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a b s t r a c t

This article makes available several genome-wide datasets, which
can be used for training microRNA (miRNA) classifiers. The hairpin
sequences available are from the genomes of: Homo sapiens, Arabi-
dopsis thaliana, Anopheles gambiae, Caenorhabditis elegans and
Drosophila melanogaster. Each dataset provides the genome data
divided into sequences and a set of computed features for pre-
dictions. Each sequence has one label: i) “positive”:meaning that it is
a well-known pre-miRNA, according to miRBase v21; or ii) “unla-
beled”: indicating that the sequence has not (yet) a known function
andcould be apossible candidate tonovel pre-miRNA.Due to the fact
that selecting an informative feature set is very important for a good
pre-miRNA classifier, a representative feature set with large
discriminative power has been calculated and it is provided, as well,
for each genome. This feature set contains typical information about
sequence, topology and structure. Dataset was publically shared in
https://sourceforge.net/projects/sourcesinc/files/mirdata/.

© 2019 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Data

In this workwe provide genome-wide hairpins datasets of animals and plants, which can be used as
benchmark data for training and testing pre-miRNA predictors. Data consists of a set of FASTA files with
folded hairpins sequences of 5 complete genomes:1
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Specifications table

Subject area Bioinformatics
More specific subject area Pre-miRNA prediction
Type of data Tabular data and genomic sequences
How data was acquired Own genome-wide hairpins sequence extractor; and feature extractor miRNAfe [3]
Data format Features in comma-separated-value files and genomic sequences in FASTA format.
Data source location Argentina.
Data accessibility Public repository: https://sourceforge.net/projects/sourcesinc/files/mirdata/

Value of the data
� A real-life benchmark dataset for training pre-miRNA classifiers, of several and complete genomes, is provided.
� Sequences of each genome is fully labeled and feature extraction of the sequences, which is a very time-consuming task,

has been done and is provided as well.
� For the first time, several animals and plants sequences, extracted from a complete genome and not just portions of it, are

fully available to the academic community.
� These datasets can be used for a fair and accurate comparison of pre-miRNA classifiers on real data, in order to guarantee

reproducible results.
� Unlike other existing public datasets, this new one can be used in a realistic and complete genome-wide prediction task,

avoiding the manual definition of artificial negative samples for training classifiers.
� To the best of our knowledge, this is the first time that such a variety of hairpin sequences as well as corresponding feature

extracted data, are made freely available to the research community.
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� Homo sapiens (hsa),
� Arabidopsis thaliana (ath),
� Anopheles gambiae (aga),
� Caenorhabditis elegans (cel), and
� Drosophila melanogaster (dme).

For each genome, there is a set of well known miRNAs sequences, and a larger set of unknown
sequences that fold into hairpin structures. Table 1 shows the details of the sequences that have been
extracted. For each genome (first column) in the rows, the second column indicates the total number of
sequences extracted, which can form hairpins; the third column shows the number of known miRNAs
found for each corresponding species. A large number of discriminative features were computed (77
dimensions in total) and stored in.csv files for each genome. The features are listed in Table 2: each row
has the feature name, description and dimension (the number of values computed for each feature). A
representation of the distribution of the features among positive and unlabeled examples is depicted in
Fig. 1. The features values were normalized subtracting the mean and dividing by the corresponding
variance and then a t-Distributed Stochastic Neighbor Embedding (t-SNE) [24] was computed. This
method generates a 2D projection of the sequences considering the samples neighborhood, based on
the similarity of their features. Moreover, Figs. 2e6 show the histograms of the normalized features.
2. Experimental design, materials and methods

The importance of microRNAs (miRNAs) has been largely recognized by the scientific community.
MiRNAs on average are about 21 nucleotides long, and take part in the post-transcriptional regulation
of gene expression. These short segments of RNA play a role in many fundamental biological processes,
such as promoting or inhibiting certain diseases and infections [1]. Precursors of miRNAs (pre-miRNAs,
also known as hairpins) are generated during biogenesis and have a very well-known secondary
structure: a typical stem-loop structure with few internal loops or asymmetric bulges. Unfortunately, a
large amount of hairpin-like structures can be found in a genome [2].

The computational prediction of novel pre-miRNAs involves training a machine learning classifier
for identifying candidate sequences for being novel miRNAs. However, to the best of our knowledge,
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Table 1
Number of stem loops and pre-miRNAs in each genome.

Species Extracted hairpins miRNAs

H. sapiens 48,181,565 1710
A. thaliana 1,355,663 304
A. gambiae 4,268,407 66
C. elegans 1,737,349 249
D. melanogaster 2,066,807 307
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there are no such datasets available. Actually, in most published works, the datasets used for training
and testing the prediction methods are manually built, use diverse methodologies according to each
study [4e16], and require a (not negligible) long time. Secondly, it is very hard to fairly compare among
different classifiers. Therefore, this makes that published experiments of most pre-miRNA prediction
methods cannot be accurately reproduced nor be fully trusted, because the users of those tools cannot
obtain the same prediction rates as those published.

In this dataset, we included sequences of model genomes in animals and plants. Although miRNAs
may have had a common origin, they had evolved in different ways in the plant and animal kingdoms.
The proteins involved in the maturation process of the precursors and the places where it takes place,
can be very different. In animals, the transcription of the primary miRNAs (pri-miRNAs) is carried out
by RNApol II and RNApol III [17,18]. After transcription, the pri-miRNAs form stem-loop structures, also
called hairpins. These structures are recognized in the nucleus by Drosha and a miRNA precursor (pre-
miRNA) is obtained by cleavage. After that, the precursor is exported to the cytoplasm, where it is cut
near the terminal loop by the Dicer enzyme, forming a small double-stranded RNA [18]. Some species
possess multiple Dicer homologues with different roles. For instance, in D. melanogaster and A. gam-
biae, Dicer-1 is required for miRNA biogenesis [19]. Following Dicer processing, miRNA is preferentially
loaded onto particular types of AGO proteins and the complementary miRNA sequence is discarded. In
C. elegans, for example, miRNA duplexes and siRNA duplexes are sorted into ALG-1 and ALG-2 proteins.
In humans, by contrast, the four AGO proteins are associated with almost indistinguishable sets of
miRNAs because no strict small-RNA-sorting system exists. In plants, the primary miRNAs are tran-
scribed only by RNApol II. In addition, the length of the pri-miRNAs may have a high variation [20].
Unlike the process of the pri-miRNAs in animals, in plants the process of maturation of the miRNAs is
carried out completely in the nucleus. This maturation process is not performed by Drosha, because it is
not found in plants. Instead, Dicer1-like processes most pri-miRNAs by sequential cleavage in the basal
and the apical junctions of the terminal loop [21]. Following this processing, the duplex miRNAs is
exported to the cytoplasm. In the cytoplasm, miRNAs are loaded onto cytoplasmic AGO protein [20].
Thus, since the pre-miRNAs biogenesis is different in the animal and plant kingdom, we have included
sequences of the species considered as model genomes in these kingdoms.

3. Materials and methods

Each complete raw genome was downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/. The input
genome-wide data (a multi-fasta file named, for example, genome.fa) is pre-processed with our
open-source toolkit HextractoR,2 which automatically extracts and folds all hairpin sequences from
raw genome-wide data. It predicts the secondary structure of several overlapped segments, with
longer length than the mean length of sequences of interest for the species under processing, ensuring
that no one is lost nor inappropriately cut. Then, the prediction of the secondary structures of the
sequences obtained was done with the minimum free energy algorithm [22] of RNAfold. After that,
miRNAfe [3] was used to extract features for each sequence. Finally, BLAST matching between the
extracted sequences and the known miRNAs in miRBase [23] has been done, in order to automatically
identify and label those sequences that are, actually, well-known pre-miRNAs.
2 https://cran.r-project.org/web/packages/HextractoR/index.html.
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Table 2
Features calculated for each sequence.

Feature name Description Dimension

nt_proportion Ratio of each base in the sequence (A, C, G and T) 4
dinucleotide_proportion Ratio of dinucleotide elements of each kind, making 16 Features for the possible

binary combinations of the 4 nucleotides
16

gc_content Proportion of guanine and cytosine on the sequence 1
gc_ratio Ratio between guanine and cytosine 1
sequence_length The length of the sequence 1
stem_number The number of stem-loops 1
avg_bp_stem Average of nucleotides per stem 1
longest_stem_length Longest region where the pairing is perfect 1
terminal_loop_length Number of nucleotides in the stem region 1
bp_number Number of base-pairs 1
dP Number of base pair divided by the nucleotide number 1
bp_proportion Number of each possible base pair normalized by sequence length 3
bp_proportion_stem Proportion of base pairs on stems 3
triplets Frequencies of secondary structure triplets, this is the 32 possible combinations

of the 4 nucleotides in a sequence of 3
32

MFE Minimum free energy 1
EFE Normalized Ensemble Free Energy calculated with RNAfold (-p option) 1
ensemble_frequency The frequency of the minimum free energy in the ensemble 1
diversity Structural diversity calculated with RNAfold (-p option) 1
mfe_efe_difference Calculated as jMFE-EFEj/l 1
dQ Calculated as 1/L

P

i< j
pij log2 pij, where L is length and pij is the probability of

pairing of nucleotides i and j

1

dG Minimum free energy divided by sequence length 1
MFEI1 Ratio between the minimum free energy and the %CþG 1
MFEI2 dG/Ns, where Ns is the number of stems. 1
MFEI4 MFE/Nb, where Nb is the total number of base pairs in the secondary structure 1
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Each genome has been cut into overlapping windows of a large length (500 nt). This window has
been chosen in order to correctly capture a complete hairpin, but also to take into account the
neighborhood of any possible hairpin when estimating the secondary structure. This is very important
since the results of estimating a secondary structure can be very much affected by the neighborhood of
the sequences. Then, the prediction of the secondary structures of the sequences obtained in the
previous windowing step has been done. To do this, the minimum free energy algorithm [5] of RNAfold
has been used. This algorithm uses dynamic programming for finding the secondary structure that
minimizes the energy released. Those hairpins that did not exceed a minimum length of 60 and level
pairing of 16 were eliminated.

In order to obtain sequences with lengths similar to those of the well-known pre-miRNA of the
particular genome under analysis (found with BLAST matching of the extracted sequences against
miRBase), the extracted sequences were trimmed trying to optimize the normalized Minimum Free
Energy (NMFE) by the sequence length. The following rules have been applied to achieve this:

1. Each sequence extracted not having a specified minimum length, according to the miRNAs of the
genome under analysis, was discarded. This was done in order to ensure that the secondary
structure had sufficient length to be a pre-miRNA.

2. The cuts were made in the first unpaired nucleotide of an internal loop or bulge of the secondary
structure (starting from the main loop) that passes the minimum length specified. That is, from all
unpaired nucleotides, only the ones that are at a certain distance from the main loop are candidates
to be a cutting point. It is likely that cutting the sequence at those points will result in a structure
with lower NMFE. Moreover, the smaller the length of the sequence (independently of the pairing),
the higher the NMFE. Therefore, a loop/bulge closer to the main loop is preferred.



Fig. 1. t-SNE projection with the well-known pre-miRNAs (in orange) and a random set of unlabeled sequences (in blue) for each
genome. Sequences that are closer in the projected feature space have more similar features.
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Repeated sequences were eliminated to avoid extra computational cost and because theymight also
disturb the results of the prediction algorithms, since each repeated sequence increases its relevance
for the predictor. Repetitions may appear due to the overlapping in windowing. These repeated se-
quences appear consecutively and they can be almost identical. To eliminate them, a comparison be-
tween each sequence and the last extracted sequence is made. If one of the sequences contains the
other one, the shortest one is discarded. Finally, for labeling the sequences obtained, BLASTmatching is
done against miRBase. The sequences that match, are labeled as positive class (pre-miRNAs).

A characterization of the features of each dataset has been done. A t-SNE projection is shown in
Fig. 1. The well-known pre-miRNAs sequences are highlighted in orange, and plotted together with the
unlabeled samples in blue. It can be seen that there are some known miRNAs that are close in the



Fig. 2. Histograms of the top 3 features distributions in H. sapiens: minimum free energy, normalized ensemble free energy
(RNAfold) and minimum free energy normalized by length. Well known miRNAs, in orange, have a slightly different distribution but
highly overlapped when compared with other sequences (in blue).

Fig. 3. Histograms of the top 3 features distributions in A. thaliana.
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Fig. 4. Histograms of the top 3 features distributions in A. gambiae.

Fig. 5. Histograms of the top 3 features distributions in C. elegans.
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Fig. 6. Histograms of the top 3 features distributions in D. melanogaster.
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projected space. However, there are also many positive samples scattered all over the feature space,
showing that accurate prediction is, indeed, a challenging task. This is especially notorious in the H.
sapiens and D. melanogaster genomes, which have a very large number of sequences and several well-
known miRNAs.

A further insight of the relevance of each feature was done ranking the features according to its
importance for classification. Training a random forest [7] with 10 trees, it is possible to see which
features are the best ones to separate positive versus unlabeled samples. Taking the average rank across
all the genomes, the top-5 most informative features are shown in Table 3. It can be seen that the
normalized ensemble free energy (EFE), the minimum free energy (MFE) and its value normalized by
length (dG) are the most important features, since those features reflect the stability of the hairpin
secondary structure.

Figs. 2e6 show the histograms of the normalized features, but now analyzed with the top-3 most
interesting features of Table 3. They show that features distribution is, indeed, different among positive
and unlabeled classes. However, there is a significant overlapping among them, which makes the
prediction a challenging task for simple classifiers. This is one of the main motivation for making
available to the research community these benchmark datasets: helping and giving support to the
Table 3
Feature relevance.

Feature Average rank

MFE 0.40
EFE 4.20
dG 6.60
triplets0 9.60
MFEI4 9.80
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proposal of novel and more advanced prediction methods, which could be now fairly compared on the
same experimental conditions, such as in [16].
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