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Abstract. We developed a new method that can profile and efficiently search
for pseudoknot structures in noncoding RNA genes. It profiles interleaving stems
in pseudoknot structures with independent Covariance Model (CM) components.
The statistical alignment score for searching is obtained by combining the align-
ment scores from all CM components. Our experiments show that the model can
achieve excellent accuracy on both random and biological data. The efficiency
achieved by the method makes it possible to search for structures that contain
pseudoknot in genomes of a variety of organisms.

1 Introduction

Searching genomes with computational models has become an effective approach for
the identification of genes. During recent years, extensive research has been focused on
developing computationally efficient and accurate models that can find novel noncoding
RNAs and reveal their associated biological functions. Unlike the messenger RNAs
that encode the amino acid residues of protein molecules, noncoding RNA molecules
play direct roles in a variety of biological processes including gene regulation, RNA
processing, and modification. For example, the human 7SK RNA binds and inhibits
the transcription elongation factor P-TEFb [17][25] and the RNase P RNA processes
the 5’ end of precursor tRNAs and some rRNAs [7]. Noncoding RNAs include more
than 100 different families [23]. Genome annotation based on models constructed from
homologous sequence families could be a reliable and effective approach to enlarging
the known families of noncoding RNAs.

The functions of noncoding RNAs are, to a large extent, determined by the sec-
ondary structures they fold into. Secondary structures are formed by bonded base pairs
between nucleotides and may remain unchanged while the nucleotide sequence may
have been significantly modified through mutations over the course of evolution. Pro-
filing models based solely on sequence content such as Hidden Markov Model (HMM)
[12] may miss structural homologies when directly used to search genomes for noncod-
ing RNAs containing complex secondary structures. Models that can profile noncoding
RNAs must include both the content and the structural information from the homolo-
gous sequences. The Covariance Model (CM) developed by Eddy and Durbin [6] ex-
tends the profiling HMM by allowing the coemission of paired nucleotides on certain
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states to model base pairs, and introduces bifurcation states to emit parallel stems. The
CM is capable of modeling secondary structures comprised of nested and parallel stems.
However, pseudoknot structures, where at least two structurally interleaving stems are
involved, cannot be directly modeled with the CM and have remained computationally
intractable for searching [1][13][14][18][19][20][21][24].

So far, only a few systems have been developed for profiling and searching for RNA
pseudoknots. One example is ERPIN developed by Gautheret and Lambert [8][15].
ERPIN searches genomes by sequentially looking for single stem loop motifs contained
in the noncoding RNA gene, and reports a hit when significant alignment scores are
observed for all the motifs at their corresponding locations. Since ERPIN does not allow
the presence of gaps when it performs alignments, it is computationally very efficient.
However, alignments with no gaps may miss distant homologies and thus result in a
lower sensitivity.

Brown and Wilson [2] proposed a more realistic model comprised of a number of
Stochastic Context Free Grammar (SCFG) [3][22] components to profile pseudoknot
structures. In their model, the interleaving stems in a pseudoknot structure are derived
from different components; the pseudoknot structure is modeled as the intersection of
components. The optimal alignment score of a sequence segment is computed by align-
ing it to all the components iteratively. The model can be used to search sequences for
simple pseudoknot structures efficiently. However, a generic framework for modeling
interleaving stems and carrying out the search was not proposed in their work. For pseu-
doknots with more complex structure, more than two SCFG components may be needed
and the extension of the iterative alignment algorithm to k components may require k!
different alignments in total since all components are treated equally in their model.

In this paper, we propose a new method to search for RNA pseudoknot structures
using a model of multiple CMs. Unlike the model of Brown and Wilson, we use inde-
pendent CM components to profile the interleaving stems in a pseudoknot. Based on
the model, we have developed a generic framework for modeling interleaving stems
of pseudoknot structures; we propose an algorithm that can efficiently assign stems to
components such that interleaving stems are profiled in different components. The com-
ponents with more stems are associated with higher weights in determining the overall
conformation of a sequence segment. In order to efficiently perform alignments of the
sequence segment to the model, instead of iteratively aligning the sequence segment
to the CM components, our searching algorithm aligns it to each component indepen-
dently following the descending order of component weights. The statistical log-odds
scores are computed based on the structural alignment scores of each CM component.
Stem contention may occur such that two or more base pairs obtained from different
components require the participation of the same nucleotide. Due to the conforma-
tional constraints inherently imposed by the CM components, stem contentions occur
infrequently (less than 30%) and can be effectively resolved based on the conforma-
tional constraints from the alignment results on components with higher weight values.
The algorithm is able to accomplish the search with a worst case time complexity of
O((k − 1)W 3L) and a space complexity of O(kW 2), where k is the number of CM
components in the model, W and L are the size of the searching window and the length
of the genome respectively.
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We used the model to search for a variety of RNA pseudoknots inserted in ran-
domly generated sequences. Experiments show that the model can achieve excellent
sensitivity (SE) and specificity (SP) on almost all of them, while using only slightly
more computation time than searching for pseudoknot-free RNA structures. We then
applied the model and the searching algorithm to identify the pseudoknots on the 3’
untranslated region in several RNA genomes from the corona virus family. An exact
match between the locations found by our program and the real locations is observed.
Finally, in order to test the ability of our program to cope with noncoding RNA genes
with complex pseudoknot structures, we carried out an experiment where the complete
DNA genomes of two bacteria were searched to find the locations of the tmRNA genes.
The results show that our program identified the location with a reasonable amount of
error (with a right shift of around 20 nucleotide bases) for one bacterial genome and
for the other bacteria search was perfect. To the best of our knowledge, this is the first
experiment where a whole genome of more than a million nucleotides is searched for a
complex structure that contains pseudoknots.

2 Experiments and Results

To test the performance of the model, we developed a search program in C language
and carried out searching experiments on a Sun/Solaris workstation. The workstation
has 8 dual processors and 32GB main memory. We evaluated the accuracy of the pro-
gram on both real genomes and randomly generated sequences with a number of RNA
pseudoknot structures inserted. The RNAs we choose to test the model are shown in
Table 1. Model training and testing are based on the multiple alignments downloaded
from the Rfam database [10]. For each RNA pseudoknot, we divided the available
data into a training set and a testing set, and the parameters used to model it are es-
timated based on multiple structural alignments among 5 − 90 homologous training
sequences with a pairwise identity less than 80%. The emission probabilities of all
nucleotides for a given state in a CM component are estimated by computing their
frequencies to appear in the corresponding column in the multiple alignment of train-
ing sequences; transition probabilities are computed similarly by considering the rel-

Table 1. Information on training sequences used for the estimation of model parameters

RNA Number of training sequences Number of nucleotides Pseudocount
tmRNA−pk12 36 130 − 250 1.5
tmRNA−pk34 89 90 − 120 2.4

srpRNA 24 30 − 50 1.2
telomerase−vert 13 90 − 200 0.9

corona−pk3 14 60 − 70 0.9
HDV−ribozyme 15 90 − 100 1.0
tombus−3−IV 17 90 − 100 1.0

alpha−RBS 9 100 − 120 0.8
antizyme−FSE 13 50 − 60 0.9
IFN−gamma 5 160 − 180 0.6
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Table 2. The performance of the model on different RNA pseudoknots inserted into a back-
ground (of 105 nucleotides) randomly generated with different C+G concentrations. TN is the
total number of pseudoknotted sequence segments inserted; CI is the number of sequence seg-
ments correctly identified by the program (with a positional error less than ±3 bases); NH is the
number of sequence segments returned by the program; SE and SP are sensitivity and specificity
respectively. The thresholds of log-odds score are predetermined using the Z-score value of 4.0.

RNA TN CI NH SE(%) SP(%) Running time(hr) Background C+G (%)
tmRNA−pk12 25 20 24 80.0 83.3 56.33 57.0
tmRNA−pk34 27 26 31 96.0 84.0 59.36 57.0

srpRNA 29 13 16 44.8 81.3 4.79 57.0
telomerase−vert 14 14 15 100.0 93.3 68.83 57.0

corona−pk3 37 37 39 100.0 94.8 2.89 57.0
HDV−ribozyme 37 37 37 100.0 100.0 6.54 57.0
tombus−3−IV 13 13 13 100.0 100.0 15.45 57.0

alpha−RBS 24 24 25 100.0 96.0 27.85 57.0
antizyme−FSE 28 28 28 100.0 100.0 0.94 57.0
IFN−gamma 10 10 10 100.0 100.0 31.24 57.0

tmRNA−pk12 24 24 25 100.0 96.0 55.57 67.0
tmRNA−pk34 27 27 30 100.0 90.0 56.42 67.0

srpRNA 25 17 19 68.0 89.4 4.76 67.0
telomerase−vert 13 13 14 100.0 92.9 67.80 67.0

corona−pk3 33 33 34 100.0 97.1 2.90 67.0
HDV−ribozyme 37 37 37 100.0 100.0 6.52 67.0
tombus−3−IV 20 20 20 100.0 100.0 16.63 67.0

alpha−RBS 18 18 18 100.0 100.0 27.79 67.0
antizyme−FSE 28 28 29 100.0 96.6 0.94 67.0
IFN−gamma 10 10 10 100.0 100.0 33.15 67.0

tmRNA−pk12 26 26 29 100.0 90.0 55.45 77.0
tmRNA−pk34 25 25 33 100.0 75.7 53.55 77.0

srpRNA 29 22 23 75.9 95.7 4.78 77.0
telomerase−vert 16 16 16 100.0 100.0 66.07 77.0

corona−pk3 37 37 37 100.0 100.0 3.13 77.0
HDV−ribozyme 37 37 37 100.0 100.0 6.57 77.0
tombus−3−IV 20 20 20 100.0 100.0 16.94 77.0

alpha−RBS 22 22 22 100.0 100.0 28.86 77.0
antizyme−FSE 28 28 28 100.0 100.0 0.96 77.0
IFN−gamma 10 10 10 100.0 100.0 32.55 77.0

tmRNA−pk12 24 24 25 100.0 96.2 55.09 87.0
tmRNA−pk34 27 27 28 100.0 96.4 52.39 87.0

srpRNA 26 25 25 96.2 100.0 4.81 87.0
telomerase−vert 17 17 17 100.0 100.0 70.60 87.0

corona−pk3 37 37 37 100.0 100.0 3.17 87.0
HDV−ribozyme 37 37 37 100.0 100.0 6.64 87.0
tombus−3−IV 20 20 20 100.0 100.0 16.94 87.0

alpha−RBS 24 23 23 95.8 100.0 29.08 87.0
antizyme−FSE 26 26 26 100.0 100.0 0.94 87.0
IFN−gamma 10 10 10 100.0 100.0 32.84 87.0
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ative frequencies for different types of transitions that occur between the correspond-
ing consecutive columns in the alignment. Pseudocounts, dependent on the number
of training sequences, are included to prevent overfitting of the model to the training
data.

To measure the sensitivity and specificity of the searching program within a rea-
sonable amount of time, for each selected pseudoknot structure, we selected 10 − 40
sequence segments from the set of testing data and inserted them into each of the ran-
domly generated sequences of 105 nucleotides. In order to test whether the model is
sensitive to the base composition of the background sequence, we varied the C+G con-
centration in the random background. The program computes the log-odds, the loga-
rithmic ratio of the probability of generating sequence segment s by the null (random)
model R to that by our model M . It reports a hit when the Z-score of s is greater than
4.0. The computation of Z-scores requires knowing the mean and standard deviation for
the distribution of log-odd scores of random sequence segments; both of them can be
determined with methods similar to the ones introduced by Klein and Eddy [11] before
the search starts.

As can be seen in Table 2, the program correctly identifies more than 80% of in-
serted sequence segments with excellent specificity in most of the experiments. The
only exception is the srpRNA, where the program misses more than 50% inserted se-
quence segments in one of the experiments. The relatively lower sensitivity in that par-
ticular experiment can be partly ascribed to the fact that the pseudoknot structure of
srpRNA contains fewer nucleotides; thus its structural and sequence patterns have a
larger probability to occur randomly. The running time for srpRNA, however, is also
significantly shorter than that needed by most of other RNA pseudoknots due to the
smaller size of the model. Additionally, while the alpha−RBS pseudoknot has a more
complex structure and three CM components are needed to model it, our searching
algorithm efficiently identifies more than 95% of the inserted pseudoknots with high
specificities. A higher C+G concentration in the background does not adversely affect
the specificity of the model; it is evident from Table 2 that the program achieves better
overall performance in both sensitivity and specificity in a background of higher C+G
concentrations. We therefore conjecture that the specificity of the model is partly deter-
mined by the base composition of the genome and is improved if the base composition
of the target gene is considerably different from its background.

To test the accuracy of the program on real genomes, we performed experiments
to search for particular pseudoknot structures in the genomes for a variety of organ-
isms. Table 3 shows the genomes on which we have searched with our program and the
locations annotated for the corresponding pseudoknot structures. The program success-
fully identified the exact locations of known 3’UTR pseudoknot in four genomes from
the family of corona virus. This pseudoknot was recently shown to be essential for the
replication of the viruses in the family [9].

In addition, the genomes of the bacteria, Haemophilus influenzae and Neisseria
meningitidis MC58, were searched for their tmRNA genes. The Haemophilus influenzae
DNA genome contains about 1.8 × 106 nucleotides and Neisseria meningitidis MC58
DNA genome contains about 2.2× 106 nucleotides. The tmRNA functions in the trans-
translation process to add a C-terminal peptide tag to the incomplete protein product of
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Table 3. The results obtained with our searching program on the genomes of a variety of organ-
isms. GA is the accession number of the genome; RL specifies the real location of the pseudoknot
structure in the genome; SL is the one returned by the program; RT is the running time needed
to perform the searching in hours; GL is the length of the genome in its number of bases. The
genome of Haemophilus searched in our experiment is the reversed complementary DNA strand.

GA Organism ncRNA RL SL RT(hr) GL(bs)
NC000907 Haemophilus tmRNA 472210 − 472575 472177 − 472542 170.00 1.83 × 106

NC003112 Neisseria tmRNA 1241197− 1241197− 170.00 2.2 × 106

meningitidis 1241559 1241559

NC003045 Bovine 3’UTR 30798 − 30859 30798 − 30859 1.24 31028
CoronaVirus pk

NC002645 Human 3’UTR 27063 − 27125 27063 − 27125 1.12 27317
CoronaVirus pk

NC001846 Murine 3’UTR 31092 − 31153 31092 − 31153 1.27 31357
HepatitusVirus pk

NC003436 Porcine 3’UTR 27820 − 27882 27820 − 27882 1.17 28033
DiarrheaVirus pk

-A-B-D-E-F-G-H-g-h-I-J-j-i-K-L-M-N-m-O-o-l-k-n-P-p-Q-R-S-r-q-s-T-U-V-W-X-v-u-t-Z-!-z-1-@-#-2-3-x-w-f-e-d-b-$-4-a-

PK1 PK2 PK3 PK4

Fig. 1. Diagram of the pairing regions on the tmRNA gene. Upper case letters indicate base se-
quences that pair with the corresponding lower case letters. The four pseudoknots constitute the
central part of the tmRNA gene and are called Pk1, Pk2, Pk3, Pk4 respectively.

a defective mRNA [16]. The central part of the secondary structure of tmRNA molecule
consists of four pseudoknot structures. Figure 1 shows the pseudoknot structures on the
tmRNA molecule.

In order to search the bacterial DNA genomes efficiently, the combined pseudo-
knots 1 and 2 were used to search the genome first; the program searches for the whole
tmRNA gene only in the region around the locations where a hit for Pk1 and Pk2 is
detected. We cut the genome into segments with shorter lengths (around 105 nucleotide
bases for each), and ran the program in parallel on ten of them in two rounds. The re-
sult for Neisseria meningitidis MC58 shows that we successfully identified the exact
locations of tmRNA. However, the locations of tmRNA obtained for Haemophilus in-
fluenzae have a shift of around 20 nucleotides with respect to its real location (7% of
the length of the tmRNA). This slight error can probably be ascribed to our “hit-and-
extend” searching strategy to resolve the difficulty arising from the complex structure
and the relatively much larger size of tmRNA genes; positional errors may occur during
different searching stages and accumulate to a significant value. Our experiment on the
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DNA genomes also demonstrates that, for each genome, it is very likely there is only
one tmRNA gene in it, since our program found only one significant hit. To our knowl-
edge, this is the first computational experiment where a whole genome of more than
a million nucleotides was successfully searched for a complex structure that contains
pseudoknot structures.

3 Models and Algorithms

The Covariance Model (CM) proposed by Eddy and Durbin [6][5] can effectively model
the base pairs formed between nucleotides in an RNA molecule. Similarly to the emis-
sion probabilities in HMMs, the emission probabilities in the CM for both unpaired nu-
cleotides and base pairs are positional dependent. The profiling of a stem hence consists
of a chain of consecutive emissions of base pairs. Parallel stems on the RNA sequence
are modeled with bifurcation transitions where a bifurcation state is split into two states.
The parallel stems are then generated from the transitions starting with the two states
that result respectively.

The genome is scanned by a window with an appropriate length. Each location of
the window is scored by aligning all subsequence segments contained in the window to
the model with the CYK algorithm. The maximum log-odds score of them is determined
as the log-odds score associated with the location. A hit is reported for a location if the
computed log-odds score is higher than a predetermined threshold value.

Pseudoknot structures are beyond the profiling capability of a single CM due to the
inherent context sensitivity of pseudoknots. Models for pseudoknot structures require a
mechanism for the description of their interleaving stems. Previous work by Brown and
Wilson [2] and Cai et al. [4] has modeled the pseudoknot structures with grammar com-
ponents that intersect or cooperatively communicate. A similar idea is adopted in this
work; a number of independent CM components are combined to resolve the difficulty
in profiling that arises from the interleaving stems. Interleaving stems are profiled in
different CM components and the alignment score of a sequence segment is determined
based on a combination of the alignment scores on all components.

However, the optimal conformations from the alignments on different components
may violate some of the conformationalconstraints that a single RNA sequence must fol-
low. For example, a nucleotide rarely forms two different base pairs simultaneously with
other nucleotides in an RNA molecule. This type of restriction is not considered by the
independent alignments carried out in our model and thus may lead to erroneous search-
ing results if not treated properly. In our model, stem contention may occur. We break
the contention by introducing different priorities to components; base pairs determined
from components with the highest priority win the contention. We hypothesize that, bio-
chemically, components profiling more stems are likely to play more dominant roles in
the formation of the conformation and are hence assigned higher priority weights.

3.1 Model Generation

In order to profile the interleaving stems in a pseudoknot structure with independent CM
components, we need an algorithm that can partition the set of stems on the RNA se-
quence into a number of sets comprised of stems that mutually do not interleave. Based
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on the consensus structure of the RNA sequence, an undirected graph G = (V, E) can
be constructed where V , the set of vertices in G, consists of all stems on the sequence.
Two vertices are connected with an edge in G if the corresponding stems are in paral-
lel or nested. The set of vertices V needs to be partitioned into subsets such that the
subgraph induced by each subset forms a clique.

We use a greedy algorithm to perform the partition. Starting with a vertex set S
initialized to contain a arbitrarily selected vertex, the algorithm iteratively searches the
neighbors of the vertices in S and computes the set of vertices that are connected to
all vertices in S. It then randomly selects one vertex v that is not in S from the set
and modifies S by assigning v to S. The algorithm outputs S as one of the subsets in
the partition when S can not be enlarged and randomly selects an unassigned vertex
and repeats the same procedure. It stops when every vertex in G has been included
in a subset. Although the algorithm does not minimize the number of subsets in the
partition, our experiments show that it can efficiently provide optimal partitions of the
stems on pseudoknot structures of moderate structural complexity.

The CM components in the profiling model are generated and trained based on the
partition of the stems. The stems in the same subset are profiled in the same CM compo-
nent. For each component, the parameters are estimated by considering the consensus
structure formed by the stems in the subset only.

3.2 Searching Algorithm

The optimal alignments of a sequence segment to the CM components are computed
with the dynamic programming based CYK algorithm. As we have mentioned before,
higher priority weights are assigned to components with more stems profiled. The com-
ponent with the maximum number of stems thus has the maximum weight and is the
dominant component in the model. The algorithm performs alignments in the descend-
ing order of component weights. It selects the sequence segment that maximizes the
log-odds score from the dominant component. The alignment scores and optimal con-
formations of this segment on other components are then computed and combined to
obtain the overall log-odds score for the segment’s position on the genome.

More specifically, we assume that the model contains k CM components M0, M1,
..., Mk−1 in descending order of component weights. The algorithm considers all pos-
sible sequence segments sd that are enclosed in the window and uses Equation (1) to
determine the sequence segment s to be the candidate for further consideration, where
W is the length of the window used in searching, and Equation (2) to compute the over-
all log-odds score for s. We use smi to denote the parts of s that are aligned to the
stems profiled in CM component Mi. Basically, Log odds(smi|Mi) accounts for the
contributions from the alignment of smi to Mi. The log-odds score of smi is counted
in both M0 and Mi and must be subtracted from the sum.

s = arg max
0<|sd|<W

{Log odds(sd|M0)}. (1)

Log odds(s|M) = Log odds(s|M0)

+
k−1∑

i=1

∑

smi∈Mi

(Log odds(smi|Mi) − Log odds(smi|M0)). (2)
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3.3 Stem Contention

The conformations corresponding to the optimal alignments of a sequence segment to
all CM components are obtained by tracing back the dynamic programming matrices
and checking to ensure that no stem contention occurs. Since each nucleotide in the
sequence is represented with a state in a CM component, the CM inherently imposes
constraints on the optimal conformations of sequence segments aligned to it. We hence
expect that stem contention occurs with a low frequency. In order to verify this intuition,
we tested the model on sequences randomly generated with different base compositions
and evaluated the frequencies of stem contentions for pseudoknot structures on which
we have performed an accuracy test; the results are shown in Figure 2.

The presence of stem contention increases the running time of the algorithm, be-
cause the alignment of one of the involved components must be recomputed to resolve
the contention. Based on the assumption that components with more stems contribute
more to the stability of the optimal conformation, we resolve the contention in favor
of such components. We perform recomputation on the component with a lower num-
ber of stems by incorporating conformational constraints inherited from components
with more stems into the alignment algorithm, preventing them from forming the con-
tentious stems.

Specifically, we assume that stem Sj ∈ Mi and stem contention occurs between Sj

and other stems profiled in Mi−1; the conformational constraints from the component
Mi−1 are in the format of (l1, l2) and (r1, r2). In other words, to avoid the stem con-
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Fig. 2. 4000 random sequences were generated at each given base composition and aligned to the
corresponding profiling model. The sequences are of about the same length as the length of the
pseudoknot structure. The stem contention rates for each pseudoknot structure were measured
and plotted. They were the ratio of the number of random sequences in which stem contentions
occurred to the number of total random sequences. Left: plots of profiling models observed to
have a stem contention rate lower than 20%, right: plots of these with slightly higher stem con-
tention frequencies. The experimental results demonstrate that, in all pseudoknots where we have
performed accuracy tests, stem contention occurs with a rate lower than 30% and is insensitive
to the base composition of sequences.
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tention, the left and right parts of the stem must be the subsequences of indices (l1, l2)
and (r1, r2) respectively. The dynamic programming matrices for Sj are limited to the
rectangular region that satisfies l1 ≤ s ≤ l2 and r1 ≤ t ≤ r2.

The stem contention frequency depends on the conformational flexibilities of the
components in the covariance model. More flexibilities in conformation may improve
the sensitivity of the model but cause higher contention frequency and thus increase the
running time for the algorithm. In the worst case, recomputation is needed for all non-
dominant components in the model and the time complexity of the algorithm becomes
O((k − 1)W 3L), where k is the number of components in the model, W and L are the
window length and the genome length respectively.

4 Conclusions and Future Work

In this paper, we have introduced a new model that serves as the basis for a generic
framework that can efficiently search genomes for the noncoding RNAs with pseudo-
knot structures. Within the framework, interleaving stems in pseudoknot structures are
modeled with independent CM components and alignment is performed by aligning
sequence segments to all components following the descending order of their weight
values. Stem contention occurs with a low frequency and can be resolved with a dy-
namic programming based recomputation. The statistical log-odds scores are computed
based on the alignment results from all components. Our experiments on both random
and biological data demonstrate that the searching framework achieves excellent per-
formance in both accuracy and efficiency and can be used to annotate genomes for
noncoding RNA genes with complex secondary structures in practice.

We were able to search a bacterial genome for a complete structure with a pseu-
doknot in about one week on our Sun workstation. It would be desirable to improve
our algorithm so that we could search larger genomes and databases. The running time,
however, could be significantly shortened if a filter can be designed to preprocess DNA
genomes and only the parts that pass the filtering process are aligned to the model. Al-
ternatively, it may be possible to devise alternative profiling methods to the covariance
model that would allow faster searches.
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