between wild-type and knockout in

CV; i.e., glog CV = 0). (Note that the requirement for normality

in applying the t-test is greatly mitigated here owing to the very

large sample size (,45,000); nevertheless, the distributions of glog

CV in the various datasets were in fact approximately normal (see

Fig. 3A).) These calculations were repeated after filtering out probe

sets for which the mean expression in either wild-type or knockout

was less than the median of gene expression across all probe sets

(see the Results for rationale). Statistical analyses were performed

with SPSS v21 (IBM, Armonk, NY).

Supporting Information

Figure S1 Gene Ontology (GO) annotations of the genes
knocked out in the analyzed studies. Annotations were

obtained from the Stanford Source (http://source.stanford.edu)

and GeneCards (http://www.genecards.org/), and manually

curated. Genes are listed in the same order as the corresponding

knockouts in Figure 2 (i.e., in the order of increasing associated

variability difference).

(PDF)

Figure S2 Relative gene expression values of the genes
knocked out in the analyzed datasets. Gene expression

values of the knocked out genes in (the wild-type replicates of) the

tissues in which the corresponding microarray analyses were

conducted were obtained as follows: Probe sets on the Affymetrix

430 2.0 microarray corresponding to these genes were identified

using NetAffx software (http://www.affymetrix.com/analysis)

(with the exception of myostatin which is not represented on this

microarray). Most genes were represented by multiple (two to four)

probe sets. The relative expression value for each knocked out

gene was then computed from data in the corresponding dataset as

the average expression in wild-type replicates across all probe sets

representing that gene, normalized to the median gene expression

value in the dataset. Genes are listed in the same order as the

corresponding knockouts in Figure 2 (i.e., in the order of

increasing associated variability difference).

(PDF)

Figure S3 Relationship across the twenty-five analyzed
datasets between the mean expression difference be-
tween knockouts and wild-types and mean variability
difference. The mean expression difference for each dataset

was calculated as the mean across probe sets of the
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difference between log10 mean expression in knockout and log10

mean expression in wild-type (termed here Dlog10mean gene

expression (KO-WT)), filtering out probe sets falling below a

specified expression threshold. Mean variability differences

(termed here Dlog10CV (KO-WT)) were taken from the data

in Figure 2 and were calculated in an analogous manner.

No significant relationship was noted between the expression

and variability differences (Pearson’s correlation coefficient

= 0.063, p = 0.766; Spearman’s correlation coefficient = 0.033,

p = 0.87). KO, knockout; WT, wild-type; CV, coefficient of

variation. Note the different scales of the two axes. Please refer

to the text for details.

(PDF)
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