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INTRODUCTION: The recent US Food and Drug Administration approval of resmetirom for treating metabolic dysfunction-
associated steatohepatitis in patients necessitates patient selection for significant fibrosis or higher
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Enhancing Significant Fibrosis Prediction in MASLD

The mAchine Learning ADvanceD fibrosis and rlsk metabolic dysfunction-associated steatohepatitis
Novel predictor (ALADDIN) study addressed this gap by introducing a machine-learning-based web
calculator that estimates the likelihood of significant fibrosis using routine laboratory parameters with
and without VCTE. Our study included a training set of 827 patients, a testing set of 504 patients with
biopsy-confirmed metabolic dysfunction-associated steatotic liver disease from 6 centers, and an
external validation set of 1,299 patients from 9 centers. Five algorithms were compared using area
under the curve (AUC) in the test set: ElasticNet, random forest, gradient boosting machines, XGBoost,
and neural networks. The top 3 (random forest, gradient boosting machines, and XGBoost) formed an

In the external validation set, the ALADDIN-F2-VCTE model, using routine laboratory parameters with
VCTE (AUC 0.791, 95% confidence interval [CI]: 0.764-0.819), outperformed VCTE alone (0.745,
95%Cl10.717-0.772, P<0.0001), FibroScan-aspartate aminotransferase (0.710,0.679-0.748, P<
0.0001), and Agile-3 model (0.740, 0.710-0.770, P< 0.0001) regarding the AUC, decision curve
analysis, and calibration. The ALADDIN-F2-Lab model, using routine laboratory parameters without
VCTE, achieved an AUC of 0.706 (95% CI: 0.668-0.749) and outperformed Fibrosis-4, steatosis-

METHODS:

ensemble model.
RESULTS:

associated fibrosis estimator, and LiverRisk scores.
DISCUSSION:

Along with the steatosis-associated fibrosis estimator model developed to target significant fibrosis or
higher, ALADDIN-F2-VCTE (https://aihepatology.shinyapps.io/ALADDIN 1) uniquely supports a refined
noninvasive approach to patient selection for resmetirom without the need for liver biopsy. In addition,
ALADDIN-F2-Lab (https://aihepatology.shinyapps.io/ALADDINZ2) offers an effective alternative when

VCTE is unavailable.
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INTRODUCTION

Metabolic dysfunction-associated steatotic liver disease (MASLD)
(1), which affects an estimated 30% of the global adult population
(2), is now the predominant cause of chronic liver disease in
Western countries, leading to an increase in liver transplantation in
the United States (3). MASLD encompasses a spectrum that ranges
from isolated steatosis to metabolic dysfunction-associated stea-
tohepatitis (MASH), potentially progressing to fibrosis and cir-
rhosis (4). Patients with significant fibrosis (stage F2) or higher
have a significantly increased risk of liver-related morbidity and
mortality (5). The recent US Food and Drug Administration ap-
proval of resmetirom for the treatment of MASLD in patients with
significant to advanced fibrosis specifically targets this subset of
patients. Treatment generally requires precise patient selection and
liver biopsy (6).

Liver biopsy is the gold standard for diagnosing fibrosis stage
in MASLD (6); its invasiveness and variability in interpretation
highlight the need for less invasive diagnostic methods (7). If the
indication for resmetirom is solely based on liver biopsy, access to
treatment for patients at the highest risk of disease progression
would be severely restricted. Major gastroenterological societies,
such as the American Gastroenterological Association (AGA) (8),
American Association for the Study of Liver Diseases (AASLD)
(9), and the European Association for the Study of Liver Diseases
(10) advocate a sequential screening approach, initially using the
Fibrosis-4 index (FIB-4), followed by vibration-controlled tran-
sient elastography (VCTE) for risk assessment of advanced (F3-4)
fibrosis.  FibroScan-aspartate aminotransferase(FAST) s
a VCTE-based algorithm commonly used to diagnose at-risk

MASH (at least significant fibrosis and Nonalcoholic fatty liver
disease Activity Score =4) (11). This group is of particular in-
terest for trials (12) because they are more likely to benefit from
emerging treatments (13) aimed at inflammation and fibrosis. On
the other hand, Agile-3 (14) uses VCTE and common laboratory
parameters for the diagnosis of advanced fibrosis. Unfortunately,
no existing VCTE-based algorithm effectively targets significant
fibrosis or higher (=F2), which would be optimal for targeting
patients for current resmetirom treatment, as well as future
therapeutics with similar indications. This drives the need for
a VCTE-based algorithm, specifically for significant fibrosis or
higher (=F2). In addition, there is a need for a more accessible
algorithm that uses routine laboratory parameters without VCTE
in various clinical environments.

This study introduces the mAchine Learning ADvanceD fi-
brosis and rIsk MASH Novel predictor (ALADDIN), a cross-
sectional study designed to bridge these diagnostic gaps.
ALADDIN leverages a novel machine-learning-based web cal-
culator to deliver comprehensive probability assessments for
significant fibrosis, advanced fibrosis, and at-risk MASH. The
findings on advanced fibrosis and at-risk MASH will be reported
separately, whereas this study focused on significant fibrosis. The
aims of this study were to (i) diagnose significant fibrosis or
higher (=F2) with 90% specificity adequate for resmetirom
treatment consideration and (ii) identify patients at in-
determinate risk of significant fibrosis or higher (=F2) who can
undergo further testing or follow-up. Notably, this model has
various forms that accommodate scenarios with and without the
VCTE data inputs. This feature significantly enhances the
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applicability of the model across a wide range of healthcare
environments, from local community clinics to advanced tertiary
referral centers.

METHODS

Study design and participants

The ALADDIN study aggregated data from 15 global centers,
with initial participants from 6 centers across various continents
randomized 1:1 into training and test sets. This was supple-
mented by data from 9 additional centers for the external vali-
dation set. See Supplementary Table 1, http://linksIww.com/
AJG/D621 for the center listings and characteristics. Inclusion
criteria included patients with steatotic liver disease (1) and =1
cardiometabolic risk factor (body mass index [BMI] =25 kg/m?,
type 2 diabetes or impaired glucose tolerance, hypertension,
hypertriglyceridemia, and low high-density lipoprotein choles-
terol) with a liver biopsy within 6 months. Key exclusions were
significant alcohol consumption and other etiologies of chronic
liver diseases such as chronic viral hepatitis and hepatocellular
carcinoma. In addition, we excluded patients with missing age,
aspartate aminotransferase (AST), platelet, and gamma-glutamyl
transpeptidase (GGTP) data from the train set to ensure model
robustness. Data were transmitted to a central database managed
by the main researchers of the study. With Institutional Review
Board approval from each center and the retrospective nature
of the study, the requirement for patient consent was waived.
This study adhered to the Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis—Artificial
Intelligence reporting guidelines and with the 1964 Declaration
of Helsinki and its later amendments or comparable ethical
standards.

Training set, test set, and external validation set

Our study used the training, test, and external validation sets to
develop a robust methodology. Patients from the 6 global centers
were split 1:1 into training and test sets. To ensure model accuracy
and reliability, patients with missing key variables (age, AST,
platelet, and GGTP) were excluded from the training set rather
than imputing these variables. This approach helped create
a cleaner and more reliable data set for training the predictive
model. However, because both the training and test sets origi-
nated from the same centers, there was a risk of overfitting be-
cause of similar patient characteristics. To mitigate this and assess
the model’s wider generalizability on top of transportability, we
included an external validation set from 8 additional centers in
North America and Asia, offering diversity and independence
from the derivation data. This smaller, yet diverse cohort is es-
sential to evaluate the model’s generalizability to new, unseen
data, underpinning its real-world relevance and utility.

Data collection and definitions

Each participating center performed a medical chart review to
obtain data on the patients who met the inclusion and exclusion
criteria. Liver biopsies were graded and staged by a local path-
ologist(s) in accordance with the Nonalcoholic Steatohepatitis
Clinical Research Network criteria (15). We included clinical data
obtained within 6 months of liver biopsy. Significant fibrosis was
defined as a stage =F2 fibrosis. The features considered in the
modeling included patient demographics (age and sex) and
common laboratory data (complete blood counts, comprehensive
metabolic panel, lipid panel, and GGTP (16)). Protein (17) and
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albumin levels are part of a comprehensive metabolic panel. We
used separate models that used (ALADDIN-F2-VCTE) and did
not use VCTE (ALADDIN-F2-Lab) parameters, including VCTE
liver stiffness measurement.

Missing data and imputation

We excluded patients with missing data on age, AST, platelet
count, and GGTP from the training set because these were the
most important predictors (other than VCTE) for the dependent
variable (i.e., significant fibrosis or higher). Patients with missing
VCTE were included in the ALADDIN-F2-Lab analysis only.
Missing data were otherwise handled using the missForest algo-
rithm in R for imputation based on random forest. This algorithm
does not use data from the dependent variable or any biopsy-
related data (e.g., Nonalcoholic fatty liver disease Activity Score)
and relies solely on the independent variables included in the
model. The rate of missing data is represented in Supplementary
Digital Content (see Supplementary Table 2, http://links.Iww.
com/AJG/D621).

Machine learning, hyperparameters optimization, model
selection, and ensemble model

From the derivation cohort, we developed models to predict sig-
nificant fibrosis or higher, both with and without VCTE data, using
5 machine-learning algorithms: ElasticNet (EN), random forest
(RF), gradient boosting machines (GBM), XGBoost (XGB), and
neural networks (NN). The RF optimized the hyperparameters
using a grid search based on the out-of-bag area under the curve
(AUC), whereas EN, GBM, and XGB relied on the cross-validated
AUC for hyperparameter tuning. By contrast, the NN was opti-
mized based on the cross-validated accuracy of the training set. The
top 3 algorithms regarding AUC in the test set were used to con-
struct an ensemble model, which was calculated as the geometric
mean of the predictions of these models.

Specifically, EN adjusted hyperparameters based on the bal-
ance between L1 and L2 regularization (alpha) and regularization
strength (lambda). The RF tuned the number of variables to be
considered at each split (mtry), sample size for each tree (samp-
size), minimum size of terminal nodes (nodesize), number of
trees (ntree), and maximum number of terminal nodes (maxn-
odes). GBM optimized the interaction depth, learning rate
(shrinkage), minimum number of observations in a node
(n.minobsinnode), and fraction of data used per tree (bag.-
fraction). XGB adjusted tree depth (max_depth), learning rate
(eta), minimum child weight (min_child_weight), number of
estimators (n_estimators), subsample rate (subsample), column
sample rate per tree (colsample_bytree), and minimum split loss
(gamma). The NN was fine-tuned by optimizing the learning rate
(learn_rate), number of neurons per layer (neurons), dropout rate
(dropoutrate), batch size (batchsize), number of epochs (epochs),
and the optimizer type (optimizer).

Target imbalance and Bayesian updates

To address the target imbalance within our models, distinct
approaches were used for RF, GBM, and XGB to optimize the
performance. For the RF model, we balanced the data set by
specifying the same sample size for both classes in the target
variable, ensuring an equitable representation during model
training. The aim of this approach was to mitigate bias toward the
more prevalent class. Conversely, for the GBM and XGB, we
adopted a weighting strategy to address this imbalance. The final
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models, ALADDIN-F2-VCTE and ALADDIN-F2-Lab, in-
corporated Bayesian updates to adjust for the center-specific rate
of significant fibrosis or higher (=F2). We computed the baseline
risk based on the prevalence in the training set.

For example, in a referral cohort with a 30% prevalence,
a patient with a predicted probability of 45%. Calculation as
follows.

Predicted Odds : 0.45/(1 — 0.45) = 0.8182
Prevalence Odds : 0.30/(1 — 0.30) = 0.4286
Likelihood Ratio : 0.8182/1.3529 = 0.605
Posttest Odds : 0.4286 X 0.605 = 0.2592

Updated Probability : 0.2592/(1 + 0.2592) = 20.6%

Statistical analysis

Data analysis was performed using R v4.4.0 (R Core Team 2024).
Continuous variables were expressed as mean (SD), whereas
categorical variables were presented as numbers (percentages).
The discriminatory performance of the models was assessed us-
ing the area under the receiver operating characteristic curve with
95% confidence intervals (CIs).

Decision curve analysis

Decision curve analysis (DCA) was used to assess the clinical
utility of predictive models for significant (=F2) fibrosis or higher
by calculating and comparing their net benefits across a range of
decision thresholds. This method enabled us to evaluate the
models against 2 baseline strategies: treating all patients and
treating them based on their risk levels. We computed the net
benefits of the models using a predefined function that factors the
true and false positives for each threshold probability. The anal-
ysis was visualized using ggplot2, which demonstrated the net
benefit of each model relative to baseline strategies. This process
identified the most clinically useful models for predicting con-
ditions in both the test and external validation sets, thereby
guiding optimal decision making in clinical practice.

Calibration

Calibration analysis was conducted to evaluate the accuracy of the
ALADDIN models for significant (=F2) fibrosis or higher. Using
ggplot2 in R, calibration plots were created by dividing the patient
data into deciles based on the posterior probabilities from the
ALADDIN models. These plots compare the observed condition
rate with the median-predicted probability in each decile, iden-
tifying any over-predictions or under-predictions. The Brier
Score, which measures the mean squared deviation between
predictions and actual outcomes, further validated the accuracy
of the models. Lower Brier Scores indicated higher accuracy,
confirming the effectiveness and reliability of the ALADDIN
models for practical use.

Dual cutoff approach

A sensitivity and specificity of 95% in the training set were tar-
geted, with the goal of achieving 90% sensitivity and specificity
in the test and external validation sets. Within the test set and
external validation set, the sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), percentage

Enhancing Significant Fibrosis Prediction in MASLD

correctly classified, number of screening positive, negative, and
indeterminate were determined.

RESULTS

Our study included 3,008 patients with biopsy-confirmed
MASLD from 6 centers across 5 continents. These patients
were divided into training and test sets in a 1:1 ratio. After ex-
cluding patients with missing key variables, 827 patients were
retained in the training set, whereas 1,504 patients were included
in the test set. In addition, an external validation set comprised
1,299 patients from 9 centers. Table 1 presents the patient char-
acteristics of the training, test, and external validation sets. Sup-
plementary Digital Content (see Supplementary Table 1, http://
links.lww.com/AJG/D621) presents the characteristics of the
participating centers across the 3 cohorts. Supplementary Digital
Content (see Supplementary Table 3, http://links.lww.com/AJG/
D621) presents the univariate analysis of significant fibrosis or
higher in the training set. Log-transformed AST, alanine ami-
notransferase, platelet count (16), and GGTP had substantially
lower P values than their counterparts, and therefore, log trans-
formation was used.

Prediction of significant fibrosis or higher (=F2) with VCTE:
ALADDIN-F2-VCTE

This analysis included 752 patients in the training set, 1,281
patients in the test set, and 1,019 patients in the external valida-
tion set with VCTE data. In the test set, the RF model achieved an
AUC of 0.789 (95% CI, 0.765-0.814), the GBM was 0.790 (95%
CI, 0.766-0.814), and the XGB was 0.782 (95% CI, 0.758-0.807).
These models outperformed VCTE alone with an AUC of 0.745
(95% CI, 0.717-0.772), EN with an AUC of 0.781 (95% CI
0.756-0.806), and NN with an AUC of 0.7286 (95% CI
0.701-0.756) and were thus included in the final ensemble model
building. Table 2 presents the individual performances of the RF,
GBM, and XGB models as well as the ensemble model, which
integrates these algorithms with Bayesian updates across the
training, test, and external validation sets.

The ensemble model using VCTE data, ALADDIN-F2-VCTE,
achieved an AUC of 0.792 (95% CI, 0.768-0.817) in the test set
and 0.791 (95% CI 0.764-0.819) in the external validation set, as
shown in Figure la)b. Notably, this model significantly out-
performed the VCTE alone (AUC 0.745, 95% CI 0.717-0.772,
Delong test, P < 0.0001), FAST model (AUC 0.693, 95% CI
0.664-0.722, P < 0.0001), and the Agile-3 model (AUC 0.761,
95% CI 0.735-0.787, P = 0.0016) in the test set. A similar supe-
riority was observed in the external validation set, with AUCs of
0.761 (95% CI 0.731-0.791, P = 0.010), 0.710 (95% CI
0.679-0.748, P < 0.0001), and 0.740 (95% CI 0.710-0.770, P <
0.0001), respectively. Figure 2 illustrates the ranking order of the
variables used to derive the RF, GBM, and XGB models, high-
lighting that log VCTE is the most important, followed by FIB-4,
log GGTP, and log AST.

Prediction of significant fibrosis or higher (=F2) without VCTE:
ALADDIN-F2-Lab

This analysis included all 827 patients in the training set, 1504 in
the test set, and 1,299 in the external validation set. In the test set,
the RF model achieved an AUC of 0.766 (95% CI, 0.743-0.790),
GBM was 0.767 (95% CI, 0.744-0.791), and XGB was 0.764 (95%
CIL, 0.740-0.788). These models outperformed EN (AUC 0.747,
95% CI 0.722-0.772) and NN (AUC 0.723, 95% CI 0.700-0.746)
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Table 1. Characteristics of the participants with metabolic dysfunction-associated steatotic liver disease included in the train set, test set,

and external validation set

Demographics
Age (yr)
Sex-male (n, %)
Race (n, %)
White
Hispanic
Black
Asian
Native American
Australian Native
Other
History and physical exam
Type 2 diabetes (n, %)
Hypertension (n, %)
BMI (kg/m?)
Complete blood count
WBC (K/uL)
Platelet (k/wL)
Comprehensive metabolic panel
AST (IU/L)
ALT (IU/L)
GGT (IU/L)
Alkaline phosphatase (IU/L)
Creatinine (mg/dL)
HbAlc (%)
Albumin (mg/dL)
Protein (mg/dL)
Total bilirubin (mg/dL)
Globulin (mg/dL)
Lipid panel
Total cholesterol (mg/dL)
LDL (mg/dL)
HDL (mg/dL)
Triglyceride (mg/dL)
VCTE (transient elastography)
Liver stiffness on VCTE (kPa)
CAP (dB/m)
Composite scores
FAST
Agile-3
FIB-4

Training set
N = 827

56 (46 to 62)
366 (44.3%)

425 (51.4%)
103 (12.6%)
4(0.5%)
224 (29.5%)
4(0.5%)
2(0.2%)
65 (7.9%)

501 (60.6%)
449 (54.3%)
32 (28 to 37)

7.2(5.9108.8)
236 (189 to 285)

37 (26 to 54)

51 (3310 81)

53 (33 to 89)

79 (65 to 100)
0.8(0.7t0 0.9)
6.3 (5.6t07.4)
4.3(4.1t04.6)
7.3(7.1t07.6)
0.6(0.5t00.8)
3.0(2.7t03.3)

182 (151 to 207)
102 (76 to 124)
45 (3810 53)

151 (112 to 210)

10.2 (7.0to0 14.1)
321 (296 to 349)

0.51 (0.28t0 0.70)

1.21(0.8310 1.79)
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Test set
N = 1,504

56 (48 to 63)
653 (43.4%)

693 (46.1%)
236 (15.7%)
17 (1.1%)
372 (24.7%)
3(0.2%)
8(0.5%)
175 (11.6%)

855 (56.8%)
732 (48.7%)
33 (28 to 38)

7.2(6.0t08.9)
273 (196 to 278)

38 (27 to 54)
53 (33 to 76)
65 (40 to 97)
83 (66 to 99)
0.8(0.7 t0 1.0)
6.3(5.6107.0)
4.4(42104.5)
7.3(7.1t07.6)
06(0.4t00.8)
29(2.71t3.3)

189 (161 to 204)
111 (83 to 124)
45 (39 to 50)

159 (124 to 197)

10.5(7.61t0 14.3)
323 (298 to 353)

0.55(0.31100.72)

1.27 (0.88 to 1.80)

External validation set

N =1,299

54 (41 to 65)
642 (49.4%)

694 (46.1%)
94 (6.4%)
30 (2.0%)

364 (24.2%)

1(0.1%)
0(0%)
116 (8.9%)

565 (43.5%)
644 (49.6%)
32 (26 to 37)

6.8 (5.6108.2)
226 (178 to 275)

62 (36 t0 99)

48 (3210 71)

76 (47 to 121)
91 (7210 119)
0.9(0.7 t0 1.0)
6.0 (5.5t06.8)
4.3(389104.5)

0.6(0.4t00.8)
28(24103.2)

189 (156 to 208)
110 (83 to 127)
44 (38 to 51)

155 (113 to 196)

116(7.81t017.1)
319 (286 to 347)

0.61 (0.41t00.78)

1.47 (0.93 t0 2.34)
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Pvalue test set vs

external validation set

<0.0001
0.0017
0.0003

<0.0001
0.66
0.19

<0.0001
<0.0001

<0.0001
<0.0001

<0.0001
0.0067

<0.0001

<0.0001
0.041

<0.0001

0.90
0.034
0.15
0.36

0.0002
0.0010

<0.0001
0.25
0.0006
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Table 1. (continued)

Enhancing Significant Fibrosis Prediction in MASLD

Training set Test set External validation set P value test set vs
N = 827 N = 1,504 N = 1,299 external validation set
SAFE 96 (18 to 166) 98 (23 t0 163) 97 (=16 to 195) <0.0001
LiverRisk score 8.7(7.6109.9) 8.5(7.6109.8) 8.9(7.91t010.3) 0.88
Outcomes
Significant fibrosis or higher 465 (56.2%) 851 (56.6%) 734 (56.5%) 0.99

Continuous variables are described using median and interquartile ranges, whereas categorical variables are presented through actual counts and percentages.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CAP, controlled attenuation parameter; FAST, FibroScan-aspartate
aminotransferase; FIB-4, Fibrosis-4; GGTP, Gamma-glutamyl transpeptidase; HbAlc, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
SAFE, steatosis-associated fibrosis estimator; VCTE, vibration-controlled transient elastography; WBC, white blood cell.

and were thus included in the final ensemble model building.
Table 1 presents the individual performances of the RF, GBM,
and XGB models as well as the ensemble model, which integrates
these algorithms with Bayesian updates across the training, test,
and external validation sets.

The ensemble model using only common laboratory param-
eters, ALADDIN-F2-Lab, achieved an AUC of 0.779 (95% CI
0.776-0.802) in the test set and 0.717 (95% CI 0.689-0.744) in the
external validation set. The performance of this model was sig-
nificantly better than that of the FIB-4 Score (AUC 0.727, 95% CI
0.702-0.753, Delong test P < 0.0001), steatosis-associated fibrosis
estimator (SAFE) score (AUC 0.749, 95% CI 0.724-0.773, Delong

Table 2. Area under the curve of several machine learning models
in derivation, internal validation, and external validation sets

Significant
fibrosis or higher
including VCTE

Significant fibrosis
or higher without
VCTE available

Training set
RF 0.819 (0.790-0.849) 0.768 (0.737-0.800)
GBM 0.824 (0.795-0.853) 0.764 (0.733-0.796)
XGB 0.790 (0.795-0.853) 0.761 (0.729-0.793)
Ensemble 0.824 (0.801-0.859) 0.781 (0.753-0.809)
Test set
RF 0.789 (0.765-0.789) 0.766 (0.743-0.790)
GBM 0.790 (0.766-0.814) 0.767 (0.744-0.791)
XGB 0.782 (0.758-0.807) 0.764 (0.740-0.788)
Ensemble 0.792 (0.768-0.817) 0.779 (0.756-0.802)
External validation set
RF 0.773 (0.745-0.802) 0.688 (0.659-0.716)
GBM 0.779 (0.751-0.807) 0.678 (0.649-0.707)
XGB 0.777 (0.748-0.805) 0.683 (0.654-0.712)
Ensemble 0.791 (0.764-0.819) 0.717 (0.690-0.744)

We included the random forest (RF), gradient boosting machines (GBM), and
XGBoost (XGB) models before their integration into the ALADDIN models. The
95% confidence intervals are calculated using the DeLong method, providing
a statistical measure of the precision of the AUC values for each model.

VCTE, vibration-controlled transient elastography.

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology

test P = 0.0022), and LiverRisk score (AUC 0.682, 95% CI
0.655-0.709, Delong test P < 0.0001) in the test set. The model
also outperformed these scores in the external validation set, with
AUCs of 0.655 (95% CI 0.625-0.684, Delong test, P < 0.0001) for
FIB-4, 0.680 (95% CI 0.651-0.709, Delong test, P = 0.0005) for
SAFE, and 0.632 (95% CI 0.601-0.662, Delong test, P < 0.0001)
for the LiverRisk score, as depicted in Figure 1a,b. Figure 2 shows
the ranking order of the variables used to derive the RF, GBM, and
XGB models. Without VCTE elasticity, the most important
variables in the RF, GBM, and XGB models are FIB-4, log GGTP,
followed by in various orders of BMI, total cholesterol, and
log AST.

A subset of patients with available VCTE data (n = 1,281 in
the test set and n = 1,019 in the external validation set) was used
to compare the performance of the ALADDIN-F2-Lab model
against the FAST and Agile-3 scores. In the test set, the ALAD-
DIN-F2-Lab model achieved an AUC of 0.764 (95% CI:
0.738-0.790), which was significantly better than the FAST score
(AUC: 0.693, 95% CI: 0.664-0.722, P < 0.0001) but comparable
with the Agile-3 score (AUC: 0.761, 95% CI: 0.735-0.787, P =
0.82). In the external validation set, the ALADDIN-F2-Lab model
achieved an AUC of 0.720 (95% CI: 0.689-0.751), which was
comparable with both the FAST score (AUC: 0.710, 95% CI:
0.679-0.742, P = 0.58) and the Agile-3 score (AUC: 0.740, 95%
CI: 0.710-0.770, P = 0.18).

Decision curve

DCA revealed that ALADDIN-F2-VCTE consistently shows
a higher net benefit compared with FAST in the test set and
external validation set across a wide range of threshold proba-
bilities, especially between 0.1 and 0.7 (Figure 3). This suggests
that the ALADDIN-F2-VCTE model is better at balancing the
benefits of true-positives while minimizing the harm of false-
positives than the FAST models in this range. Although ALAD-
DIN-F2-VCTE shows superiority over Agile-3, this advantage is
modest. The ALADDIN-F2-Lab performed similar to ALAD-
DIN-F2-VCTE in the test set and similarly to FAST and Agile-3 in
the external validation set.

Calibration

The calibration of observed vs expected probabilities demon-
strated improvement with the ALADDIN-F2-VCTE model, as
reflected by the Brier Score. In the test set, ALADDIN-F2-VCTE
achieved a lower Brier Score (0.184) than to the FAST score
(0.232) and Agile-3 (0.209), indicating better calibration (lower
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Figure 1. ROC Curves. Intest (a) and external validation (b) sets, the ALADDIN-F2-VCTE model shows superior predictive accuracy for significant fibrosis or
higher, significantly outperforming FAST. ALADDIN-F2-VCTE and FAST were calculated from test set of 1,203 and external validation set of 876 with VCTE
data. The ALADDIN-F2-Lab, FIB4, SAFE, and LiverRisk score were calculated from the entire test set of 1,307 and external validation set of 1,135.
ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FIB-4, Fibrosis-4; ROC, receiver operating characteristic curve; SAFE,
steatosis-associated fibrosis estimator; VCTE, vibration-controlled transient elastography.

values indicate better performance). Similarly, in the external
validation set, ALADDIN-F2-VCTE outperformed the other
models with a Brier Score of 0.183, compared with 0.217 for the
FAST score and 0.229 for Agile-3. The ALADDIN-F2-Lab model
achieved a comparable Brier Score with ALADDIN-F2-VCTE in
the test set (0.189) and performed better than the FAST score in
the external validation set (0.215). The calibration curve of the
observed vs expected probabilities is shown in Figure 4a,b. The
ALADDIN-F2-VCTE is very closely aligned with the ideal cali-
bration, as shown by the dotted diagonal line, indicating exact
matches between predictions and outcomes.

Dual cutoff approach

We used a dual cutoff strategy to enhance the diagnostic per-
formance in predicting significant fibrosis or higher. For the
ALADDIN-F2-VCTE model, we used a rule-out cutoff designed
to achieve 95% sensitivity and a rule-in cutoff aimed at 95%
specificity in the training set. By contrast, the ALADDIN-F2-Lab
model aimed for 90% sensitivity and specificity. Supplementary
Digital Content (see Supplementary Figures 1A and 1B, http://
links.lww.com/AJG/D621) illustrate these cutofts in the training
set, whereas Table 3 outlines the corresponding rule-in and rule-
out thresholds for the ALADDIN models, alongside the VCTE,
FIB-4, FAST, Agile-3, SAFE, and LiverRisk scores, based on
commonly used thresholds.

The ALADDIN-F2-VCTE model, with cutoffs of 0.36 and
0.77, demonstrated notable improvements in sensitivity, speci-
ficity, NPV, and PPV compared with the FAST model. However,
this led to approximately 20% more patients in the testing cohort
and 2% more patients in the external validation cohort falling into
the indeterminate zone (as presented in Table 3 and Figure 5a,b).

The American Journal of GASTROENTEROLOGY

Importantly, the ALADDIN-F2-VCTE model achieved =90%
sensitivity and specificity in both the testing and external vali-
dation cohorts. Similarly, the ALADDIN-F2-Lab model, with its
cutoffs of 0.37 and 0.72, also achieved =80% sensitivity and
specificity in both cohorts. In the external validation set, the
performance metrics (sensitivity, specificity, NPV, and PPV) of
the ALADDIN-F2-Lab model were comparable with those of the
FAST and Agile-3 models.

DISCUSSION

In this study, we developed and introduced ALADDIN,
a groundbreaking machine-learning-based web calculator to de-
liver comprehensive and nuanced probability assessments for
significant fibrosis or higher (=F2). The training and test sets were
sourced from 6 global centers, with subsequent external validation
conducted at 8 additional centers, encompassing 2,677 patients.
This model, adaptable to include or exclude VCTE data, relies
solely on commonly available laboratory parameters and uses
Bayesian updates to cater to a wide range of healthcare settings
from community clinics to specialized tertiary referral centers. In
external validation set, the ALADDIN model with VCTE out-
performed the FAST score, the closest existing VCTE model, re-
garding AUC, DCA, and calibration. The ALADDIN model with
common laboratory parameters without VCTE was noninferior to
the FAST score and superior to the FIB-4, SAFE, and LiverRisk
scores. Using a dual cutoff approach, ALADDIN provided high
diagnostic accuracy; the rule-in cutoff achieved over 90% specificity
in referral and tertiary referral settings, whereas the rule-out cutoff
demonstrated over 90% sensitivity. When this algorithm is applied
to referral and tertiary referral settings, over half of patients fall into
the indeterminate zone. However, when applied to a population-
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Figure 2. Ranking importance of variables used in models. Figure 2 displays the variable importance rankings across machine-learning algorithms with
VCTE (first row) and without VCTE (second row). The columns represent 3 distinct machine-learning algorithms: random forest (left), gradient boosting
machines (middle), and XGBoost (right). In the machine-learning algorithms with VCTE, log VCTE is the most important, followed by log Aspartate
Aminotransferase-based Fibrosis Score-4 and various orders of log platelet, age log GGTP, and BMI. In the machine-learning algorithms without VCTE, FIB-
4 is the most important variables include log AST, age, log platelet, log GGTP, and BMI. BMI, body mass index; FIB-4, Fibrosis-4; GGTP, gamma-glutamyl

transpeptidase; VCTE, vibration-controlled transient elastography.

based cohort, this approach allowed for the exclusion of significant
fibrosis or higher in >90% of the patients.

Of the initial contenders, RF, GBM, and XGB outperformed
EN and NN in the test set and proceeded with ensemble model
building. RF, GBM, and XGB are the 3 decision-tree-based
methods. RF improves accuracy using bagging, where multiple
deep decision trees are trained on different random subsets of the
data. GBM and XGB are based on the boosting approach, where
a series of shallow trees are trained, and each minimizes the error
made from the previous tree. Compared with conventional de-
cision trees, these 3 tree-based methods can avoid overfitting and
improve the accuracy. They can also better handle nonlinear
relationships and complex interactions between covariates and
clinical outcomes than traditional linear methods, such as ridge
regression, least absolute shrinkage and selection operator re-
gression, and EN. In addition, NNs, which are powerful for
complex data, often require extensive tuning and large amounts
of data to generalize well and avoid overfitting, which can lead to
underperformance when our training set is approximate one
thousand in size. This could explain why tree-based methods,
owning to their robustness to diverse data structures and less
demanding hyperparameter tuning, outperformed NNs in the
test set.

In the ALADDIN-F2 models, with and without VCTE, age,
AST, platelet, GGTP, and protein and total cholesterol emerge as
key features. GGTP and total cholesterol are also being used in the
LiverRisk score (16). Globulin, derived from the difference be-
tween protein and albumin, is included in the SAFE score (17).
Additional moderately important variables include BMI, creati-
nine, and HbAlc. Although removing less important features
might streamline data entry into the website, doing so in-
crementally reduces the AUC in both the training and test sets.
Furthermore, eliminating these features does not reduce costs, as
laboratory tests are typically ordered in bundles, such as the
comprehensive metabolic panel and lipid panel.

Patients with significant fibrosis or higher (=F2) because of
MASH are at an increased risk of progression and morbidity (4)
and may benefit from newly approved resmetirom treatments
(13). Given the limitations of VCTE availability, only a few
thousand VCTE are available in the United States, therefore
ascore thatis not dependent on access to VCTE for providers who
do not have access to point-of-care VCTE. We introduced 2 novel
algorithms, ALADDIN-F2-VCTE and ALADDIN-F2-Lab. The
ALADDIN-F2-VCTE algorithm offers a highly specific diagnosis,
achieving greater than 90% specificity for significant fibrosis or
higher in both the test and external validation sets. This high
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Figure 3. Decision curve analysis. X-axis (threshold probability) represents the probability threshold for classifying a patient as positive for significant fibrosis
or higher. Y-axis (net benefit) is a measure that balances true-positives and false-positives. ALADDIN-F2-VCTE (red line) consistently shows a higher net
benefit compared with FAST (blue line) in both test set and external validation set across a wide range of threshold probabilities, especially between 0.1 and
0.5. This suggests that the ALADDIN_VCTE model is better at balancing the benefits of true-positives while minimizing the harm of false-positives compared
with the FAST model in this range. While ALADDIN-F2-VCTE shows superiority over Agile-3 (green line), this advantage is modest. Between threshold
probabilities of approximately 0.1 and 0.5, the ALADDIN-F2-VCTE outperforms both FASTand the “treatall” strategy, meaning that it is the most beneficial in
this clinically relevant range. As the threshold probability increases (above ~0.5), the net benefit of all models decreases sharply and eventually converge
toward zero, similar to “treat none” (the black line) strategy. ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FAST,
FibroScan-aspartate aminotransferase; VCTE, vibration-controlled transient elastography.

specificity could reduce the necessity for liver biopsy in up to  treatments. The ALADDIN-F2-Lab algorithm, which does not
a third of patients in referral and tertiary referral centers, thereby ~ require VCTE data, provides a sensitivity and specificity >85%
broadening accessibility for resmetirom and other future  for significant or advanced fibrosis.
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Figure 4. Calibration plots. The calibration plot visualizes the model’s calibration, comparing predicted probabilities with observed frequencies using
a locally weighted regression (Loess) for smoothing. This method highlights areas of suboptimal calibration within the predicted range. The shaded region
represents the 95% confidence interval, indicating the certainty of the calibration curve. The dots represent the observed probabilities for each decile of
predicted probabilities. Ideal calibration is shown by the dotted diagonal line, indicating exact matches between predictions and outcomes. Deviations from
the diagonal reflect discrepancies, with the line above suggesting risk underestimation and below for overestimation.
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Table 3. Comparative analysis of classification accuracy based on dual cut points approach

Prediction of significant fibrosis

Internal validation cohort

ALADDIN-F2-VCTE ALADDIN-F2-lab FIB-4 VCTE FAST Agile 3 SAFE Liver risk

Rule-out cut point 0.36 0.37 1.3 8.2 0.35 0.451 0 10

Rule-out zone % patients 19.0% 20.5% 59.6% 45.6% 41.8% 34.8% 19.0% 77.9%
Sensitivity 93.1% 92.5% 63.6% 80.2% 69.2% 81.6% 90.6% 29.0%
NPV 79.1% 79.2% 60.0% 67.3% 57.6% 64.2% 72.0% 72.0%
Indeterminate zone % patients 50.0% 47.5% 28.1% 29.7% 29.7% 18.3% 31.7% 32.4%
Rule-in cut point 0.77 0.72 2.67 12.1 0.67 0.679 100 15

Rule-in zone % patients 31.0% 31.0% 12.3% 35.5% 28.2% 36.1 49.3% 2.5%
Specificity 90.1% 87.3% 96.3% 84.2% 86.8% 83.9% 71.7% 98.5%
PPV 86.4% 82.7% 85.0% 81.1% 80.0% 81.0% 75.0% 73.7%

Prediction of significant fibrosis
External validation cohort
ALADDIN-F2-VCTE ALADDIN-F2-lab FIB-4 VCTE FAST Agile 3 SAFE Liver risk

Rule-out cut point 0.36 0.37 13 8.2 0.35 0.451 0 10

Rule-out zone % patients 19.8% 22.1% 42.3% 35.8% 32.6% 35.8% 28.5% 70.1%
Sensitivity 91.8% 87.1% 68.7% 79.9% 78.6% 66.7& 80.1% 36.1%
NPV 75.7% 66.9% 58.1% 67.1% 61.4% 67.1% 60.5% 48.5%
Indeterminate zone % patients 48.2% 43.0% 39.0% 27.9% 32.4% 16.0% 22.0% 32.4%
Rule-in cut point 0.77 0.72 2.67 12.1 0.67 0.679 100 15

Rule-in zone % patients 32.0% 34.9% 18.7% 36.3% 35.0% 36.5% 49.5% 2.3%
Specificity 90.3% 83.3% 89.6% 83.4% 82.7% 86.5% 67.4% 98.8%
PPV 87.4% 79.2% 75.7% 81.1% 79.6% 84.7% 71.4% 76.7%

ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FAST, FibroScan-aspartate aminotransferase; FIB-4, Fibrosis-4; NPV, negative
predictive value; PPV, positive predictive value; SAFE, steatosis-associated fibrosis estimator.

Similar to the FAST and Agile-3 score, both the ALADDIN-
F2-VCTE and ALADDIN-F2-Lab models provide probability
estimates for significant fibrosis or higher. While a specific cut
point for sensitivity and specificity is offered, it is less clinically
meaningful for individual patients. Instead, the probability score
offers a personalized estimate of significant fibrosis for any given
patient. As shown in Figure 4, the observed probabilities closely
match the predicted probabilities of the ALADDIN-F2-VCTE
model, largely because of the accurate estimation of the pretest
probabilities. When users input data into the web-based calcu-
lator, they are prompted to provide the prevalence of significant
fibrosis in their local center, calculated to the nearest 10th per-
centile. This actionable insight enhances clinical decision making
by providing more refined diagnostic precision.

Although major gastroenterological societies, including AGA
(8), AASLD (9), and European Association for the Study of Liver
Diseases (10,18) advocate using the FIB-4 as the initial screening
test, our study shows that a rule-out cutoft of 1.3 has suboptimal
sensitivity of 63%-68% for the diagnosis of significant fibrosis or
higher in our patient setting originating from tertiary referral
centers. On the other hand, we found an FIB-4 of >2.66 is highly
specific for the diagnosis of significant fibrosis or higher, although
relatively few patients fall within the rule-in zone. In addition,
a recent study evidenced that AGA and AASLD clinical care

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology

algorithms yielded high false-negative rates, especially in His-
panic participants (19). By contrast, ALADDIN algorithms were
performed including Hispanic population. Given the specificity,
the use of ALADDIN-F2-VCTE or ALADDIN-F2-Lab could
significantly decrease the need for further risk assessment with
more expansive techniques.

Our study primarily explored the ALADDIN model, com-
bining serum tests with and without VCTE, to diagnose signifi-
cant fibrosis and higher. In addition, the literature describes
various techniques for similar diagnoses. An Indian multicenter
study with comprehensive training, testing, and external valida-
tion sets demonstrated that a random forest algorithm using
common laboratory parameters without VCTE is superior to
traditional parameters including FIB-4, nonalcoholic fatty liver
disease fibrosis score, and SAFE Score for diagnosing significant
fibrosis or higher (20). To diagnose advanced fibrosis and at-risk
MASH using VCTE-based algorithms, substantial literature
supports Agile-3, Agile-4 (14,21,22), and FAST (11,23). Chang’s
introduction of a random forest model for at-risk MASH (24) was
notable, although limited by internal validation. In addition to
VCTE, serum-based algorithms such as enhanced liver fibrosis
combined with FIB-4 (25) and nonalcoholic fatty liver disease
fibrosis score (26) and imaging-based methods such as the
magnetic resonance elastography AST score using magnetic
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Figure 5. Patient distribution across diagnostic zones for significant fibrosis or higher. The bar charts present the distribution of patients among the rule-out,
indeterminate, and rule-in categories for significant fibrosis or more, according to the diagnostic characteristics in Table 3. The bars are color-coded to
represent negative (blue) and positive (orange) cases. In the left panels, the blue fraction corresponds to the negative predictive value (NPV), whereas in the
right panels, the orange fraction represents the positive predictive value (PPV). The total height of each bar indicates the percentage of patients classified in
the respective zones: Rule-out (left), indeterminate (middle), and rule-in (right). The top panel (a) displays results from the test set, whereas the bottom
panel (b) shows results from the external validation set. The bar charts highlight that ALADDIN-F2-VCTE improved NPV and PPV compared with other
models. However, it rules out fewer patients and places more in the indeterminate zone. In addition, ALADDIN-F2-VCTE demonstrates superior PPV and
a comparable number of patients in the rule-in zone. The PPV of ALADDIN-F2-Lab matches closely with the VCTE-based FAST and Agile-3 scores.
ALADDIN, mAchine Learning ADvanceD fibrosis and at-risk mash Novel predictor; FAST, FibroScan-aspartate aminotransferase; VCTE, vibration-

controlled transient elastography.

resonance elastography (27) have been explored. The Magnetic
Resonance Elastography plus Fibrosis-4 Index approach, which
integrates magnetic resonance elastography (MRE) and FIB-4, is
superior to magnetic resonance elastography AST (28) and FAST
(27,29,30) for predicting significant fibrosis. Long-term per-
spectives include integrating the enhanced liver fibrosis test,
Chronic Liver Disease Risk Score, and Polygenic Risk Score-5 to
predict severe liver-related outcomes (31). For at-risk MASH, the
Noninvasive Steatohepatitis 4 score (32) and Metabolomics-
Advanced Steatohepatitis Fibrosis Score outperform FAST (33).
The Agile-3 model is notable for predicting liver-related events
(34), and the Liver Investigation: Testing Marker Utility in
Steatohepatitis project introduces high-performance tests such as
SomaSignal and Age, Diabetes, Pro-C3, and Platelets for di-
agnosing non-alcoholic  steatohepatitis and  significant
fibrosis (35).

Our study has limitations similar to others in this field (11,14).
Local pathologists interpreted liver biopsies, not a consensus of
experts, affecting reliability, but typically affecting the identifi-
cation of lobular inflammation and ballooning (15) more than
fibrosis and, therefore, should have less impact in this study. The
inclusion of patients with liver biopsy in referral centers and the
retrospective nature of the study introduced potential biases and
limited the extrapolation of this model to all patients with
MASLD. Despite the inclusion of Bayesian updates to adjust for
pretest probability, the accuracy of this model in screening and
community centers requires further studies. Although ALAD-
DIN models achieve better predictive performance by combining
a complex combination of decision trees, they trade off
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interpretability relative to linear models such as logistic re-
gression. To address this problem, our study includes a web-based
calculator that provides user-friendly, personalized predictions
and variable importance estimates to enhance interpretability.
Although high performance was shown in the test set and external
validation set, the potential for overfitting is a concern, especially
when considering complicated models trained with heteroge-
neous medical data. To minimize this concern, we used an ex-
ternal validation set that was substantially different from the test
set, as presented in Table 1. In addition, we used an ensemble
method that aggregates predictions of several algorithms, thereby
reducing variance and overfitting by averaging the unique pat-
terns observed in individual models. We also acknowledge that
our target for comparison: FAST score was designed for di-
agnosing at-risk MASH, Agile-3 and FIB-4 was designed for di-
agnosing advanced fibrosis, LiverRisk score was designed for
primary care setting, and only SAFE score was specifically
designed for significant fibrosis or higher.

In conclusion, the ALADDIN model, trained and validated
through a large global consortium of 14 centers and 2,677 patients
across 5 continents, stands out as a groundbreaking tool specifi-
cally designed for diagnosing significant fibrosis or higher (=F2)
using commonly available laboratory parameters with and
without VCTE. By using a dual cutoff approach, ALADDIN
achieved high diagnostic accuracy, with the rule-in cutoff offering
over 90% specificity in one-third of patients in referral and ter-
tiary settings and the rule-out cutoff providing over 90% sensi-
tivity, effectively excluding significant fibrosis or higher in over
90% of a population-based cohort. The ALADDIN model
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without VCTE, ALADDIN-F2-Lab, can serve as a reasonable
alternative to ALADDIN-F2-VCTE in cases where VCTE is un-
available given the high degree of agreement and small mean
difference between the models, thereby serving as an essential tool
in clinical practices that do not otherwise have access to VCTE to
guide prescription decisions for newly approved drugs for MASH
for at-risk (=F2) disease. ALADDIN-F2-Lab is superior to the
currently available common laboratory parameter-based algo-
rithms, including FIB-4, SAFE, and LiverRisk score, and non-
inferior to the FAST Score. These results support the use of
ALADDIN-F2-Lab in clinical practice to assess liver fibrosis
when the VCTE access is limited. Its versatility, functioning both
with and without VCTE data, combined with an accessible web-
based calculator, underscores its potential to significantly en-
hance the noninvasive diagnosis and management of MASLD
across various healthcare environments.
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WHAT IS KNOWN

/ FAST score is currently available for liver fibrosis assessment
using VCTE.

/ FIB-4, SAFE, and LiverRisk score assess fibrosis using
common laboratory parameters.

WHAT IS NEW HERE

/ Global study with robust external validation.

/ ALADDIN-F2-VCTE outperforms FAST for predicting =F2
fibrosis.

/ ALADDIN-F2-Lab outperforms FIB-4, SAFE, and LiverRisk
score

/ ALADDIN-F2-Lab offers a reliable alternative without VCTE.

/ High sensitivity and specificity with a dual cutoff approach.

Enhancing Significant Fibrosis Prediction in MASLD
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