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METHODS: The mAchine Learning ADvanceD fibrosis and rIsk metabolic dysfunction-associated steatohepatitis 
Novel predictor (ALADDIN) study addressed this gap by introducing a machine-learning-based web 
calculator that estimates the likelihood of significant fibrosis using routine laboratory parameters with 
and without VCTE. Our study included a training set of 827 patients, a testing set of 504 patients with 
biopsy-confirmed metabolic dysfunction-associated steatotic liver disease from 6 centers, and an 
external validation set of 1,299 patients from 9 centers. Five algorithms were compared using area 
under the curve (AUC) in the test set: ElasticNet, random forest, gradient boosting machines, XGBoost, 
and neural networks. The top 3 (random forest, gradient boosting machines, and XGBoost) formed an 
ensemble model.

RESULTS: In the external validation set, the ALADDIN-F2-VCTE model, using routine laboratory parameters with 
VCTE (AUC 0.791, 95% confidence interval [CI]: 0.764–0.819), outperformed VCTE alone (0.745, 
95% CI 0.717–0.772, P < 0.0001), FibroScan-aspartate aminotransferase (0.710, 0.679–0.748, P < 
0.0001), and Agile-3 model (0.740, 0.710–0.770, P < 0.0001) regarding the AUC, decision curve 
analysis, and calibration. The ALADDIN-F2-Lab model, using routine laboratory parameters without 
VCTE, achieved an AUC of 0.706 (95% CI: 0.668–0.749) and outperformed Fibrosis-4, steatosis-
associated fibrosis estimator, and LiverRisk scores.

DISCUSSION: Along with the steatosis-associated fibrosis estimator model developed to target significant fibrosis or 
higher, ALADDIN-F2-VCTE (https://aihepatology.shinyapps.io/ALADDIN1) uniquely supports a refined 
noninvasive approach to patient selection for resmetirom without the need for liver biopsy. In addition, 
ALADDIN-F2-Lab (https://aihepatology.shinyapps.io/ALADDIN2) offers an effective alternative when 
VCTE is unavailable.
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INTRODUCTION
Metabolic dysfunction-associated steatotic liver disease (MASLD) 
(1), which affects an estimated 30% of the global adult population 
(2), is now the predominant cause of chronic liver disease in 
Western countries, leading to an increase in liver transplantation in 
the United States (3). MASLD encompasses a spectrum that ranges 
from isolated steatosis to metabolic dysfunction-associated stea-
tohepatitis (MASH), potentially progressing to fibrosis and cir-
rhosis (4). Patients with significant fibrosis (stage F2) or higher 
have a significantly increased risk of liver-related morbidity and 
mortality (5). The recent US Food and Drug Administration ap-
proval of resmetirom for the treatment of MASLD in patients with 
significant to advanced fibrosis specifically targets this subset of 
patients. Treatment generally requires precise patient selection and 
liver biopsy (6).

Liver biopsy is the gold standard for diagnosing fibrosis stage 
in MASLD (6); its invasiveness and variability in interpretation 
highlight the need for less invasive diagnostic methods (7). If the 
indication for resmetirom is solely based on liver biopsy, access to 
treatment for patients at the highest risk of disease progression 
would be severely restricted. Major gastroenterological societies, 
such as the American Gastroenterological Association (AGA) (8), 
American Association for the Study of Liver Diseases (AASLD) 
(9), and the European Association for the Study of Liver Diseases 
(10) advocate a sequential screening approach, initially using the 
Fibrosis-4 index (FIB-4), followed by vibration-controlled tran-
sient elastography (VCTE) for risk assessment of advanced (F3-4) 
fibrosis. FibroScan-aspartate aminotransferase(FAST) is 
a VCTE-based algorithm commonly used to diagnose at-risk

MASH (at least significant fibrosis and Nonalcoholic fatty liver 
disease Activity Score $4) (11). This group is of particular in-
terest for trials (12) because they are more likely to benefit from 
emerging treatments (13) aimed at inflammation and fibrosis. On 
the other hand, Agile-3 (14) uses VCTE and common laboratory 
parameters for the diagnosis of advanced fibrosis. Unfortunately, 
no existing VCTE-based algorithm effectively targets significant 
fibrosis or higher ($F2), which would be optimal for targeting 
patients for current resmetirom treatment, as well as future 
therapeutics with similar indications. This drives the need for 
a VCTE-based algorithm, specifically for significant fibrosis or 
higher ($F2). In addition, there is a need for a more accessible 
algorithm that uses routine laboratory parameters without VCTE 
in various clinical environments.

This study introduces the mAchine Learning ADvanceD fi- 
brosis and rIsk MASH Novel predictor (ALADDIN), a cross-
sectional study designed to bridge these diagnostic gaps. 
ALADDIN leverages a novel machine-learning-based web cal-
culator to deliver comprehensive probability assessments for 
significant fibrosis, advanced fibrosis, and at-risk MASH. The 
findings on advanced fibrosis and at-risk MASH will be reported 
separately, whereas this study focused on significant fibrosis. The 
aims of this study were to (i) diagnose significant fibrosis or 
higher ($F2) with 90% specificity adequate for resmetirom 
treatment consideration and (ii) identify patients at in-
determinate risk of significant fibrosis or higher ($F2) who can 
undergo further testing or follow-up. Notably, this model has 
various forms that accommodate scenarios with and without the 
VCTE data inputs. This feature significantly enhances the
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applicability of the model across a wide range of healthcare 
environments, from local community clinics to advanced tertiary 
referral centers.

METHODS
Study design and participants
The ALADDIN study aggregated data from 15 global centers, 
with initial participants from 6 centers across various continents 
randomized 1:1 into training and test sets. This was supple-
mented by data from 9 additional centers for the external vali-
dation set. See Supplementary Table 1, http://links.lww.com/ 
AJG/D621 for the center listings and characteristics. Inclusion 
criteria included patients with steatotic liver disease (1) and $1 
cardiometabolic risk factor (body mass index [BMI] $25 kg/m 2 ,
type 2 diabetes or impaired glucose tolerance, hypertension,
hypertriglyceridemia, and low high-density lipoprotein choles-
terol) with a liver biopsy within 6 months. Key exclusions were 
significant alcohol consumption and other etiologies of chronic 
liver diseases such as chronic viral hepatitis and hepatocellular 
carcinoma. In addition, we excluded patients with missing age, 
aspartate aminotransferase (AST), platelet, and gamma-glutamyl 
transpeptidase (GGTP) data from the train set to ensure model 
robustness. Data were transmitted to a central database managed 
by the main researchers of the study. With Institutional Review 
Board approval from each center and the retrospective nature 
of the study, the requirement for patient consent was waived. 
This study adhered to the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis—Artificial 
Intelligence reporting guidelines and with the 1964 Declaration 
of Helsinki and its later amendments or comparable ethical 
standards.

Training set, test set, and external validation set
Our study used the training, test, and external validation sets to 
develop a robust methodology. Patients from the 6 global centers 
were split 1:1 into training and test sets. To ensure model accuracy 
and reliability, patients with missing key variables (age, AST, 
platelet, and GGTP) were excluded from the training set rather 
than imputing these variables. This approach helped create 
a cleaner and more reliable data set for training the predictive 
model. However, because both the training and test sets origi-
nated from the same centers, there was a risk of overfitting be-
cause of similar patient characteristics. To mitigate this and assess 
the model’s wider generalizability on top of transportability, we 
included an external validation set from 8 additional centers in 
North America and Asia, offering diversity and independence 
from the derivation data. This smaller, yet diverse cohort is es-
sential to evaluate the model’s generalizability to new, unseen 
data, underpinning its real-world relevance and utility.

Data collection and definitions
Each participating center performed a medical chart review to 
obtain data on the patients who met the inclusion and exclusion 
criteria. Liver biopsies were graded and staged by a local path-
ologist(s) in accordance with the Nonalcoholic Steatohepatitis 
Clinical Research Network criteria (15). We included clinical data 
obtained within 6 months of liver biopsy. Significant fibrosis was 
defined as a stage $F2 fibrosis. The features considered in the 
modeling included patient demographics (age and sex) and 
common laboratory data (complete blood counts, comprehensive 
metabolic panel, lipid panel, and GGTP (16)). Protein (17) and

albumin levels are part of a comprehensive metabolic panel. We 
used separate models that used (ALADDIN-F2-VCTE) and did 
not use VCTE (ALADDIN-F2-Lab) parameters, including VCTE 
liver stiffness measurement.

Missing data and imputation

We excluded patients with missing data on age, AST, platelet 
count, and GGTP from the training set because these were the 
most important predictors (other than VCTE) for the dependent 
variable (i.e., significant fibrosis or higher). Patients with missing 
VCTE were included in the ALADDIN-F2-Lab analysis only. 
Missing data were otherwise handled using the missForest algo-
rithm in R for imputation based on random forest. This algorithm 
does not use data from the dependent variable or any biopsy-
related data (e.g., Nonalcoholic fatty liver disease Activity Score) 
and relies solely on the independent variables included in the 
model. The rate of missing data is represented in Supplementary 
Digital Content (see Supplementary Table 2, http://links.lww. 
com/AJG/D621).

Machine learning, hyperparameters optimization, model 
selection, and ensemble model

From the derivation cohort, we developed models to predict sig-
nificant fibrosis or higher, both with and without VCTE data, using 
5 machine-learning algorithms: ElasticNet (EN), random forest 
(RF), gradient boosting machines (GBM), XGBoost (XGB), and 
neural networks (NN). The RF optimized the hyperparameters 
using a grid search based on the out-of-bag area under the curve 
(AUC), whereas EN, GBM, and XGB relied on the cross-validated 
AUC for hyperparameter tuning. By contrast, the NN was opti-
mized based on the cross-validated accuracy of the training set. The 
top 3 algorithms regarding AUC in the test set were used to con-
struct an ensemble model, which was calculated as the geometric 
mean of the predictions of these models.

Specifically, EN adjusted hyperparameters based on the bal-
ance between L1 and L2 regularization (alpha) and regularization 
strength (lambda). The RF tuned the number of variables to be 
considered at each split (mtry), sample size for each tree (samp-
size), minimum size of terminal nodes (nodesize), number of 
trees (ntree), and maximum number of terminal nodes (maxn-
odes). GBM optimized the interaction depth, learning rate 
(shrinkage), minimum number of observations in a node 
(n.minobsinnode), and fraction of data used per tree (bag.- 
fraction). XGB adjusted tree depth (max_depth), learning rate 
(eta), minimum child weight (min_child_weight), number of 
estimators (n_estimators), subsample rate (subsample), column 
sample rate per tree (colsample_bytree), and minimum split loss 
(gamma). The NN was fine-tuned by optimizing the learning rate 
(learn_rate), number of neurons per layer (neurons), dropout rate 
(dropoutrate), batch size (batchsize), number of epochs (epochs), 
and the optimizer type (optimizer).

Target imbalance and Bayesian updates
To address the target imbalance within our models, distinct 
approaches were used for RF, GBM, and XGB to optimize the 
performance. For the RF model, we balanced the data set by 
specifying the same sample size for both classes in the target 
variable, ensuring an equitable representation during model 
training. The aim of this approach was to mitigate bias toward the 
more prevalent class. Conversely, for the GBM and XGB, we 
adopted a weighting strategy to address this imbalance. The final
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models, ALADDIN-F2-VCTE and ALADDIN-F2-Lab, in-
corporated Bayesian updates to adjust for the center-specific rate 
of significant fibrosis or higher ($F2). We computed the baseline 
risk based on the prevalence in the training set.

For example, in a referral cohort with a 30% prevalence, 
a patient with a predicted probability of 45%. Calculation as 
follows.

Predicted  Odds : 0:45=ð1 2 0:45Þ ¼ 0:8182

Prevalence  Odds : 0:30=ð1 2 0:30Þ ¼ 0:4286

Likelihood  Ratio : 0:8182=1:3529 ¼ 0:605

Posttest  Odds : 0:4286 3 0:605 ¼ 0:2592

Updated  Probability : 0:2592=ð1 1 0:2592Þ ¼ 20:6%

Statistical analysis
Data analysis was performed using R v4.4.0 (R Core Team 2024). 
Continuous variables were expressed as mean (SD), whereas 
categorical variables were presented as numbers (percentages). 
The discriminatory performance of the models was assessed us-
ing the area under the receiver operating characteristic curve with 
95% confidence intervals (CIs).

Decision curve analysis
Decision curve analysis (DCA) was used to assess the clinical 
utility of predictive models for significant ($F2) fibrosis or higher 
by calculating and comparing their net benefits across a range of 
decision thresholds. This method enabled us to evaluate the 
models against 2 baseline strategies: treating all patients and 
treating them based on their risk levels. We computed the net 
benefits of the models using a predefined function that factors the 
true and false positives for each threshold probability. The anal-
ysis was visualized using ggplot2, which demonstrated the net 
benefit of each model relative to baseline strategies. This process 
identified the most clinically useful models for predicting con-
ditions in both the test and external validation sets, thereby 
guiding optimal decision making in clinical practice.

Calibration

Calibration analysis was conducted to evaluate the accuracy of the 
ALADDIN models for significant ($F2) fibrosis or higher. Using 
ggplot2 in R, calibration plots were created by dividing the patient 
data into deciles based on the posterior probabilities from the 
ALADDIN models. These plots compare the observed condition 
rate with the median-predicted probability in each decile, iden-
tifying any over-predictions or under-predictions. The Brier 
Score, which measures the mean squared deviation between 
predictions and actual outcomes, further validated the accuracy 
of the models. Lower Brier Scores indicated higher accuracy, 
confirming the effectiveness and reliability of the ALADDIN 
models for practical use.

Dual cutoff approach
A sensitivity and specificity of 95% in the training set were tar-
geted, with the goal of achieving 90% sensitivity and specificity 
in the test and external validation sets. Within the test set and 
external validation set, the sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), percentage

correctly classified, number of screening positive, negative, and 
indeterminate were determined.

RESULTS
Our study included 3,008 patients with biopsy-confirmed 
MASLD from 6 centers across 5 continents. These patients 
were divided into training and test sets in a 1:1 ratio. After ex-
cluding patients with missing key variables, 827 patients were 
retained in the training set, whereas 1,504 patients were included 
in the test set. In addition, an external validation set comprised 
1,299 patients from 9 centers. Table 1 presents the patient char-
acteristics of the training, test, and external validation sets. Sup-
plementary Digital Content (see Supplementary Table 1, http:// 
links.lww.com/AJG/D621) presents the characteristics of the 
participating centers across the 3 cohorts. Supplementary Digital 
Content (see Supplementary Table 3, http://links.lww.com/AJG/ 
D621) presents the univariate analysis of significant fibrosis or 
higher in the training set. Log-transformed AST, alanine ami-
notransferase, platelet count (16), and GGTP had substantially 
lower P values than their counterparts, and therefore, log trans-
formation was used.

Prediction of significant fibrosis or higher (‡F2) with VCTE: 
ALADDIN-F2-VCTE

This analysis included 752 patients in the training set, 1,281 
patients in the test set, and 1,019 patients in the external valida-
tion set with VCTE data. In the test set, the RF model achieved an 
AUC of 0.789 (95% CI, 0.765–0.814), the GBM was 0.790 (95% 
CI, 0.766–0.814), and the XGB was 0.782 (95% CI, 0.758–0.807). 
These models outperformed VCTE alone with an AUC of 0.745 
(95% CI, 0.717–0.772), EN with an AUC of 0.781 (95% CI 
0.756–0.806), and NN with an AUC of 0.7286 (95% CI 
0.701–0.756) and were thus included in the final ensemble model 
building. Table 2 presents the individual performances of the RF, 
GBM, and XGB models as well as the ensemble model, which 
integrates these algorithms with Bayesian updates across the 
training, test, and external validation sets.

The ensemble model using VCTE data, ALADDIN-F2-VCTE, 
achieved an AUC of 0.792 (95% CI, 0.768–0.817) in the test set 
and 0.791 (95% CI 0.764–0.819) in the external validation set, as 
shown in Figure 1a,b. Notably, this model significantly out-
performed the VCTE alone (AUC 0.745, 95% CI 0.717–0.772, 
Delong test, P , 0.0001), FAST model (AUC 0.693, 95% CI 
0.664–0.722, P , 0.0001), and the Agile-3 model (AUC 0.761, 
95% CI 0.735–0.787, P 5 0.0016) in the test set. A similar supe-
riority was observed in the external validation set, with AUCs of 
0.761 (95% CI 0.731–0.791, P 5 0.010), 0.710 (95% CI 
0.679–0.748, P , 0.0001), and 0.740 (95% CI 0.710–0.770, P , 
0.0001), respectively. Figure 2 illustrates the ranking order of the 
variables used to derive the RF, GBM, and XGB models, high-
lighting that log VCTE is the most important, followed by FIB-4, 
log GGTP, and log AST.

Prediction of significant fibrosis or higher (‡F2) without VCTE: 
ALADDIN-F2-Lab

This analysis included all 827 patients in the training set, 1504 in 
the test set, and 1,299 in the external validation set. In the test set, 
the RF model achieved an AUC of 0.766 (95% CI, 0.743–0.790), 
GBM was 0.767 (95% CI, 0.744–0.791), and XGB was 0.764 (95% 
CI, 0.740–0.788). These models outperformed EN (AUC 0.747, 
95% CI 0.722–0.772) and NN (AUC 0.723, 95% CI 0.700–0.746)
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Table 1. Characteristics of the participants with metabolic dysfunction-associated steatotic liver disease included in the train set, test set, 

and external validation set

Training set 

N 5 827

Test set 

N 5 1,504

External validation set 

N 5 1,299

P value test set vs 
external validation set

Demographics

Age (yr) 56 (46 to 62) 56 (48 to 63) 54 (41 to 65) ,0.0001

Sex–male (n, %) 366 (44.3%) 653 (43.4%) 642 (49.4%) 0.0017

Race (n, %) 0.0003

White 425 (51.4%) 693 (46.1%) 694 (46.1%)

Hispanic 103 (12.6%) 236 (15.7%) 94 (6.4%)

Black 4 (0.5%) 17 (1.1%) 30 (2.0%)

Asian 224 (29.5%) 372 (24.7%) 364 (24.2%)

Native American 4 (0.5%) 3 (0.2%) 1 (0.1%)

Australian Native 2 (0.2%) 8 (0.5%) 0 (0%)

Other 65 (7.9%) 175 (11.6%) 116 (8.9%)

History and physical exam

Type 2 diabetes (n, %) 501 (60.6%) 855 (56.8%) 565 (43.5%) ,0.0001

Hypertension (n, %) 449 (54.3%) 732 (48.7%) 644 (49.6%) 0.66

BMI (kg/m 2 ) 32 (28 to 37) 33 (28 to 38) 32 (26 to 37) 0.19

Complete blood count

WBC (K/mL) 7.2 (5.9 to 8.8) 7.2 (6.0 to 8.9) 6.8 (5.6 to 8.2) ,0.0001

Platelet (k/mL) 236 (189 to 285) 273 (196 to 278) 226 (178 to 275) ,0.0001

Comprehensive metabolic panel

AST (IU/L) 37 (26 to 54) 38 (27 to 54) 62 (36 to 99) ,0.0001

ALT (IU/L) 51 (33 to 81) 53 (33 to 76) 48 (32 to 71) ,0.0001

GGT (IU/L) 53 (33 to 89) 65 (40 to 97) 76 (47 to 121)

Alkaline phosphatase (IU/L) 79 (65 to 100) 83 (66 to 99) 91 (72 to 119) ,0.0001

Creatinine (mg/dL) 0.8 (0.7 to 0.9) 0.8 (0.7 to 1.0) 0.9 (0.7 to 1.0) 0.0067

HbA1c (%) 6.3 (5.6 to 7.4) 6.3 (5.6 to 7.0) 6.0 (5.5 to 6.8)

Albumin (mg/dL) 4.3 (4.1 to 4.6) 4.4 (4.2 to 4.5) 4.3 (3.9 to 4.5) ,0.0001

Protein (mg/dL) 7.3 (7.1 to 7.6) 7.3 (7.1 to 7.6) ,0.0001

Total bilirubin (mg/dL) 0.6 (0.5 to 0.8) 0.6 (0.4 to 0.8) 0.6 (0.4 to 0.8) 0.041

Globulin (mg/dL) 3.0 (2.7 to 3.3) 2.9 (2.7 to 3.3) 2.8 (2.4 to 3.2) ,0.0001

Lipid panel

Total cholesterol (mg/dL) 182 (151 to 207) 189 (161 to 204) 189 (156 to 208) 0.90

LDL (mg/dL) 102 (76 to 124) 111 (83 to 124) 110 (83 to 127) 0.034

HDL (mg/dL) 45 (38 to 53) 45 (39 to 50) 44 (38 to 51) 0.15

Triglyceride (mg/dL) 151 (112 to 210) 159 (124 to 197) 155 (113 to 196) 0.36

VCTE (transient elastography)

Liver stiffness on VCTE (kPa) 10.2 (7.0 to 14.1) 10.5 (7.6 to 14.3) 11.6 (7.8 to 17.1) 0.0002

CAP (dB/m) 321 (296 to 349) 323 (298 to 353) 319 (286 to 347) 0.0010

Composite scores

FAST 0.51 (0.28 to 0.70) 0.55 (0.31 to 0.72) 0.61 (0.41 to 0.78) ,0.0001

Agile-3 0.25

FIB-4 1.21 (0.83 to 1.79) 1.27 (0.88 to 1.80) 1.47 (0.93 to 2.34) 0.0006
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and were thus included in the final ensemble model building. 
Table 1 presents the individual performances of the RF, GBM, 
and XGB models as well as the ensemble model, which integrates 
these algorithms with Bayesian updates across the training, test, 
and external validation sets.

The ensemble model using only common laboratory param-
eters, ALADDIN-F2-Lab, achieved an AUC of 0.779 (95% CI 
0.776–0.802) in the test set and 0.717 (95% CI 0.689–0.744) in the 
external validation set. The performance of this model was sig-
nificantly better than that of the FIB-4 Score (AUC 0.727, 95% CI 
0.702–0.753, Delong test P , 0.0001), steatosis-associated fibrosis 
estimator (SAFE) score (AUC 0.749, 95% CI 0.724–0.773, Delong

test P 5 0.0022), and LiverRisk score (AUC 0.682, 95% CI 
0.655–0.709, Delong test P , 0.0001) in the test set. The model 
also outperformed these scores in the external validation set, with 
AUCs of 0.655 (95% CI 0.625–0.684, Delong test, P , 0.0001) for 
FIB-4, 0.680 (95% CI 0.651–0.709, Delong test, P 5 0.0005) for 
SAFE, and 0.632 (95% CI 0.601–0.662, Delong test, P , 0.0001) 
for the LiverRisk score, as depicted in Figure 1a,b. Figure 2 shows 
the ranking order of the variables used to derive the RF, GBM, and 
XGB models. Without VCTE elasticity, the most important 
variables in the RF, GBM, and XGB models are FIB-4, log GGTP, 
followed by in various orders of BMI, total cholesterol, and 
log AST.

A subset of patients with available VCTE data (n 5 1,281 in 
the test set and n 5 1,019 in the external validation set) was used 
to compare the performance of the ALADDIN-F2-Lab model 
against the FAST and Agile-3 scores. In the test set, the ALAD-
DIN-F2-Lab model achieved an AUC of 0.764 (95% CI: 
0.738–0.790), which was significantly better than the FAST score 
(AUC: 0.693, 95% CI: 0.664–0.722, P , 0.0001) but comparable 
with the Agile-3 score (AUC: 0.761, 95% CI: 0.735–0.787, P 5 
0.82). In the external validation set, the ALADDIN-F2-Lab model 
achieved an AUC of 0.720 (95% CI: 0.689–0.751), which was 
comparable with both the FAST score (AUC: 0.710, 95% CI: 
0.679–0.742, P 5 0.58) and the Agile-3 score (AUC: 0.740, 95% 
CI: 0.710–0.770, P 5 0.18).

Decision curve
DCA revealed that ALADDIN-F2-VCTE consistently shows 
a higher net benefit compared with FAST in the test set and 
external validation set across a wide range of threshold proba-
bilities, especially between 0.1 and 0.7 (Figure 3). This suggests 
that the ALADDIN-F2-VCTE model is better at balancing the 
benefits of true-positives while minimizing the harm of false-
positives than the FAST models in this range. Although ALAD-
DIN-F2-VCTE shows superiority over Agile-3, this advantage is 
modest. The ALADDIN-F2-Lab performed similar to ALAD-
DIN-F2-VCTE in the test set and similarly to FAST and Agile-3 in 
the external validation set.

Calibration

The calibration of observed vs expected probabilities demon-
strated improvement with the ALADDIN-F2-VCTE model, as 
reflected by the Brier Score. In the test set, ALADDIN-F2-VCTE 
achieved a lower Brier Score (0.184) than to the FAST score 
(0.232) and Agile-3 (0.209), indicating better calibration (lower

Table 1. (continued)

Training set 

N 5 827

Test set 

N 5 1,504

External validation set 

N 5 1,299

P value test set vs 
external validation set

SAFE 96 (18 to 166) 98 (23 to 163) 97 (216 to 195) ,0.0001

LiverRisk score 8.7 (7.6 to 9.9) 8.5 (7.6 to 9.8) 8.9 (7.9 to 10.3) 0.88

Outcomes

Significant fibrosis or higher 465 (56.2%) 851 (56.6%) 734 (56.5%) 0.99

Continuous variables are described using median and interquartile ranges, whereas categorical variables are presented through actual counts and percentages.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CAP, controlled attenuation parameter; FAST, FibroScan-aspartate 
aminotransferase; FIB-4, Fibrosis-4; GGTP, Gamma-glutamyl transpeptidase; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 
SAFE, steatosis-associated fibrosis estimator; VCTE, vibration-controlled transient elastography; WBC, white blood cell.

Table 2. Area under the curve of several machine learning models 

in derivation, internal validation, and external validation sets

Significant 

fibrosis or higher 

including VCTE

Significant fibrosis 

or higher without 

VCTE available

Training set

RF 0.819 (0.790–0.849) 0.768 (0.737–0.800)

GBM 0.824 (0.795–0.853) 0.764 (0.733–0.796)

XGB 0.790 (0.795–0.853) 0.761 (0.729–0.793)

Ensemble 0.824 (0.801–0.859) 0.781 (0.753–0.809)

Test set

RF 0.789 (0.765–0.789) 0.766 (0.743–0.790)

GBM 0.790 (0.766–0.814) 0.767 (0.744–0.791)

XGB 0.782 (0.758–0.807) 0.764 (0.740–0.788)

Ensemble 0.792 (0.768–0.817) 0.779 (0.756–0.802)

External validation set

RF 0.773 (0.745–0.802) 0.688 (0.659–0.716)

GBM 0.779 (0.751–0.807) 0.678 (0.649–0.707)

XGB 0.777 (0.748–0.805) 0.683 (0.654–0.712)

Ensemble 0.791 (0.764–0.819) 0.717 (0.690–0.744)

We included the random forest (RF), gradient boosting machines (GBM), and 
XGBoost (XGB) models before their integration into the ALADDIN models. The 
95% confidence intervals are calculated using the DeLong method, providing 
a statistical measure of the precision of the AUC values for each model. 
VCTE, vibration-controlled transient elastography.
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values indicate better performance). Similarly, in the external 
validation set, ALADDIN-F2-VCTE outperformed the other 
models with a Brier Score of 0.183, compared with 0.217 for the 
FAST score and 0.229 for Agile-3. The ALADDIN-F2-Lab model 
achieved a comparable Brier Score with ALADDIN-F2-VCTE in 
the test set (0.189) and performed better than the FAST score in 
the external validation set (0.215). The calibration curve of the 
observed vs expected probabilities is shown in Figure 4a,b. The 
ALADDIN-F2-VCTE is very closely aligned with the ideal cali-
bration, as shown by the dotted diagonal line, indicating exact 
matches between predictions and outcomes.

Dual cutoff approach
We used a dual cutoff strategy to enhance the diagnostic per-
formance in predicting significant fibrosis or higher. For the 
ALADDIN-F2-VCTE model, we used a rule-out cutoff designed 
to achieve 95% sensitivity and a rule-in cutoff aimed at 95% 
specificity in the training set. By contrast, the ALADDIN-F2-Lab 
model aimed for 90% sensitivity and specificity. Supplementary 
Digital Content (see Supplementary Figures 1A and 1B, http:// 
links.lww.com/AJG/D621) illustrate these cutoffs in the training 
set, whereas Table 3 outlines the corresponding rule-in and rule-
out thresholds for the ALADDIN models, alongside the VCTE, 
FIB-4, FAST, Agile-3, SAFE, and LiverRisk scores, based on 
commonly used thresholds.

The ALADDIN-F2-VCTE model, with cutoffs of 0.36 and 
0.77, demonstrated notable improvements in sensitivity, speci-
ficity, NPV, and PPV compared with the FAST model. However, 
this led to approximately 20% more patients in the testing cohort 
and 2% more patients in the external validation cohort falling into 
the indeterminate zone (as presented in Table 3 and Figure 5a,b).

Importantly, the ALADDIN-F2-VCTE model achieved $90% 
sensitivity and specificity in both the testing and external vali-
dation cohorts. Similarly, the ALADDIN-F2-Lab model, with its 
cutoffs of 0.37 and 0.72, also achieved $80% sensitivity and 
specificity in both cohorts. In the external validation set, the 
performance metrics (sensitivity, specificity, NPV, and PPV) of 
the ALADDIN-F2-Lab model were comparable with those of the 
FAST and Agile-3 models.

DISCUSSION
In this study, we developed and introduced ALADDIN, 
a groundbreaking machine-learning-based web calculator to de-
liver comprehensive and nuanced probability assessments for 
significant fibrosis or higher ($F2). The training and test sets were 
sourced from 6 global centers, with subsequent external validation 
conducted at 8 additional centers, encompassing 2,677 patients. 
This model, adaptable to include or exclude VCTE data, relies 
solely on commonly available laboratory parameters and uses 
Bayesian updates to cater to a wide range of healthcare settings 
from community clinics to specialized tertiary referral centers. In 
external validation set, the ALADDIN model with VCTE out-
performed the FAST score, the closest existing VCTE model, re-
garding AUC, DCA, and calibration. The ALADDIN model with 
common laboratory parameters without VCTE was noninferior to 
the FAST score and superior to the FIB-4, SAFE, and LiverRisk 
scores. Using a dual cutoff approach, ALADDIN provided high 
diagnostic accuracy; the rule-in cutoff achieved over 90% specificity 
in referral and tertiary referral settings, whereas the rule-out cutoff 
demonstrated over 90% sensitivity. When this algorithm is applied 
to referral and tertiary referral settings, over half of patients fall into 
the indeterminate zone. However, when applied to a population-

Figure 1. ROC Curves. In test (a) and external validation (b) sets, the ALADDIN-F2-VCTE model shows superior predictive accuracy for significant fibrosis or 
higher, significantly outperforming FAST. ALADDIN-F2-VCTE and FASTwere calculated from test set of 1,203 and external validation set of 876 with VCTE 
data. The ALADDIN-F2-Lab, FIB4, SAFE, and LiverRisk score were calculated from the entire test set of 1,307 and external validation set of 1,135. 
ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FIB-4, Fibrosis-4; ROC, receiver operating characteristic curve; SAFE, 
steatosis-associated fibrosis estimator; VCTE, vibration-controlled transient elastography.
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based cohort, this approach allowed for the exclusion of significant 
fibrosis or higher in .90% of the patients.

Of the initial contenders, RF, GBM, and XGB outperformed 
EN and NN in the test set and proceeded with ensemble model 
building. RF, GBM, and XGB are the 3 decision-tree-based 
methods. RF improves accuracy using bagging, where multiple 
deep decision trees are trained on different random subsets of the 
data. GBM and XGB are based on the boosting approach, where 
a series of shallow trees are trained, and each minimizes the error 
made from the previous tree. Compared with conventional de-
cision trees, these 3 tree-based methods can avoid overfitting and 
improve the accuracy. They can also better handle nonlinear 
relationships and complex interactions between covariates and 
clinical outcomes than traditional linear methods, such as ridge 
regression, least absolute shrinkage and selection operator re-
gression, and EN. In addition, NNs, which are powerful for 
complex data, often require extensive tuning and large amounts 
of data to generalize well and avoid overfitting, which can lead to 
underperformance when our training set is approximate one 
thousand in size. This could explain why tree-based methods, 
owning to their robustness to diverse data structures and less 
demanding hyperparameter tuning, outperformed NNs in the 
test set.

In the ALADDIN-F2 models, with and without VCTE, age, 
AST, platelet, GGTP, and protein and total cholesterol emerge as 
key features. GGTP and total cholesterol are also being used in the 
LiverRisk score (16). Globulin, derived from the difference be-
tween protein and albumin, is included in the SAFE score (17). 
Additional moderately important variables include BMI, creati-
nine, and HbA1c. Although removing less important features 
might streamline data entry into the website, doing so in-
crementally reduces the AUC in both the training and test sets. 
Furthermore, eliminating these features does not reduce costs, as 
laboratory tests are typically ordered in bundles, such as the 
comprehensive metabolic panel and lipid panel.

Patients with significant fibrosis or higher ($F2) because of 
MASH are at an increased risk of progression and morbidity (4) 
and may benefit from newly approved resmetirom treatments 
(13). Given the limitations of VCTE availability, only a few 
thousand VCTE are available in the United States, therefore 
a score that is not dependent on access to VCTE for providers who 
do not have access to point-of-care VCTE. We introduced 2 novel 
algorithms, ALADDIN-F2-VCTE and ALADDIN-F2-Lab. The 
ALADDIN-F2-VCTE algorithm offers a highly specific diagnosis, 
achieving greater than 90% specificity for significant fibrosis or 
higher in both the test and external validation sets. This high

Figure 2. Ranking importance of variables used in models. Figure 2 displays the variable importance rankings across machine-learning algorithms with 
VCTE (first row) and without VCTE (second row). The columns represent 3 distinct machine-learning algorithms: random forest (left), gradient boosting 
machines (middle), and XGBoost (right). In the machine-learning algorithms with VCTE, log VCTE is the most important, followed by log Aspartate 
Aminotransferase-based Fibrosis Score-4 and various orders of log platelet, age log GGTP, and BMI. In the machine-learning algorithms without VCTE, FIB-
4 is the most important variables include log AST, age, log platelet, log GGTP, and BMI. BMI, body mass index; FIB-4, Fibrosis-4; GGTP, gamma-glutamyl 
transpeptidase; VCTE, vibration-controlled transient elastography.
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specificity could reduce the necessity for liver biopsy in up to 
a third of patients in referral and tertiary referral centers, thereby 
broadening accessibility for resmetirom and other future

treatments. The ALADDIN-F2-Lab algorithm, which does not 
require VCTE data, provides a sensitivity and specificity .85% 
for significant or advanced fibrosis.

Figure 3. Decision curve analysis. X-axis (threshold probability) represents the probability threshold for classifying a patient as positive for significant fibrosis 
or higher. Y-axis (net benefit) is a measure that balances true-positives and false-positives. ALADDIN-F2-VCTE (red line) consistently shows a higher net 
benefit compared with FAST (blue line) in both test set and external validation set across a wide range of threshold probabilities, especially between 0.1 and 
0.5. This suggests that the ALADDIN_VCTE model is better at balancing the benefits of true-positives while minimizing the harm of false-positives compared 
with the FAST model in this range. While ALADDIN-F2-VCTE shows superiority over Agile-3 (green line), this advantage is modest. Between threshold 
probabilities of approximately 0.1 and 0.5, the ALADDIN-F2-VCTE outperforms both FASTand the “treat all” strategy, meaning that it is the most beneficial in 
this clinically relevant range. As the threshold probability increases (above ;0.5), the net benefit of all models decreases sharply and eventually converge 
toward zero, similar to “treat none” (the black line) strategy. ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FAST, 
FibroScan-aspartate aminotransferase; VCTE, vibration-controlled transient elastography.

Figure 4. Calibration plots. The calibration plot visualizes the model’s calibration, comparing predicted probabilities with observed frequencies using 
a locally weighted regression (Loess) for smoothing. This method highlights areas of suboptimal calibration within the predicted range. The shaded region 
represents the 95% confidence interval, indicating the certainty of the calibration curve. The dots represent the observed probabilities for each decile of 
predicted probabilities. Ideal calibration is shown by the dotted diagonal line, indicating exact matches between predictions and outcomes. Deviations from 

the diagonal reflect discrepancies, with the line above suggesting risk underestimation and below for overestimation.
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Similar to the FAST and Agile-3 score, both the ALADDIN-
F2-VCTE and ALADDIN-F2-Lab models provide probability 
estimates for significant fibrosis or higher. While a specific cut 
point for sensitivity and specificity is offered, it is less clinically 
meaningful for individual patients. Instead, the probability score 
offers a personalized estimate of significant fibrosis for any given 
patient. As shown in Figure 4, the observed probabilities closely 
match the predicted probabilities of the ALADDIN-F2-VCTE 
model, largely because of the accurate estimation of the pretest 
probabilities. When users input data into the web-based calcu-
lator, they are prompted to provide the prevalence of significant 
fibrosis in their local center, calculated to the nearest 10th per-
centile. This actionable insight enhances clinical decision making 
by providing more refined diagnostic precision.

Although major gastroenterological societies, including AGA 
(8), AASLD (9), and European Association for the Study of Liver 
Diseases (10,18) advocate using the FIB-4 as the initial screening 
test, our study shows that a rule-out cutoff of 1.3 has suboptimal 
sensitivity of 63%–68% for the diagnosis of significant fibrosis or 
higher in our patient setting originating from tertiary referral 
centers. On the other hand, we found an FIB-4 of .2.66 is highly 
specific for the diagnosis of significant fibrosis or higher, although 
relatively few patients fall within the rule-in zone. In addition, 
a recent study evidenced that AGA and AASLD clinical care

algorithms yielded high false-negative rates, especially in His-
panic participants (19). By contrast, ALADDIN algorithms were 
performed including Hispanic population. Given the specificity, 
the use of ALADDIN-F2-VCTE or ALADDIN-F2-Lab could 
significantly decrease the need for further risk assessment with 
more expansive techniques.

Our study primarily explored the ALADDIN model, com-
bining serum tests with and without VCTE, to diagnose signifi- 
cant fibrosis and higher. In addition, the literature describes 
various techniques for similar diagnoses. An Indian multicenter 
study with comprehensive training, testing, and external valida-
tion sets demonstrated that a random forest algorithm using 
common laboratory parameters without VCTE is superior to 
traditional parameters including FIB-4, nonalcoholic fatty liver 
disease fibrosis score, and SAFE Score for diagnosing significant 
fibrosis or higher (20). To diagnose advanced fibrosis and at-risk 
MASH using VCTE-based algorithms, substantial literature 
supports Agile-3, Agile-4 (14,21,22), and FAST (11,23). Chang’s 
introduction of a random forest model for at-risk MASH (24) was 
notable, although limited by internal validation. In addition to 
VCTE, serum-based algorithms such as enhanced liver fibrosis 
combined with FIB-4 (25) and nonalcoholic fatty liver disease 
fibrosis score (26) and imaging-based methods such as the 
magnetic resonance elastography AST score using magnetic

Table 3. Comparative analysis of classification accuracy based on dual cut points approach

Prediction of significant fibrosis

Internal validation cohort

ALADDIN-F2-VCTE ALADDIN-F2-lab FIB-4 VCTE FAST Agile 3 SAFE Liver risk

Rule-out cut point 0.36 0.37 1.3 8.2 0.35 0.451 0 10

Rule-out zone % patients 19.0% 20.5% 59.6% 45.6% 41.8% 34.8% 19.0% 77.9%

Sensitivity 93.1% 92.5% 63.6% 80.2% 69.2% 81.6% 90.6% 29.0%

NPV 79.1% 79.2% 60.0% 67.3% 57.6% 64.2% 72.0% 72.0%

Indeterminate zone % patients 50.0% 47.5% 28.1% 29.7% 29.7% 18.3% 31.7% 32.4%

Rule-in cut point 0.77 0.72 2.67 12.1 0.67 0.679 100 15

Rule-in zone % patients 31.0% 31.0% 12.3% 35.5% 28.2% 36.1 49.3% 2.5%

Specificity 90.1% 87.3% 96.3% 84.2% 86.8% 83.9% 71.7% 98.5%

PPV 86.4% 82.7% 85.0% 81.1% 80.0% 81.0% 75.0% 73.7%

Prediction of significant fibrosis

External validation cohort

ALADDIN-F2-VCTE ALADDIN-F2-lab FIB-4 VCTE FAST Agile 3 SAFE Liver risk

Rule-out cut point 0.36 0.37 1.3 8.2 0.35 0.451 0 10

Rule-out zone % patients 19.8% 22.1% 42.3% 35.8% 32.6% 35.8% 28.5% 70.1%

Sensitivity 91.8% 87.1% 68.7% 79.9% 78.6% 66.7& 80.1% 36.1%

NPV 75.7% 66.9% 58.1% 67.1% 61.4% 67.1% 60.5% 48.5%

Indeterminate zone % patients 48.2% 43.0% 39.0% 27.9% 32.4% 16.0% 22.0% 32.4%

Rule-in cut point 0.77 0.72 2.67 12.1 0.67 0.679 100 15

Rule-in zone % patients 32.0% 34.9% 18.7% 36.3% 35.0% 36.5% 49.5% 2.3%

Specificity 90.3% 83.3% 89.6% 83.4% 82.7% 86.5% 67.4% 98.8%

PPV 87.4% 79.2% 75.7% 81.1% 79.6% 84.7% 71.4% 76.7%

ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FAST, FibroScan-aspartate aminotransferase; FIB-4, Fibrosis-4; NPV, negative 
predictive value; PPV, positive predictive value; SAFE, steatosis-associated fibrosis estimator.
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resonance elastography (27) have been explored. The Magnetic 
Resonance Elastography plus Fibrosis-4 Index approach, which 
integrates magnetic resonance elastography (MRE) and FIB-4, is 
superior to magnetic resonance elastography AST (28) and FAST 
(27,29,30) for predicting significant fibrosis. Long-term per-
spectives include integrating the enhanced liver fibrosis test, 
Chronic Liver Disease Risk Score, and Polygenic Risk Score-5 to 
predict severe liver-related outcomes (31). For at-risk MASH, the 
Noninvasive Steatohepatitis 4 score (32) and Metabolomics-
Advanced Steatohepatitis Fibrosis Score outperform FAST (33). 
The Agile-3 model is notable for predicting liver-related events 
(34), and the Liver Investigation: Testing Marker Utility in 
Steatohepatitis project introduces high-performance tests such as 
SomaSignal and Age, Diabetes, Pro-C3, and Platelets for di-
agnosing non-alcoholic steatohepatitis and significant 
fibrosis (35).

Our study has limitations similar to others in this field (11,14). 
Local pathologists interpreted liver biopsies, not a consensus of 
experts, affecting reliability, but typically affecting the identifi- 
cation of lobular inflammation and ballooning (15) more than 
fibrosis and, therefore, should have less impact in this study. The 
inclusion of patients with liver biopsy in referral centers and the 
retrospective nature of the study introduced potential biases and 
limited the extrapolation of this model to all patients with 
MASLD. Despite the inclusion of Bayesian updates to adjust for 
pretest probability, the accuracy of this model in screening and 
community centers requires further studies. Although ALAD-
DIN models achieve better predictive performance by combining 
a complex combination of decision trees, they trade off

interpretability relative to linear models such as logistic re-
gression. To address this problem, our study includes a web-based 
calculator that provides user-friendly, personalized predictions 
and variable importance estimates to enhance interpretability. 
Although high performance was shown in the test set and external 
validation set, the potential for overfitting is a concern, especially 
when considering complicated models trained with heteroge-
neous medical data. To minimize this concern, we used an ex-
ternal validation set that was substantially different from the test 
set, as presented in Table 1. In addition, we used an ensemble 
method that aggregates predictions of several algorithms, thereby 
reducing variance and overfitting by averaging the unique pat-
terns observed in individual models. We also acknowledge that 
our target for comparison: FAST score was designed for di-
agnosing at-risk MASH, Agile-3 and FIB-4 was designed for di-
agnosing advanced fibrosis, LiverRisk score was designed for 
primary care setting, and only SAFE score was specifically 
designed for significant fibrosis or higher.

In conclusion, the ALADDIN model, trained and validated 
through a large global consortium of 14 centers and 2,677 patients 
across 5 continents, stands out as a groundbreaking tool specifi- 
cally designed for diagnosing significant fibrosis or higher ($F2) 
using commonly available laboratory parameters with and 
without VCTE. By using a dual cutoff approach, ALADDIN 
achieved high diagnostic accuracy, with the rule-in cutoff offering 
over 90% specificity in one-third of patients in referral and ter-
tiary settings and the rule-out cutoff providing over 90% sensi-
tivity, effectively excluding significant fibrosis or higher in over 
90% of a population-based cohort. The ALADDIN model

Figure 5. Patient distribution across diagnostic zones for significant fibrosis or higher. The bar charts present the distribution of patients among the rule-out, 
indeterminate, and rule-in categories for significant fibrosis or more, according to the diagnostic characteristics in Table 3. The bars are color-coded to 
represent negative (blue) and positive (orange) cases. In the left panels, the blue fraction corresponds to the negative predictive value (NPV), whereas in the 
right panels, the orange fraction represents the positive predictive value (PPV). The total height of each bar indicates the percentage of patients classified in 
the respective zones: Rule-out (left), indeterminate (middle), and rule-in (right). The top panel (a) displays results from the test set, whereas the bottom 
panel (b) shows results from the external validation set. The bar charts highlight that ALADDIN-F2-VCTE improved NPV and PPV compared with other 
models. However, it rules out fewer patients and places more in the indeterminate zone. In addition, ALADDIN-F2-VCTE demonstrates superior PPV and 
a comparable number of patients in the rule-in zone. The PPV of ALADDIN-F2-Lab matches closely with the VCTE-based FAST and Agile-3 scores. 
ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FAST, FibroScan-aspartate aminotransferase; VCTE, vibration-
controlled transient elastography.
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without VCTE, ALADDIN-F2-Lab, can serve as a reasonable 
alternative to ALADDIN-F2-VCTE in cases where VCTE is un-
available given the high degree of agreement and small mean 
difference between the models, thereby serving as an essential tool 
in clinical practices that do not otherwise have access to VCTE to 
guide prescription decisions for newly approved drugs for MASH 
for at-risk ($F2) disease. ALADDIN-F2-Lab is superior to the 
currently available common laboratory parameter-based algo-
rithms, including FIB-4, SAFE, and LiverRisk score, and non-
inferior to the FAST Score. These results support the use of 
ALADDIN-F2-Lab in clinical practice to assess liver fibrosis 
when the VCTE access is limited. Its versatility, functioning both 
with and without VCTE data, combined with an accessible web-
based calculator, underscores its potential to significantly en-
hance the noninvasive diagnosis and management of MASLD 
across various healthcare environments.
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Study Highlights

WHAT IS KNOWN

3 FAST score is currently available for liver fibrosis assessment 
using VCTE.

3 FIB-4, SAFE, and LiverRisk score assess fibrosis using 
common laboratory parameters.

WHAT IS NEW HERE

3 Global study with robust external validation.
3 ALADDIN-F2-VCTE outperforms FAST for predicting $F2 

fibrosis.
3 ALADDIN-F2-Lab outperforms FIB-4, SAFE, and LiverRisk 

score
3 ALADDIN-F2-Lab offers a reliable alternative without VCTE.
3 High sensitivity and specificity with a dual cutoff approach.
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