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Abstract

In this paper, we present a novel Bayesian adaptive dual controller (ADC) for autonomously

programming deep brain stimulation devices. We evaluated the Bayesian ADC’s perfor-

mance in the context of reducing beta power in a computational model of Parkinson’s dis-

ease, in which it was tasked with finding the set of stimulation parameters which optimally

reduced beta power as fast as possible. Here, the Bayesian ADC has dual goals: (a) to mini-

mize beta power by exploiting the best parameters found so far, and (b) to explore the space

to find better parameters, thus allowing for better control in the future. The Bayesian ADC is

composed of two parts: an inner parameterized feedback stimulator and an outer parameter

adjustment loop. The inner loop operates on a short time scale, delivering stimulus based

upon the phase and power of the beta oscillation. The outer loop operates on a long time

scale, observing the effects of the stimulation parameters and using Bayesian optimization

to intelligently select new parameters to minimize the beta power. We show that the Bayes-

ian ADC can efficiently optimize stimulation parameters, and is superior to other optimiza-

tion algorithms. The Bayesian ADC provides a robust and general framework for tuning

stimulation parameters, can be adapted to use any feedback signal, and is applicable

across diseases and stimulator designs.

Author summary

Deep brain stimulation (DBS) is an effective therapy for treating motor symptoms of Par-

kinson’s disease. However, the clinical success of DBS relies on selecting stimulation

parameters that both relieve symptoms while avoiding side effects. Currently, DBS devices

are programmed using a laborious trial-and-error process, requiring multiple clinic visits

over the course of months. As DBS leads and algorithms become more complex, it will

become impossible to select optimal DBS parameters manually. There is a clear need for

an intelligent, automated approach to parameter tuning. We present a novel Bayesian

adaptive dual controller (ADC), which can autonomously tune stimulation parameters. It

uses a feedback signal measured from the patient to quantify the efficacy of a set of stimu-

lation parameters, and uses this information to intelligently find the parameters which

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006606 December 6, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Grado LL, Johnson MD, Netoff TI (2018)

Bayesian adaptive dual control of deep brain

stimulation in a computational model of

Parkinson’s disease. PLoS Comput Biol 14(12):

e1006606. https://doi.org/10.1371/journal.

pcbi.1006606

Editor: Sabato Santaniello, University of

Connecticut, UNITED STATES

Received: April 3, 2018

Accepted: October 27, 2018

Published: December 6, 2018

Copyright: © 2018 Grado et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The source code for

the model is published on ModelDB and is available

through the following link: http://modeldb.yale.edu/

247310.

Funding: This work was supported by the following

sources: The National Institute of Neurological

Disorders and Stroke (www.ninds.nih.gov) grant

F31-NS103487-01A1 (LLG), R01-NS094206

(MDJ, TIN), and P50-NS098573 (MDJ, TIN), and

the National Science Foundation (www.nsf.gov)

grant CBET-1264432 (TIN). The funders had no

http://orcid.org/0000-0003-1912-4655
http://orcid.org/0000-0002-0115-1930
https://doi.org/10.1371/journal.pcbi.1006606
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006606&domain=pdf&date_stamp=2018-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006606&domain=pdf&date_stamp=2018-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006606&domain=pdf&date_stamp=2018-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006606&domain=pdf&date_stamp=2018-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006606&domain=pdf&date_stamp=2018-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006606&domain=pdf&date_stamp=2018-12-18
https://doi.org/10.1371/journal.pcbi.1006606
https://doi.org/10.1371/journal.pcbi.1006606
http://creativecommons.org/licenses/by/4.0/
http://modeldb.yale.edu/247310
http://modeldb.yale.edu/247310
http://www.ninds.nih.gov
http://www.nsf.gov


work best for each individual patient. The Bayesian ADC has the potential to improve

DBS efficacy and reduce clinic visits by efficiently finding the best stimulation parameters.

Introduction

Deep brain stimulation (DBS) is an effective therapy for treating the motor symptoms of Par-

kinson’s disease (PD), and is often used to complement dopamine replacement therapy in

patients who have progressed to severe stages of PD [1]. The clinical success of DBS relies on

selecting stimulation parameters that both relieve symptoms and avoid persistent stimulation-

induced side effects. Identifying clinically optimized stimulation settings, or in other words

programming the pulse generator, is conducted by a movement disorders specialist through a

laborious trial-and-error process. The process involves parsing through several free parameters

including electrode configuration, stimulation amplitude, pulse frequency, and pulse width.

However, because the programming process is both time-intensive and exhausting for the

patient [2, 3], most clinical programming visits focus on a truncated set of four monopolar

electrode configurations in which stimulation amplitude is increased for each setting to the

point of inducing persistent side effects.

Recent advances in DBS technology have rendered the programming process even more

challenging. For instance, directional DBS leads with eight [4] or as many as thirty-two con-

tacts [5] are emerging for clinical use, and new stimulation algorithms are increasing the

dimensionality of the programming process, adding additional free parameters [6–12]. As

these new technologies become more widely available, programming next-generation DBS sys-

tems will no longer be feasible with current trial-and-error approaches [13].

Implantable DBS systems have been designed to deliver stimuli and record the resulting

neural responses, thus providing a framework for implementing closed-loop DBS algorithms

[14] that can intelligently select the optimal stimulation parameters for each patient at any

point in time. Key to the development of a closed-loop DBS strategy is defining a biomarker as

feedback for a controller; the biomarker must correlate well with PD symptoms, although it

need not be causal. Synchronous activity in the beta range (12-35 Hz) of local field potentials

(LFPs) is one possible candidate. While the precise role of beta oscillations in the basal ganglia

are under debate, increased beta band activity within the basal ganglia has been associated

with anti-kinetic symptoms of PD [15]. Specifically, elevated beta power has been observed in

the dorsolateral portion of the subthalamic nucleus (STN) in human patients [16–18] as well

as the globus pallidus (GP), but to lesser extent [19–21]. There is also evidence that a reduction

in beta power, either by medication [22–24] or DBS [25], correlates with improved UPDRS

scores.

Two separate types of beta-based feedback stimulation policies have been proposed: power

or amplitude feedback and phase feedback. In the former implementation, an amplitude-

responsive adaptive STN-DBS algorithm initiated stimulation only when the amplitude in the

beta band of STN LFPs exceeded a manually set threshold [7, 8]. This approach resulted in sig-

nificant reduction in parkinsonian motor signs and overall reduction in stimulation on-time

compared to conventional, isochronal DBS (cDBS). In the latter case, stimulation was trig-

gered off of the phase of the beta oscillation, delivering phase-locked bursts to optimally dis-

rupt beta oscillations for PD [9, 10] or low frequency oscillations for tremor [11, 12]. However,

while both stimulation policies are closed-loop, neither is autonomous; each requires manually

setting yet another free parameter. A visualization of these two differing stimulation policies

are show in Fig 1, as well as a combined phase and power feedback stimulation policy. We will
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use the term “power” here, as opposed to “amplitude”, to disambiguate this parameter from

other stimulation parameters. As one can readily convert between power and amplitude, the

terms are essentially interchangeable.

In this study, we designed and tested a Bayesian adaptive dual control algorithm that can

efficiently and autonomously learn the parameters of both phase and power feedback stimula-

tion, as well as other stimulation parameters. We evaluated the algorithm in a computational

mean-field model of the basal ganglia-thalamacortical system that simulated beta rhythms and

response to electrical stimulation, and we compared the algorithms performance to other opti-

mization strategies.

Methods

Computational modeling of the basal ganglia-thalamocortical system

In order to develop and test the adaptive dual control algorithm, we used a physiologically real-

istic mean-field model of the basal ganglia-thalamocortical system (BGTCS), developed by van

Albada and Robinson [26, 27]. The BGTCS modeled the mean firing rate and voltage of nine

cortical and subcortical structures with second-order differential equations, the structure of

which is shown below in Fig 2. The model was capable of simulating both the naïve state, as

well as a dopamine-depleted (DD) state, with a strong beta rhythm. In this study we tested the

Bayesian adaptive dual controller in the dopamine-depleted state of the model to suppress its

Fig 1. Beta-based feedback stimulation policies. (row 1) Simulated LFP. (row 2, 3) Power and phase calculated from

the LFP using the αSWIFT algorithm. The dotted lines indicate the manually set power threshold and phase trigger for

stimulation. (row 4) Power-based stimulation: high frequency stimulation is turned on when the power is above

threshold. (row 5) Phase-based stimulation: individual pulses are delivered when the phase crosses the trigger. (row 6)

Combined phase/power-based stimulation: individual pulses are delivered when the phase crosses the trigger, but only

if the power is above threshold.

https://doi.org/10.1371/journal.pcbi.1006606.g001
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beta oscillation. For a detailed description of the equations governing the model and how

parameters were set, see van Albada and Robinson, 2009 [26, 27]. The BGTCS model produced

LFP signals generally comparable in spectral content to those measured in humans with Par-

kinson’s disease undergoing DBS surgery.

In order to simulate the effects of DBS within the model, stimuli were incorporated as a

direct current injection into the target structure. As the integration timestep of the model (1

ms) was much greater than the duration of the first phase of a typical DBS pulse (60 μs–

240 μs), the stimulus pulse was integrated to obtain the total charge, which was then divided by

the membrane capacitance to yield the change in voltage due to a single DBS pulse. The resul-

tant ΔV was added directly to the voltage of the target structure. Fig 3 shows example voltage

traces from the GPi of the BGTCS in the naïve, DD, and DD with cDBS states, as well as the

power spectrum from each trace.

The power spectra revealed several salient features of the BGTCS. First, it produced an

oscillation in the beta range (at 29 Hz), and the power of that oscillation increased in the DD

state. Second, simulated conventional DBS at 130Hz (cDBS), similar to what has been used

clinically, reduced the power of the 29 Hz oscillation. Thus, the model of the dopamine-depleted
state 1) produced oscillations with a pronounced beta peak, and 2) responded to cDBS in a realis-
tic manner. This model was then used to design, test, and evaluate the Bayesian adaptive dual

controller.

Adaptive dual control for DBS

The tuning of stimulation parameters for DBS was formulated as a control problem: We have

a system (the patient) whose symptoms we wish to control (i.e. reduce) with stimulation. How-

ever, unlike normal control problems, here we have dual goals: We wish to control the patient’s

Fig 2. Basal ganglia-thalamocortical system (BGTCS) mean-field model structure. Black arrows represent

excitatory connections, red circles represent inhibitory connections. Simulated DBS was applied to the STN, and local

field potentials (LFPs) were recorded from the GPi. Adapted from van Albada and Robinson, 2009 [26, 27].

https://doi.org/10.1371/journal.pcbi.1006606.g002
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symptoms as well as possible using the best known stimulation parameters, but also must

explore the parameter space to identify new parameters that may be better than the current

best, thus allowing for better control in the future. This balance between control and informa-

tion gathering, or exploitation and exploration leads to the concept of dual control [28].

In order to accomplish these conflicting goals, we implemented an adaptive dual controller
(ADC) for DBS, which is composed of two components: (1) an inner parameterized stimulator

and (2) an outer parameter adjustment loop. The inner loop can be any stimulator with

parameters to tune, from a traditional cDBS system to new closed-loop DBS algorithms, and

may or may not incorporate feedback from the patient. For example, a power-based DBS algo-

rithm would turn stimulation on or off based upon the power of an oscillation measured from

the patient. Conversely, cDBS would not measure any feedback signals.

The outer parameter adjustment loop acts to tune the parameters of the stimulator, and

operates on a relatively long timescale. The outer loop is given a specification, or goal, which it

attempts to meet through an iterative process: selecting a parameter value (or values), observ-

ing the effect of that value on its goal, estimating the effects of new values, and then selecting

the next value. For example, with an power-based DBS algorithm, the outer loop would begin

by selecting a power threshold for the inner loop. The inner loop would then execute stimula-

tion with that parameter value for some pre-determined amount of time, after which the outer

loop would observe the effects of that value on some biomarker and select a new value. The

general structure of an adaptive dual controller for DBS is shown in Fig 4.

Traditional cDBS can be viewed as a simplistic ADC, where an isochronal stimulator takes

the place of the parameterized stimulator, and the clinician acts as the parameter adjuster. The

clinician’s specification is to improve the patients quality of life. During a clinic visit, they

select stimulation parameters and observe the effects. The clinician uses his or her experience

to build a mental estimation of the relationship between parameters and quality of life, and

uses this map to intelligently determine which parameter combinations to try. At the end of

the visit, however, the loop is broken and the patient is sent home with the clinician-optimized

settings.

Here, we designed a Bayesian ADC with two components: an inner phase/power feedback

stimulator, and an outer Bayesian optimization parameter adjustment loop. We first describe

the components individually, and then describe the combined Bayesian ADC.

Fig 3. Example BGTCS results. (a) time-series data and (b) PSD analysis in three conditions: naïve, DD, and DD with

cDBS in the STN. The model produced a spectral peak at 29 Hz, which increased and widened in the DD state. When

cDBS was applied to the STN of the model, the spectral power in beta band decreased.

https://doi.org/10.1371/journal.pcbi.1006606.g003
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Inner loop—Real-time phase/power feedback stimulation

The inner feedback stimulator had three parameters: (1) oscillation phase trigger, (2) oscilla-

tion power threshold, and (3) stimulus amplitude. In order to implement phase and power

feedback stimulation, a real-time method of accurately estimating both the phase and power of

an oscillation was paramount. Previously, phasic stimulation had been accomplished by band-

pass filtering the signal and then using the time since the preceding zero crossing to approxi-

mate phase [12]. Power-based stimulation had been achieved by rectifying and smoothing the

band-passed signal for 400 ms [7, 8]. The Hilbert transform is often used to extract the phase

and power of a signal. However, the Hilbert transform is acausal, making it impossible to

implement in real time.

We recently developed a novel sliding Fourier transform, called the Sliding Windowed Infi-

nite Fourier Transform (SWIFT)

XnðoÞ ¼ e
� 1=tejoXn� 1ðoÞ þ x½n�; ð1Þ

along with the αSWIFT,

XnðoÞa ¼ XnðoÞslow � XnðoÞfast; ð2Þ

described in [29]. Unlike other methods of phase/power estimation, the SWIFT directly and

efficiently calculates the Fourier transform of the signal in real time, centered on ω = 2πf/fs and

windowed with an infinite length, causal exponential window. In fact, the SWIFT is a causal

approximation of the Hilbert transform. The αSWIFT employs the α window (the difference

between two exponentials with different time constants), and has improved frequency resolu-

tion. Here, we used the αSWIFT to calculate the phase and power of the beta oscillation in real

time.

Fig 4. Adaptive dual controller (ADC) for DBS. The ADC has dual goals (exploitation and exploration), and is

composed of two loops: an inner parameterized stimulator and an outer parameter adjustment loop. The inner loop

may incorporate feedback from the patient to alter stimulation. The outer loop is composed of an estimator and a

design block, and is given a specification. The estimator builds a model of the relationship between stimulation

parameters and some measure of patient outcome, which it passes on to the design block. The design block then

incorporates this information with the specification to select new parameters for the inner loop. The inner loop

operates on a much shorter timescale than the outer loop.

https://doi.org/10.1371/journal.pcbi.1006606.g004
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The SWIFT has two parameters which control its behavior: the center frequency ω, and the

time constant τ (or two time constants, τslow and τfast for the αSWIFT). The center frequency,

ω was set to match the center frequency of the beta peak in the model. The (slow) time con-

stant controls the time-frequency tradeoff of the SWIFT: a shorter time constant leads to

higher temporal resolution, but lower frequency resolution (wider frequency response). To

balance this tradeoff, we matched the width of the SWIFT’s frequency response to the width of

the model’s beta peak at -6 dB (or 50% power reduction). The model’s beta peak had a width

of ±1.15 Hz at -6 dB, and so we set τslow = 0.240 s to match, which can be readily calculated

from the Fourier transform of the SWIFT’s exponential window. τfast was set to τslow/5, which

smooths the output without significantly altering the SWIFT’s frequency response. Fig 1

shows the phase/power feedback stimulation algorithm operating on an example LFP, extract-

ing phase/power using the αSWIFT, and triggering stimulation off phase when the power is

above threshold.

In this context, the SWIFTs parameters are selected to filter the signal around the oscillation

produced by the BGTCS. The SWIFT parameters for a physiological signal could be selected in

a similar manner: The center frequency and width can be estimated from the power spectral

density measured from a sample signal. A concern is that a physiological signal’s center fre-

quency may wander more than the BGTCS model; this could be addressed by periodically re-

estimating the SWIFT parameters from the raw signal. Alternatively, Jackson et al, 2016

described a method of estimating the real time phase of a frequency-modulated signal by com-

bining three real time Fourier transforms (RTFT) operating at neighboring frequencies, which

produces a flat frequency response over the frequency band of interest. Their method could

easily be augmented to use the SWIFT in the place of the RTFT [30].

Outer loop—Bayesian optimization of stimulation parameters

While many optimization algorithms could be used for the outer loop, the problem of creating

an ADC for DBS has several constraints which make Bayesian optimization (BayesOpt) ideal.

The goal of BayesOpt is to find the minimum of the objective function with as few evaluations

as possible [31–34], and indeed is among the most efficient algorithms at doing so [32, 35–38].

BayesOpt also provides a framework for explicitly balancing exploration and exploitation in

order to efficiently find the global minimum. To reduce the number of function evaluations,

BayesOpt only approximates the objective function accurately in regions where it is profitable

to do so, and samples coarsely everywhere else [39]. This is ideal for tuning stimulation param-

eters as the patient is likely to have little tolerance for exploration, and so we wish to find their

optimal settings with as few steps as possible.

The power and efficiency of BayesOpt stems from the incorporation of prior belief about

the objective function with available evidence (through Bayes theorem) to build a model of the

objective function,

PðMjEÞ / PðEjMÞPðMÞ: ð3Þ

That is, the posterior probability of a model M given some evidence E, is proportional to the

likelihood of E given M multiplied by the prior probability of M. BayesOpt then uses this model

to direct sampling and trade off exploration and exploitation [40].

BayesOpt consists of three steps. First, a prior distribution is defined over the objective

function. Second, a set of N previously gathered measurements, D1:N , are combined with the

prior through Bayes rule to obtain a posterior distribution. Finally, the acquisition function,

which is a function of the posterior distribution that predicts the utility of sampling, is used to

determine where next to sample to maximize the utility.

Bayesian ADC of DBS in a model of PD
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Defining the prior. First, we place a prior distribution over the objective function, f(θ). In

our case, the objective function was the mean beta power (measured over several seconds),

and was a function of the stimulation parameters, θ. While many models can be used as the

prior, Gaussian process (GP) priors are favored and are well suited as they satisfy the “simple

and natural” conditions: (i) continuity of the objective function f(θ), (ii) homogeneity of the

prior P, and (iii), independence of mth differences [35].

f ðyÞ � GPðmðyÞ; kðy; y0ÞÞ: ð4Þ

A GP can be thought of as a distribution over functions, completely specified by its mean func-

tion,m(θ), and its covariance function (often referred to as the kernel), k(θ, θ0), which com-

putes the “similarity” of any two points, θ and θ0. Instead of returning a single value at each

point in the parameter space, the GP returns two values: the mean and variance of a normal

distribution. The prior mean is often assumed to be zero everywhere, m(θ) = 0, although in

our case we learn the mean function as the mean of the training data. The prior covariance

matrix is computed using a kernel between the inputs. We used the Matern kernel, which we

modified to be periodic in phase. The parameters of the kernel (length scale and noise level)

were learned by maximum a posteriori (MAP) estimation.

Computing the posterior. We then compute the posterior distribution by combining a

set of n previously gathered measurements, D1:n ¼ fyi; f ðyiÞg
n
i¼1

, with the prior through Bayes

rule. Let us denote the value of the function at the arbitrary point θi as fi = f(θi), and the vector

of previous points as f1:n = [f1, . . ., fn]T. The formula for the predictive distribution can be read-

ily derived as

Pðfnþ1jD1:n; ynþ1Þ ¼ N ðmnðynþ1Þ; s
2

nðynþ1ÞÞ; ð5Þ

where

mn ¼ kTK� 1f1:n; ð6Þ

s2

n ¼ kðynþ1; ynþ1Þ � kTK� 1k; ð7Þ

are the mean and variance of the posterior distribution [41]. Here k denotes the vector of ker-

nels k(θn+1, θi) for i = 1, . . ., n, and K is the full kernel matrix of θ1:n whose ijth entry is given by

k(θi, θj) for i = 1, . . ., n and j = 1, . . ., n.

Minimizing the acquisition function. Finally, BayesOpt directs where next to sample by

minimizing the acquisition function, u(θ). The acquisition function serves to guide the search

to the optimum by modeling the expected utility of sampling at θn+1. Typical acquisition func-

tions achieve low values in regions where either the predicted mean is low, the uncertainty is

high, or both. We chose to use the Gaussian process lower confidence bound (GP-LCB) acqui-

sition function:

GP-LCBðynþ1Þ ¼ mnðynþ1Þ � ksnðynþ1Þ; ð8Þ

where κ� 0. BayesOpt thus selects the next evaluation point, θn+1, by minimizing the acquisi-

tion function, e.g. sampling at arg minynþ1
uðynþ1jD1:nÞ. The acquisition function also governs

the trade-off between exploration and exploitation. In GP-LCB, the κ parameter determines

the exploration-exploitation trade-off; high κ encourages exploration, while a low κ encour-

ages exploitation. With kn ¼
ffiffiffiffiffiffi
ntn
p

, ν = 1, and τn = 2 log(nd/2+2π2/3δ), it can be shown that this

method is no regret with high probability. For a full description and proof, see Srinivas et al.,

2010 [42]. However, in our situation we chose to favor exploitation, and so set v = 0.25.

Bayesian ADC of DBS in a model of PD
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Bayesian optimization example. Fig 5 shows a typical run of BayesOpt on a 1D problem.

The optimization started with 3 points, from which it fitted a Gaussian process (GP). BayesOpt

then computed an acquisition function from the GP (which incorporated both the mean and

variance of the GP to model the utility of sampling) and minimized it to determine where to

sample next. Finally, the objective function was sampled at the new point, and the process was

repeated. For a detailed description of Bayesian optimization, see Brochu, Cora, & Freitas,

2010, and Rasmussen & Williams, 2004 [40, 41].

Bayesian adaptive dual controller

Putting the above components together, we constructed a Bayesian adaptive dual controller.

The controller had two components: an inner feedback stimulation loop, which applied stimu-

lation based on the phase/power of the beta oscillation, and an outer Bayesian parameter

adjustment loop which optimized the parameters of the inner feedback stimulator to maxi-

mally suppress the beta oscillation.

Inner loop. The inner loop of the Bayesian ADC was composed of a closed-loop phase/

power feedback stimulator. The stimulator measured the LFP from the globus pallidus inter-

nus (GPi) of the BGTCS (Fig 2), and triggered stimulation off of the phase and power of the

beta oscillation, estimated in real time using the αSWIFT (Fig 1). The inner loop had three

parameters: (1) oscillation phase trigger, (2) oscillation power threshold, and (3) stimulus

amplitude, which were optimized by the outer loop. The inner loop operated on a timescale of

1 ms, the same as the BGTCS.

Outer loop. The outer loop of the Bayesian ADC employed Bayesian optimization to

intelligently sample the parameter space and select the optimal set of parameters. The outer

loop operated on a timescale of 20 s, much longer than the inner loop. After selecting a new

parameter set, the outer loop would wait 10 s, which allowed the BGTCS to settle into a steady

state. The outer loop would then estimate the power of the beta oscillation over the next 10 s

by keeping a running average of the oscillation power. It then would update its internal Gauss-

ian process with the new observation, minimize its acquisition function, and select the next

parameters to sample. The Bayesian ADC’s control diagram is shown in Fig 6a, and an over-

view of how the Bayesian ADC functions is shown in Fig 6b.

Results

The Bayesian ADC was tested in the BGTCS. First, we show that the BGTCS responded differ-

entially across the 3D parameter space of the feedback stimulator, and that there existed a min-

imum. Next, we present a 1D example of the Bayesian ADC optimizing stimulus phase trigger

in the model. Finally, we show that the Bayesian ADC converged quickly to the global mini-

mum in all cases, and compared the Bayesian approach to other standard optimization

methods.

Parameter sweep

In order for the Bayesian ADC to find an optimal parameter set, there must exist at least one

minimum over the feedback stimulator’s parameter space. We swept the space on a 643 grid

(oscillation phase trigger, oscillation power threshold, and stimulus amplitude), and measured

the average beta power over the last 50 s of a 100 s simulation. Fig 7 shows three 2D slices

through the parameter space (with the third parameter held constant at its global minimum).

We see that the model’s beta power responded to all three parameters, and that a minimum

existed. The sweep also revealed a complex underlying landscape with flat regions, nonlineari-

ties, and local minima, which may prove difficult for optimization algorithms to navigate.

Bayesian ADC of DBS in a model of PD
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Fig 5. Bayesian optimization example. Three iterations of Bayesian optimization minimizing a 1D function. The

figure shows a Gaussian process (GP) approximation (solid black line and blue shaded region) of the underlying

objective function (dotted black line). The figure also shows the acquisition function (green). The acquisition function

(GP-LCB) is the difference of the mean and variance of the GP (multiplied by a constant), which Bayesian

optimization minimizes to determine where to sample next.

https://doi.org/10.1371/journal.pcbi.1006606.g005

Fig 6. Overview of the Bayesian ADC. (a) Bayesian ADC control diagram. The Bayesian ADC’s inner loop was composed of a phase/power

based feedback stimulator. The outer Bayesian optimization loop was composed of a Gaussian process (GP), and acquisition function. The

Gaussian process builds a model of how the stimulation parameters affect the feedback signal, and the acquisition function uses this information

to select the next parameter set. (b) Overview of the Bayesian ADC’s cyclic operation. The Bayesian ADC sets the stimulator parameters and

applies phase/power based stimulation to the BGTCS for 20s. It then estimates the effect of those parameters on beta power, and updates its GP

with the new observation. Finally, it optimizes its acquisition function, and selects the next parameter set.

https://doi.org/10.1371/journal.pcbi.1006606.g006
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Fig 7 only shows three 2D slices through 3D volumetric data; there are other complex inter-

actions which are not seen in these planes. Most importantly, however, the parameter sweep

revealed that the BGTCS has a global minimum. Next, we tested the Bayesian ADC’s ability to

efficiently locate the global minimum in this complex landscape.

Individual runs

After having verified the existence of a global minima, we ran the Bayesian ADC in all 7

parameter combinations. In the 1 and 2D cases, the variable(s) not being optimized over were

fixed at their global minimum. Fig 8 shows a 1D example of the Bayesian ADC optimizing the

stimulus phase trigger, with stimulus amplitude and power threshold held constant. By the 6th

function evaluation, the Bayesian ADC was already sampling near the optimal stimulus phase.

The Bayesian ADC was able to build an accurate representation of the BGTCS’ response to

stimulation in relatively few function evaluations. The ADC took few exploratory steps, and

did so to optimally cover the space and gather information about the underlying function. In

this example, we see that at function evaluation 16, the Bayesian ADC chose to explore near

−π, before returning to the optimal region around 3π/4.

Fig 7. Beta power as a function of stimulation parameters. Feedback stimulator parameter sweep over stimulus

phase trigger, power threshold, and amplitude. The sweep revealed a global minimum of -28.6 dB at h2.24 rad, 2.37

mA, -28.6 dBi, denoted with dashed black lines. The sweep revealed a complex underlying landscape with flat regions

(in response to power threshold), nonlinearities (in response to stimulation amplitude), and shallow local minima

(high power thresholds). The red and yellow lines indicate the isoclines of the beta power with DBS OFF and cDBS,

respectively.

https://doi.org/10.1371/journal.pcbi.1006606.g007
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Empirical analyses

Finally, we empirically analyzed the Bayesian ADC, and compared the BayesOpt outer loop’s

performance to other optimization strategies. We chose to compare to two types of algorithms:

gradient-approximating algorithms, such as the Nelder-Mead (NM) simplex [43], and global

algorithms such as DIRect [44]. Each algorithm was bounded on the same interval, and initial

conditions were selected uniformly at random. We selected NM because we expected it to out-

perform most other gradient-approximating algorithms, most of which are not robust to

noise. The NM approximates the gradient using a simplex, whose vertices are often far enough

apart to return the correct search direction, even in the presence of noise. We selected DIRect

due to its ability to quickly blanket the search space.

Approaching the minimum. We first compared the algorithms ability to find the global

minimum in the fewest number of function evaluations. Each algorithm was run 1000 times,

and the mean and standard deviation of the minimum beta power found after each evaluation

are reported in Fig 9. BayesOpt and DIRect performed equally well in all cases, both were able

to find the global minimum robustly, and both approached the global minimum at approxi-

mately the same rate. Conversely, NM had more difficulty in reliably finding the global mini-

mum. In 1D, the NM performed comparably in optimizing phase trigger and stimulus

amplitude, but was unable to reliably find the global minimum in power threshold. In 2D, the

NM performed comparably in the phase & amplitude case, but fell short in the other two cases,

as well as in the 3D case.

Staying at the minimum. While both BayesOpt and DIRect were able to reliably find the

global minimum, their sampling patterns differed greatly. To illustrate this difference, and

compare to NM, Fig 10 shows histograms of the parameters chosen by each algorithm at each

Fig 8. Bayesian ADC optimizing stimulus phase trigger. Example 1D optimization of stimulus phase trigger. The

simulation was run for 25 iterations in which Bayesian optimization was used to select the stimulus phase trigger while

holding stimulus amplitude and power threshold constant (2.37 mA, -28.6 dB). (top) Gaussian process built from

observations. (bottom) Power as a function of iteration, and minimum value found. The color of each dot represents

the iteration at which each parameter setting was visited during the simulation.

https://doi.org/10.1371/journal.pcbi.1006606.g008
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iteration over 1000 trials in the 1D cases, as well as the underlying 1D response surfaces. We

see that each algorithm approached the optimal parameter values differently. BayesOpt clus-

tered most tightly on the optimal values, followed by NM, while the DIRect algorithm contin-

ued to explore throughout the simulation. As a gradient-approximating method, NM

exploited well, but explored poorly, and was easily trapped by local minima and flat regions.

Conversely, as a global search algorithm, DIRect was able to find the global minimum quickly

and efficiently. However, it could not transition from exploration to exploitation, and so the

algorithm continued to explore the space throughout the simulation. BayesOpt balanced

exploration and exploitation; the algorithm exploited well, as the parameter values quickly

clusted on the optimum, more tightly than either NM or DIRect. Additionally, we can see the

global exploration steps that BayesOpt took throughout the simulation, allowing it to build a

model of the entire space to ensure that it found the global minimum.

Regret. A natural performance metric that encapsulates both exploration and exploitation

properties is the average cumulative regret; i.e. the loss in reward due to not knowing the

global minimum before hand. Whereas the minimum found as a function of each iteration

(Fig 9) shows how quickly the algorithm found a minimum, the average cumulative regret

quantifies both how quickly an algorithm finds the global minimum, and how well it exploits

it. At each iteration, we incur instantaneous regret rt = f(θt) − f(θ�), where f(θ�) is the function

value at the best parameters, θ�. The cumulative regret after T iterations is RT ¼
PT

t¼1
rt, and a

desirable asymptotic property of an optimization algorithm is to be no-regret: limT!1 RT/

T = 0 [42]. Therefore, an algorithm who’s average cumulative regret asymptotes to a lower

Fig 9. Minimum beta power found by each algorithm as a function of iteration. BayesOpt (blue) is compared against the Nelder-Mead

(orange) and DIRect (green) algorithms, with the shaded region indicating the standard deviation. Each algorithm was run 1000 times in all 7

parameter combinations, and compared for their ability to find the global minimum in as few function evaluations as possible. BayesOpt and

DIRect perform comparably in all cases, while NM falls behind in cases where power threshold is optimized. The dotted lines represent the

global minimum beta power, as well as the beta power with DBS OFF and cDBS for comparison.

https://doi.org/10.1371/journal.pcbi.1006606.g009

Bayesian ADC of DBS in a model of PD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006606 December 6, 2018 13 / 23

https://doi.org/10.1371/journal.pcbi.1006606.g009
https://doi.org/10.1371/journal.pcbi.1006606


value can be considered superior. The performance of each algorithm was quantized by fitting

an exponential decay function of the form RT/T = α + T0 exp(−T/τ), which asymptotes to α
with a time constant of τ. Fig 11a shows the mean average regret (the mean across 1000 trials

of the average regret up to iteration T), and Table 1 reports the asymptotes and time constants

fit to each algorithm in the 3D case. BayesOpt had the lowest asymptote, reflecting the algo-

rithms ability to reliably find and stay at the global minimum. However, NM had the shortest

time constant, reflecting its ability to quickly descend towards a minimum (be it local or

global).

Noise tolerance. Finally, we quantified the performance of the three different algorithms

under increasingly noisy conditions. To test each algorithm, we added normally distributed

noise � � N ð0; s2Þ to the beta power measurement passed to the optimization algorithms. To

quantify the signal-to-noise ratio (SNR), we estimated the signal amplitude as the standard

deviation of beta power across the search space, and the baseline noise amplitude as the stan-

dard deviation of repeated measures. For each algorithm, we ran 500 trials under increasing

noise, and estimated the asymptotic regret, α, shown in Fig 11b. As expected, we see that all

three algorithms’ asymptotes increase as the SNR decreases from baseline, with BayesOpt con-

tinuing to outperforming the other algorithms at moderate to high SNRs. As the SNR degrades

Fig 10. Histograms of the parameters selected by each algorithm in 1D. Histograms of the parameters selected by each algorithm

(rows 2-4) over 1000 trials of 100 function evaluations are show, as well as the underlying response surfaces (top row). Each row shows

the sampling patterns of an algorithm as it attempted to minimize beta power in each of the 1D cases (columns). BayesOpt clustered

most tightly on the optimum parameter values in all cases. The NM algorithm explored the space the least and was easily trapped in flat

regions or in a local minimum. The DIRect algorithm continually explored the space, and never transitioned to exploitation.

https://doi.org/10.1371/journal.pcbi.1006606.g010
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below 5 dB, BayesOpt’s asymptote sharply increases, putting it in line with the other algo-

rithms. At this point, each of the three algorithms’ asymptotic performance is comparable to

cDBS. As it takes many iterations to reach the asymptote, a static solution (such as cDBS) may

be preferable under noisy conditions.

In summary

• NM is able to descend faster than both BayesOpt and DIRect, but is unable to reliably find

the global minimum;

• DIRect reliably finds the global minimum, but continues to explore and so has high regret;

• BayesOpt reliably finds the global minimum, and has the lowest regret;

• BayesOpt is more robust to noise.

Discussion

In this paper, we present a Bayesian adaptive dual control algorithm for optimizing DBS stim-

ulation parameters to suppress pathological oscillations. The Bayesian ADC was tested in a

computational model of the basal ganglia-thalamocortical system, which exhibited an emer-

gent oscillation in the dopamine-depleted state that was suppressed by cDBS. The use of the

BGTCS model (as opposed to a simple coupled oscillator model), provides more directly trans-

latable results, and allows us to draw several physiologically relevant conclusions about how

closed-loop stimulation might function in a real system. The Bayesian ADC algorithm was

Fig 11. Mean average regret and noise tolerance. (a) The mean of the average regret (RT/T) across 1000 trials for each

algorithm in the 3D case. BayesOpt asymptotes to the lowest regret, while NM asymptotes fastest but to higher regret.

(b) Asymptotic constant, α, under increasingly noisy conditions. As the SNR degrades, each algorithms’ asymptotic

performance deteriorates. BayesOpt continues to outperform the other algorithms at moderate to high SNRs and

performs similarly at poor SNRs. The horizontal dotted lines indicate the regret incurred with DBS OFF and cDBS,

while the vertical line represents the baseline SNR.

https://doi.org/10.1371/journal.pcbi.1006606.g011

Table 1. Asymptote and time constant of each algorithm in the 3D case.

Algorithm α τ
BayesOpt 2.78 ± 0.02 45.7 ± 0.26

DIRect 5.43 ± 0.03 68.3 ± 0.45

Nelder-Mead 6.12 ± 0.04 32.8 ± 0.52

https://doi.org/10.1371/journal.pcbi.1006606.t001
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composed of two pieces: an inner feedback controller and an outer parameter optimization

loop. The inner feedback loop was shown to have the potential to be more effective at suppress-

ing the model’s pathological oscillation than cDBS, but was sensitive to parameter changes.

The outer BayesOpt parameter adjustment loop was shown to be more efficient in selecting

the optimal parameters for the inner loop than other optimization methods. While the focus of

this paper was on suppressing an oscillation seen in the dopamine-depleted state of a computa-

tional model, the Bayesian ADC is general both for the feedback signal optimized by the outer

loop and for the stimulator employed by the inner loop.

Biological insights into closed-loop stimulation

Through examination of the optimization landscape (Fig 7), we can draw several key insights

regarding the nature of closed-loop stimulation in the context of a biological system, and relate

these results to other studies in the field.

Phasic stimulation. The use of phasic stimulation to suppress pathological oscillations

has been previously proposed and tested, both in computational models [9, 10, 45–47] and in

human tremor patients [11, 12]. While the mechanisms of phasic stimulation are well under-

stood in the context of simple models of coupled oscillators [45–47], the precise mechanisms

of phasic stimulation in the context of the brain is not well understood. The computational

model used to simulate the response of the basal ganglia to phasic stimulation displayed several

interesting features which may provide insight into the potential mechanisms of phasic

stimulation.

We hypothesize that oscillations can be generated by two separate mechanisms in the basal

ganglia: 1) under pathological conditions neurons start to fire in bursts generating beta

rhythms, or 2) an inhibitory and excitatory reciprocally connected neuronal populations, such

as the STN and GPe, start generating oscillations that have matched resonances and produce

beta oscillations. These oscillations could be suppressed in a number of manners. First, phasic

stimulation could simply suppress the firing rate of the neurons. However, in this model the

firing rates are not significantly affected. Second, phasic stimulation could alter the temporal

spiking relationship between connected neurons, and through spike-timing dependent plastic-

ity (STDP), alter the strength of synaptic connections within and between oscillating structures

[12, 48]. However, as STDP is not incorporated in this model we can rule out this effect in the

model presented here. Third, phasic stimulation could interact with individual spike timing

within an oscillating population. By stimulating at certain phases, the population can be desyn-

chronized so that they no longer produce burst dynamics [10]. However, as the BGTCS does

not model individual neurons, we can rule out this effect in this model as well. Fourth, phasic

stimulation could simply mask the oscillation through destructive interference by applying

stimulation to excite neurons out-of-phase, when they are most suppressed. Finally, the stimu-

lus can interact with the instantaneous frequency of an oscillator, effectively moving the system

closer to, or further from, peak resonance [49, 50]. This is the mechanism observed in models

of coupled oscillators.

This leaves us with the task of determining if the oscillations are being suppressed by

destructive interference or by modulating the resonance dynamics. First, we note that while

we are stimulating and recording in the STN and GP respectively, the model’s synaptic delay

(1 ms) between the STN and GP is much shorter than the oscillation period (34.5 ms); as such

the phase difference between these structures is negligible. Upon closer inspection, we notice

several features which support the modulation of resonance dynamics. First, we notice that the

optimal stimulus phase for suppression (2.24 rad) occurs during the downward phase of the

oscillation (here 0 rad and ±π rad aligns to the peak and trough of the oscillation, respectively),

Bayesian ADC of DBS in a model of PD
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while the optimal phase for enhancement occurs ±π rad out, during the rising phase of the

oscillation. Furthermore, we see that the optimal stimulus phase for suppression depends on

stimulus amplitude: As stimulus amplitude increases, the optimal stimulus phase precesses

towards peak depolarization (from 2.24 rad to 1.57 rad). The optimal phase for enhancement

does not depend upon the stimulus amplitude.

If the oscillations were suppressed/enhanced by destructive/constructive interference, we

would expect that 1) the optimal phase for suppression/enhancement would align with the

trough/peak (±π /0 rad), and 2) we would not expect the optimal phase to change with the

amplitude of the stimulation. This in our opinion rules out destructive interference. We

hypothesize that instead the stimulation effectively changes the resonance properties of the

reciprocal excitatory/inhibitory coupling between the STN and GPe. Stimulation during the

falling phase of the oscillation results in a transient phase delay, moving the STN/GPe away

from peak resonance. The magnitude of this phase delay is amplitude dependent, and can

even become a phase advance at large amplitudes, explaining the amplitude-dependence of the

optimal suppression phase. Conversely, stimulation during the rising phase results in a tran-

sient phase advance, resulting in stronger resonance between the two structures [45]. This pre-

diction is one that can be tested experimentally, and might provide insight into the

mechanism of beta suppression.

Power thresholded stimulation. There are also several studies which use beta power to

turn stimulation on or off, but to our knowledge, no one has tried to combine phase and

power based stimulation. Power thresholded stimulation has been implemented in two differ-

ent ways: (a) a threshold is used to turn stimulation on or off [7, 8], and (b) stimulation ampli-

tude is ramped up or down based on either beta [51, 52] or tremor power [53]. The idea

behind a beta threshold is to turn off/down stimulation when it’s not needed, e.g. when beta is

low. Here, we see a straightfoward effect of the power threshold on beta power: given the opti-

mal stimulus phase and amplitude, the model’s beta power is drawn down to the power thresh-

old, until reaching the model minimum. Therefore, a power threshold parameter could be

explicitly used as a “beta thermostat”, allowing for the avoidance of side-effects that could be

induced by over-suppressing beta power.

Advantages

The Bayesian ADC’s key advantages stem from fitting a Gaussian process (GP) to data, and

then using the GP to intelligently sample, explicitly balancing exploration and exploitation to

find the global minimum. Through fitting the GP, BayesOpt is able to learn and account for

both the length scale of the parameters as well as the noise level, and is among the most effi-

cient algorithms in terms of number of function evaluations required to find the minimum.

The Bayesian ADC is also able to balance exploration and exploitation: it is able to find the

minimum quickly and exploit it, but continues to explore intelligently to ensure that it has

arrived at the global minimum. Gradient-approximating methods (such as NM) can quickly

descend towards a minimum, but are unable to explore globally, are sensitive to initial condi-

tions, and are vulnerable to becoming trapped in local minima or wandering around flat

regions. Global exploration methods (such as DIRect), do not rely on gradients and can

quickly find the global minimum. However, such algorithms are often purely exploratory, and

never transition to exploitation.

When trying to optimize stimulation parameter settings, balancing exploration and exploi-

tation is critical. We need to approach the minimum as quickly as possible, but also avoid local

minima while preventing unnecessary exploration, as the patient is likely to have little

Bayesian ADC of DBS in a model of PD
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tolerance for wildly varying stimulation parameters. BayesOpt provides a framework for bal-

ancing exploration and exploitation in a way that most other algorithms do not.

Of course, selecting the optimal balance between exploration and exploitation is not a trivial

task. All acquisition functions have a hyperparameter which controls the exploration/exploita-

tion tradeoff. The GP-UCB algorithm we emplyed is no regret in the limit as N!1 with ν =

1. However, we are less interested in achieving 0 regret than we are with achieving a low regret

quickly. Thus, a smaller ν should be chosen, such as ν = 0.25, to encourage exploitation. Fur-

thermore, this hyperparameter could be adapted over time: if the patient feels like too many

exploratory settings are being chosen, ν could be decreased.

Limitations

The Bayesian ADC is not without its limitations. First and foremost, because Bayesian optimi-

zation relies on calculating and inverting the covariance matrix of the inputs, the complexity

grows as O(n3), where n is the number of observations. Therefore, the time it takes to compute

the next parameter set increases as the cube of the number of samples. However, in this case,

and many clinical applications, the time it takes to assess the effects of a single parameter set is

relatively long (seconds in this model, minutes in the clinic, or hours or even days at home).

Therefore, as long as it takes less time to compute the next parameter set than it does to evalu-

ate a parameter set, this will not be an issue.

Additionally, the Bayesian ADC assumes the existence of a static response surface, although

this need not be the case. If the patient’s response to stimulation is changing over the course of

the measurements, the Bayesian ADC will not converge. However, if the time-course of this

change is long relative to the time-course of the measurements, this could be overcome. Fur-

thermore, instead of using all previous observations, we could limit the algorithm to use only

the most recent N, thereby allowing the algorithm to “forget”, forcing it to re-explore changing

areas. This “forgetting” strategy could be used to solve the aforementioned complexity prob-

lem as well. Finally, neural networks (NNs) could be used to estimate the GP, which would

address both the scalability problem (becoming linear in n, instead of cubic), and the stationar-

ity problem (as NNs naturally “forget” training data far in the past) [54, 55].

Generalizability

The Bayesian ADC framework we present here has broad applicability for tuning stimulation

parameters across diseases and devices. At its heart, the Bayesian ADC framework is simply a

method for efficiently optimizing the parameters of a controller using some feedback signal.

Both the inner loop and the feedback signal can be designed to fit the problem at hand.

Inner loop. In our Bayesian ADC, we used a phase/power feedback controller for the

inner loop. However, any controller, closed- or open-loop, could be used for the inner loop.

This means that the Bayesian ADC can be used to tune stimulation parameters for any stimu-

lator, from current open-loop cDBS to state-of-the-art closed-loop algorithms.

Feedback signals and objective functions. The Bayesian ADC can be used to tune stimu-

lation parameters for any disease by selecting the appropriate feedback signal (or signals) and

defining an objective function over those feedback signals. In our case, we chose to minimize

the power of the beta oscillation measured from the BGTCS. However, there is concrete evi-

dence that not all exaggerated beta oscillations are pathological, and that it may serve as a non-

exact biomarker for PD severity [56–60]. Other neurophysiological biomarkers have been pro-

posed for PD, including phase-amplitude coupling (PAC) [21, 61, 62] and evoked compound

action potentials (ECAPs) [63], to name a few. Additionally, kinematic feedback signals could

be incorporated, such as quantitative measures of tremor, rigidity, bradykinesia, or other
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symptoms. The feedback signal need not be physiological, it could be a qualitative behavioral

or quality of life metric, measured by the patient, clinician, or family member.

Finally, side effects could be taken into account by allowing the patient to self-report the

severity and frequency of side effects. Our objective function would then become a weighted

combination of the feedback signal as well as side effect. By incurring a penalty whenever side

effect occurs, the Bayesian ADC can learn to avoid those parameters (even if they positively

affected other feedback signals). However, as with any multi-objective optimization problem,

we are then left with the task of assigning relative weights to the individual components.

Diseases. The Bayesian ADC is not limited to PD, but is generalizable to any disease with

a parameterized stimulator. For example, the Bayesian ADC could be easily adapted to opti-

mize DBS parameters to treat essential tremor. In this case, the feedback signal could be the

tremor power measured from a wrist-mounted accelerometer. The inner loop could be a sim-

ple continuous stimulator, a phase/power feedback stimulator, or any parameterized stimula-

tor. Indeed, recent work has indicated that using kinematic biomarkers (specifically triggering

stimulation off the power of the patient’s tremor) could improve the efficacy of closed-loop

DBS [53].

Discrete and categorical parameters. The Bayesian ADC is not limited to optimizing

continuous parameters, but can also handle discrete and parameters. Discrete parameters are

those that possess an inherent ordering or structure, such that the effects of two “nearby”

parameters can be expected to be more similar than two “distant” parameters. For example, in

the case of electrode configuration, stimulating through contact 1 on a traditional four contact

DBS lead can be considered to be more similar to stimulating through contact 2 than through

3, as it is more likely to activate similar or overlapping neuronal populations. Thus, we need

only come up with a numerical encoding of the discrete parameters, which could then be used

to compute the kernel between any two parameter sets. In the above example, we might encode

contact 1 = 1, contact 2 = 2, etc. We would then be able to run these discrete parameters

through the kernel function, and we would see that k(1, 2) > k(1, 3). We would then be left

with the problem of learning a suitable length constant in the electrode contact dimension

which encapsulates the spatial relation between contacts. In the case of categorical parameters

with no underlying structure, a multi-armed bandit solution should be implemented instead

[64].

Conclusion

In this paper, we present a Bayesian adaptive dual controller for the suppression of pathologi-

cal oscillations. The Bayesian ADC was shown to perform well in a computational model of

Parkinson’s disease for selecting the optimal parameters to reduce the oscillation power. The

Bayesian ADC was composed of two parts, an inner feedback stimulator, and an outer Baye-

sOpt parameter tuning loop. As compared to other algorithms, BayesOpt was able to efficiently

tune stimulation parameters, explicitly balancing exploration and exploitation to find the opti-

mal settings in as few function evaluations as possible. Finally, the Bayesian ADC is generaliz-

able, both across diseases and stimulator designs.
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