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Abstract: Quantitative MRI combines non-invasive imaging techniques to reveal alterations in
muscle pathophysiology. Creating muscle-specific labels manually is time consuming and requires
an experienced examiner. Semi-automatic and fully automatic methods reduce segmentation time
significantly. Current machine learning solutions are commonly trained on data from healthy subjects
using homogeneous databases with the same image contrast. While yielding high Dice scores (DS),
those solutions are not applicable to different image contrasts and acquisitions. Therefore, the aim
of our study was to evaluate the feasibility of automatic segmentation of a heterogeneous database.
To create a heterogeneous dataset, we pooled lower leg muscle images from different studies with
different contrasts and fields-of-view, containing healthy controls and diagnosed patients with
various neuromuscular diseases. A second homogenous database with uniform contrasts was created
as a subset of the first database. We trained three 3D-convolutional neuronal networks (CNN) on
those databases to test performance as compared to manual segmentation. All networks, training
on heterogeneous data, were able to predict seven muscles with a minimum average DS of 0.75.
U-Net performed best when trained on the heterogeneous dataset (DS: 0.80 ± 0.10, AHD: 0.39 ± 0.35).
ResNet and DenseNet yielded higher DS, when trained on a heterogeneous dataset (both DS: 0.86),
as compared to a homogeneous dataset (ResNet DS: 0.83, DenseNet DS: 0.76). In conclusion, a CNN
trained on a heterogeneous dataset achieves more accurate labels for predicting a heterogeneous
database of lower leg muscles than a CNN trained on a homogenous dataset. We propose that a large
heterogeneous database is needed, to make automated segmentation feasible for different kinds of
image acquisitions.

Keywords: qMRI; muscle segmentation; machine learning

1. Introduction

Quantitative magnetic resonance imaging (qMRI) provides promising surrogate bio-
markers in the evaluation of disease progression and monitoring of therapeutic options in
neuromuscular diseases (NMD) [1,2]. This non-invasive technique can reveal subclinical
changes in muscle pathophysiology which can precede changes in muscle function assessed
by clinical examination [3]. In NMD different patterns of muscle involvement have been
described and are essential to distinguish between different subtypes of diseases [4,5].
Therefore, muscle segmentation plays a key role in the analysis of qMRI data.

So far, the segmentation of individual muscles has to be performed manually as there
are no generalizable fully-automatic algorithms available yet [6]. Manual segmentation is
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very time consuming and especially highly degenerated and fat-infiltrated muscles lead
to difficulties in separation of muscle groups. Manual segmentation is a bottleneck, and
therefore a major limitation in the application of qMRI in clinical studies. This has driven
researchers towards developing automated solutions using algorithmic machine learning
solutions [7]. Defining each muscle separately and segmenting an image into n labels
can be framed as a categorization problem where the goal is to find the right category
for each voxel in the image. Early research in this field has often used classification
algorithms such as random walk [8] or random forest [9]. Both attempts resulted in high
congruency between manual and automated classification, but their approaches were
limited by their ability to transfer to other image contrasts or when segmenting patient
data with fatty degeneration or muscle atrophy. As both, random walk and random forest
algorithms do not construct explicit edge detectors, their ability to generalize to fatty
muscle data is impeded. Other approaches to segment data for quantitative analysis are
deep learning-based solutions such as convolutional neural networks (CNN) architectures.
These algorithms often outperform classical machine learning algorithms, without manual
feature selection [10].

We compare three fundamental 3D-CNN architectures in this paper. U-Net architec-
tures are often used as a comparative baseline for other network architectures [11]. They
have been widely used and adapted to clinical applications from detecting skin lesions [12],
parotid glands [13], pulmonary nodules [14], segmented infant-brain MR-images [15],
cardiac segmentation [16], as well as cell structures in light microscopy images [17]. ResNet
architectures use residual connection and allow blocks to learn residual functions. Theoret-
ical discussion in machine-learning has argued that residual connections allow networks
to learn faster, and generalize better [18,19]. ResNet blocks also allow the network to
train deeper network architectures without facing the problem of vanishing gradient [20].
ResNet architectures have recently been adapted to medical image segmentation [21] and
have been used to segment tongue compartments [22]. Although they have significant
theoretical advantages over U-Nets, they have been applied less in medical image seg-
mentations. Finally, DenseNets are the most recent architectures among the three major
CNN designs discussed here. Similar to ResNets, they use residual connections that allow
DenseNets to learn and generalize the same way [23], but instead of increasing network
depth, they retain almost all information between layers. This allows networks to reuse
features from earlier layers, but also drastically increases memory requirements as the
amount of feature maps processed by later layers grows linearly with network depth.
DenseNets have been shown to be successful in classical image segmentation tasks [24], as
well as brain tumor segmentation [25].

Previous work in automated muscle segmentation is limited by small sample sizes or
the homogeneity of the datasets. To allow this method to be applicable for a broad range of
appliances, a CNN trained on different image contrasts and data from different disease
types is needed. So far, there is no method that can be used independent of the imaging
protocol and has been validated for various muscle disease types. Our aim was to show that
convoluted networks are able to generalize over large variations in both data acquisition
and health status of the patient. Therefore, the feasibility of CNNs-U-Net, ResNet and
DenseNet was evaluated to segment muscles when trained on a heterogeneous as compared
to a heterogeneous dataset with varying acquisition protocols and imaging contrasts.

2. Materials and Methods
2.1. Datasets

MR-images of lower leg muscles from 126 healthy controls and 83 diagnosed patients
were included. This database was pooled from data of different studies [26–30], conducted
according to the guidelines of the Declaration of Helsinki and approved by the ethic
committee of the medical faculty of the Ruhr-University Bochum (15-5281, 31 March 2015).
Informed written consent was obtained from all subjects. The database can be divided
into two different data acquisitions protocols mainly distinguishable due to their different
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fields-of-view (FOV) and contrasts (Figure 1). In data acquisition (A) the whole lower leg
was covered using 90 slices. In data acquisition (B) only 25 or 45 slices were measured
60 cm ventral from the tibial plateau. Both datasets included patient data covering various
muscular diseases: Morbus Pompe (n = 22), McArdle (n = 8), inclusion-body myositis (IBM,
n = 6), myotonic dystrophy type 1 (MDI, n = 10), myotonic dystrophy type 2 (MDII, n = 13),
leg-girdle muscular dystrophy (LGMD, n = 6) and others (n = 18).
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Figure 1. Overview of the diversity of MR-images included in the database. a: The data acquisitions differ in their field-
of-view. The green rectangle represents a field-of-view for data acquisition (A) with 90 slices in the z-axis, while the blue 
and yellow rectangles (B) show the 25 and 45 slices from data acquisition, respectively, measured 60 cm ventral from the 
tibial plateau. b: Comparison between data acquisition (A) and (B) regarding image size, voxel size, participants and con-
trasts.c: Three different types of contrasts are included in the database. 

Acquisition (B) contained MR-images of a multicenter study and is called the homo-
geneous dataset in the following [29]. This database included 93 datasets from healthy 
participants. 

2.2. Manual Segmentation 
Manual segmentation was performed using 3D Slicer (4.4.0, https://slicer.org ac-

cessed on 01 March 2021) by an expert with 5 years of experience (author: MR). Based on 
a T1w contrast (acquisition (A)) or a Dixon water image (acquisition (B)) and by avoiding 
subcutaneous fat and fascia, these muscles were manually segmented on all slices. 

Figure 1. Overview of the diversity of MR-images included in the database. a: The data acquisitions differ in their
field-of-view. The green rectangle represents a field-of-view for data acquisition (A) with 90 slices in the z-axis, while the
blue and yellow rectangles (B) show the 25 and 45 slices from data acquisition, respectively, measured 60 cm ventral from
the tibial plateau. b: Comparison between data acquisition (A) and (B) regarding image size, voxel size, participants and
contrasts. c: Three different types of contrasts are included in the database.

Acquisition (B) contained MR-images of a multicenter study and is called the
homogeneous dataset in the following [29]. This database included 93 datasets from
healthy participants.

2.2. Manual Segmentation

Manual segmentation was performed using 3D Slicer (4.4.0, https://slicer.org ac-
cessed on 1 March 2021) by an expert with 5 years of experience (author: MR). Based on a
T1w contrast (acquisition (A)) or a Dixon water image (acquisition (B)) and by avoiding
subcutaneous fat and fascia, these muscles were manually segmented on all slices. Adjacent
muscles with high fatty infiltration were separated by considering anatomical features. The
segmentation produced labels covering the following seven lower leg muscles: (1) gastroc-
nemius lateralis, (2) gastrocnemius medialis, (3) soleus, (4) tibialis anterior, (5) peroneus,
(6) extensor digitorum longus + extensor hallucis longus, (7) tibialis posterior.

2.3. Data Selection and Composition

The database was distributed into four different datasets (Figure 2): (i) a heterogeneous
dataset used for training (Thet), contained images and labels from 119 healthy participants

https://slicer.org
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and 72 diseased patients of both data acquisitions (A) and (B), (ii) a homogenous training
dataset (Thom) included images and labels from 88 healthy participants from data acquisi-
tion (B), (iii) a heterogeneous dataset for prediction with images of seven healthy subjects
and eleven diseased patients, (iv) a homogeneous dataset (Phom) with five of the in Phet
included healthy subjects.
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a prediction dataset Phet. A homogeneous training dataset Thom and prediction dataset Phom are
taken as a subset from the heterogeneous datasets.

2.4. Preprocessing

Three-dimensional (3D) MR-images of the lower leg were collected from different
studies and differed in their contrast, slice thickness and positioning of the FOV. CNNs
only take in one input size. To comply to this and reduce memory usage a universal
preprocessing was used for those 3D images with their respective labels. First, each image
was split on the z-axis into parts of 20 to 21 slices and then range-normalized from 0 to 100.
Since processing the segmentation is equivalent for left and right leg, the images and their
labels were split and then the left leg was mirrored. The background of each image and
label was cut automatically to reduce memory usage. Then, all images and labels were
interpolated to result in 3D arrays in the same dimension (104 × 104 × 20). As a last step,
the manual segmented labels were one-hot encoded (n = 8, each muscle plus background).

2.5. Postprocessing

All predicted labels were postprocessed to result in a label fitted on the original
images. Networks computed probability distributions as vectors of length eight for each
voxel. Labels were extracted by assigning the class with the highest probability for each
voxel. Then the dimensions were restored with interpolation and background padding.
The left leg was mirrored and merged onto the right leg. For original images with more
than 25 slices, an overlap of three slices was created during preprocessing and resolved
during postprocessing.
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2.6. Convolutional Neuronal Networks

We compared three different neural network architectures with respect to their ability
to adapt to homogeneous and heterogeneous datasets. All networks were implemented
using 3D Convolutional Networks.

The 3D-U-Net by Çiçek et al., 2016 [31] is based on the 2D-U-Net-Model by Ron-
neberger et al., 2015 [11]. They proposed a structure with contracting and expanding
pathways and identity skip-connections between both pathways. We used maxpooling
for downsampling and transposed convolutions for upsampling. Our implementation
of U-Net had 16,259,464 free parameters and required a GPU with 8.00 Gb of VRam
for training.

The second network we tested was a ResNet with a contracting and expanding path-
way like U-Net. It was proposed by Drozdzal et al., 2016 [21]. Their architecture integrates
ResNet blocks into the contracting and expanding pathways. Downsampling was done via
convolutions using kernels with size = 1 and strides = 2, upsampling was done by repeating
voxels per dimension. Our implementation of ResNet had 32,924,968 free parameters and
required a GPU with 7.47 Gb of VRam for training.

Finally, we used a DenseNet implementation proposed by Jegou et al. [24], which
followed the basic contraction and expansion pathway, but implements DenseBlocks similar
to those proposed by Huang et al. [23] as layer modules. Our implementation of DenseNet
had 1,727,256 free parameters and required a GPU with 21.91 Gb of VRam for training.

All Networks were implemented in Keras (Version 2.3.1) on a Tensorflow (2.1.0) back-
end. They were trained on an RTX6000 graphics card using Adam [30] with a learning
rate of 1 × 10−5 and a decay of 1.99 × 10−6. Learning was optimized to reduce categorical
cross entropy. The networks were trained for 200 epochs with a batch size of six, after
which none of the networks showed improvement in performance. The networks were
optimized for categorical cross entropy, with a softmax activation function as an output
layer. Both training datasets were shuffled once before training and then split into a train
and validation set with proportions of 80 and 20 percent. Both sets were kept identical
between networks to ensure comparability but were shuffled after each epoch.

2.7. Evaluation

For comparing predicted 3D-labels to manual segmentation, we used the open-source
software VISCERAL EvaluateSegmentation [32]. Dice score (DS) as a marker for 3D overlap
and average Hausdorff distance (AHD) as a marker of average distance between predicted
and manually labelled muscle borders defined in mm were used to characterize and
compare the performance of each model. DS being best for a value of 1 and AHD being best
for a value of 0. The statistical evaluation was done in R (4.0.3). For statistical comparison
all scores were averaged over muscles per image.

We compared model performance for predicting on images similar to the dataset they
were trained on (Thet/Phet, Thom/Phom) as well as for predicting the dataset they were not
trained on (Thom/Phet, Thet/Phom). To compare the effect of a heterogeneous or homoge-
neous dataset for training, the DS and AHD for predicting a homogeneous dataset were
statistically evaluated (Thet/Phom, Thom/Phom). In order to analyze network performance
predicting patients, we pooled all patient-images, already contained in Phet, and predicted
them with all three networks trained on the heterogeneous and homogeneous dataset.
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3. Results

U-Net, ResNet and DenseNet were each trained on a homogeneous (Thom) and a
heterogeneous dataset (Thet). After 200 epochs an independent dataset, containing 3D
MR-images from the same data acquisition as the homogeneous dataset (Phom) as well as
others (Phet), was used for prediction of muscle segmentations and evaluation.

Figure 3 shows cross-sections of representative MR-images of a healthy subject, as
representation for Phom, and two patients, as representation for Phet. The labels were
predicted with U-Net, ResNet and DenseNet trained on Thet and Thom respectively. All
seven labels were present for all models, when trained on Thet predicting on Phet as well
as trained on Thom and predicting on Phom. For the control image, all networks were
able to predict the shape of all muscles correctly, but DenseNet trained on Thom predicted
parts of the soleus into the border between tibialis posterior and peroneus. Results from
a representative patient A show that both ResNet and DenseNet trained on Thet were
able to detect muscle borders and locations correctly. When comparing predictions for the
gastrocnemius lateralis, we see that all networks trained on Thom and the Thet trained U-Net
were unable to segment the border between subcutaneous fat and muscle. Both ResNet
and DenseNet trained on Thet predicted shapes similar to the manual segmented image.
Finally, labels for Patient B show that networks trained on Thet were able to reproduce
the general shape of the muscles with DenseNet failing to build consistent edges for both
gastrocnemius medialis and gastrocnemius lateralis. For DS and AHD of each muscle,
model and scenario see Appendix A.

As an example, Figure 4 shows an overlay of a manually segmentation and a ResNet-
predicted-label.

An overview of all DS as a marker for 3D similarity and AHD as a marker of average
distance between predicted and manually labeled muscle borders is shown in Table 1.

For Thet and Phet all three models performed similarly to each other, with DenseNet
providing the highest DS (DS: 0.81 ± 0.09) followed by U-Net (DS: 0.80 ± 0.10) and ResNet
(DS: 0.79 ± 0.10). DenseNet had a significantly higher DS than ResNet (t(35) = 2.44, p = 0.02).
U-Net (AHD: 0.39 ± 0.37) had a significantly lower AHD than ResNet (AHD: 0.43 ± 0.35)
(t(35) = 2.525, p = 0.016). All other comparisons yielded no significant results.

When evaluating Thom and Phom, all scores were significantly different from each other
with U-Net providing the highest DS and lowest AHD (DS: 0.86 ± 0.07, AHD: 0.26 ± 0.25).
DenseNet (DS: 0.76 ± 0.09, AHD: 0.66 ± 0.39) performed significantly worse than U-Net
(DS: t(9) = 8.87, p < 0.001, AHD: t(9) = 6,78, p < 0.001) and ResNet (DS: 0.83 ± 0.07, AHD:
0.35 ± 0.29) (DS: t(9) = 3.104, p < 0.001, AHD: t(9) = 2.75, p < 0.001).

As seen in Figure 5, all three CNNs trained on Thom and predicted on Phet were not
able to localize the seven muscles in a non-familiar contrasted image. When predicting
Phet, U-Net and ResNet trained with Thom yielded the same mean DS (U-Net: 0.38 ± 0.35,
ResNet: 0.38 ± 0.36). DenseNet (DS: 0.29 ± 0.34, AHD: 12.2 ± 9.60) was significantly
worse than ResNet (DS: 0.38 ± 0.35, AHD: 7.24 ± 5.67) in DS (t(9) = 6, p < 0.001)) and AHD
(t(9) = 5.88, p < 0.001).

There were no significant differences between models when trained on Thet and
predicted on Phom.
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Table 1. Overview of Dice scores and average Hausdorff distances for all three CNN predicted labels compared to manually
segmented labels with different training and prediction datasets. Dice score is best for a value of 1 and AHD for a value of 0.

Predicting
Training

Dice Score Average Hausdorff Distance

Homogeneous
Phom

Heterogeneous
Phet

Homogeneous
Phom

Heterogeneous
Phet

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Homogeneous
Thom

U-Net 0.86 ± 0.07 0.38 ± 0.36 0.26 ± 0.25 7.98 ± 6.57
ResNet 0.83 ± 0.07 0.38 ± 0.35 0.35 ± 0.29 7.24 ± 5.67

DenseNet 0.76 ± 0.09 0.29 ± 0.34 0.66 ± 0.39 12.2 ± 9.60

Heterogeneous
Thet

U-Net 0.85 ± 0.08 0.80 ± 0.10 0.26 ± 0.23 0.39 ± 0.37
ResNet 0.86 ± 0.06 0.79 ± 0.10 0.26 ± 0.22 0.43 ± 0.35

DenseNet 0.86 ± 0.05 0.81 ± 0.09 0.25 ± 0.21 0.41 ± 0.40

Comparing network performance predicting Phom being trained on either Thet or Thom
we found a significant difference for ResNet and DenseNet. DenseNet trained on Thet (DS:
0.86 ± 0.05, AHD: 0.25 ± 0.21) shows significantly higher DS and lower ASD compared
to Thom (DS: 0.76 ± 0.09, AHD: 0.66 ± 0.39) (DS: t(9) = 7.28, p < 0.001, AHD: t(9) = 6.59,
p < 0.001). ResNet trained on Thet (DS: 0.86 ± 0.06, AHD: 0.26 ± 0.22) shows significantly
higher DS and lower ASD in comparison to Thom (DS: 0.83 ± 0.07, AHD: 0.35 ± 0.29) (DS:
t(9) = 3.68, p = 0.005, AHD: t(9) = 2.54, p = 0.03). There were no significant differences
for U-Net.
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purple = gastrocnemius lateralis (GL); yellow = gastrocnemius medialis (GM); light blue = peroneal
group (PER); orange = soleus (SOL); mint = tibialis anterior (TA); blue = tibialis posterior (TP).

Finally, we compared DS and AHD for all networks trained on Thet and only predicting
patient data. As an example, Figure 6 displays cross-sections of all patient images contained
in Phet predicted with U-Net. DenseNet (DS: 0.79 ± 0.06) had a significantly higher DS
than ResNet (DS: 0.77 ± 0.05) (t(25) = 2.17, p = 0.039). U-Net (DS: 0.78 ± 0.05) had a
significantly higher DS than ResNet (DS: 0.77 ± 0.05) (t(25) = 2.84, p = 0.009). Finally, we
found a significant difference in AHD between ResNet (AHD: 0.26 ± 0.20) and U-Net
(AHD: 0.26 ± 0.21) (t(25) = 2.61, p = 0.015).
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Figure 6. All cross-sectional patient MR-images included in Phet. Each column displays a patient,
while each row shows the MR image, manual segmentation and U-Net predicted label, respec-
tively. The first two rows show Dixon-weighted-images from data acquisition (B), all others are T1
weighted images from data acquisition (A). Labels are displayed with transparency to see underly-
ing boundaries. Green = extensor digitorum longus (EDL); purple = gastrocnemius lateralis (GL);
yellow = gastrocnemius medialis (GM); light blue = peroneal group (PER); orange = soleus (SOL);
mint = tibialis anterior (TA); blue = tibialis posterior (TP); CrithPat = critical illness polyneuropathy;
Pompe = Morbus Pompe; Filamin C = filamin C myopathy; LGMD = leg-girdle muscular dystrophy;
MDI = myotonic dystrophy type 1; IBM = inclusion-body myositis; MDII = myotonic dystrophy type 2.
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4. Discussion

We were able to show that different CNNs are able to learn to segment lower leg
muscles in MRI image data. U-Net performs best when the database is homogenous and
DenseNet and U-Net outperforming ResNet in cases where networks were trained on a
heterogenous database. Both DenseNet and U-Net performed well when trained on Thet
and predicted on Phet. Finally, as shown in Figure 3, all three models were able to learn
muscle borders and locations, independent of the respective image contrast.

Given the differences in performance, in respect to the different training and prediction
datasets there seems to be no global gold standard, but recommendations for different
applications. With identical contrasts and a homogeneous database, even a simple U-Net
structure was able to outperform both ResNet and DenseNet in both scores. Given a more
complex task in terms of image variance both DenseNet and U-Net were able to predict
data from different acquisition protocols and patient groups. This implies that in studies
with healthy participants any of the three network architectures can be used. Studies on
patient data, or data with more intrinsic variance will profit greatly from a pretrained
network trained on a large heterogeneous database.

Our aim was to make steps towards a tool able to segment MR-images in the lower leg
capable of handling images acquired on different scanners measuring different contrasts
and patient groups. For small or homogenic training datasets image augmentation could
be used to rotate or shift images, allowing CNNs to adapt to variances. For this study we
limited data augmentation to range normalization to show the influence of a heterogenic
dataset, with MR-images pooled from different studies and even different scanners [29].
This heterogeneous information can help the network to build generalizable representations
which was shown in our study by the slight but significant performance increase in DS
for ResNet and DenseNet predicting Phom when trained on Thet compared to Thom. This
implicates that a large heterogeneous database for training would improve segmentation
quality, even for tasks where the expected variance is comparatively low. When trained
on Thet AHD significantly increased when networks were also trained using patient data,
compared to using data from healthy participants only. This indicates that even when
networks were able to locate muscles correctly, they had issues with detecting muscle
boundaries in patient images. A recent work by Guo et al., 2021 has addressed this issue
by integrating self-learning edge gates into their network, significantly increasing network
performance [33]. Integrating self-learning edge gates into existing network architectures
would likely increase performance for data where muscles contain a higher fat fraction or
when the training database contains data from different acquisition protocols.

Another important point is to include MR-images with different FOVs to be able to
predict the labels no matter which region of the leg was scanned. Full-leg MRI scans lead to
a huge amount of information, but also to an enormous time investment in acquisition and
segmentation of all muscles. In data acquisition (A) the FOV was set irregular, sometimes
reaching into the knee or in the ancle depending on the subject’s height. Training on all
data, all CNNs shown here were able to predict the labels for MR-images of the lower
leg reaching into the knee or ancle. This shows that a heterogeneous dataset, regarding
different FOVs, improves prediction quality and diminishes the factor of a trained CNN
being only usable for similar data with uniform FOV positioning.

Finally, we show that the CNNs used here are able to predict labels for various diseases,
such as Morbus Pompe, IBM, LGMD and others. It is important to cover as many disease
groups as possible, because different diseases show different patterns of affected muscles
and therefore different muscle borders become harder to detect [5,34]. In addition to that,
atrophy leads to changes in morphology of single muscles which impacts the localization
of other muscles [35]. Phet contained MR-images of eleven patients with several different
NMDs. The differences in morphology and fat infiltration can be observed in Figure 6.
Training on this range of different types of NMDs, improves the resulting labels of a CNN
for fat infiltrated images of patient data. Using a diverse cohort for training makes the
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CNN prone to also predict images of patients with diseases that were not used for training
in this study, such as Duchenne muscular dystrophy (DMD).

Till now, all proposed muscle segmentation algorithms lack in accuracy, when seg-
menting muscles from patients with muscle fat depositions and fibrosis. As we can see
from Figure 3, the performance of muscle segmentation for patients with high amount of
fatty infiltration was lower. However, all networks trained on Thet predicted muscle shapes
correctly, with slight errors on the edge of the muscle. When borders between muscles
and subcutaneous fat have disintegrated, as in the patient B from Figure 3, all networks
fail to correctly assign muscle borders. This is particularly visible for the border between
the gastrocnemius medialis and the surrounding gastrocnemius lateralis, soleus and sub-
cutaneous fat. All networks trained on Thet have problems to recreate the border shape,
by either falsely defining a precise border between gastrocnemius medialis and soleus, as
DenseNet does, or wrongly labeling parts of the muscle as background, as ResNet and
U-Net do. Interestingly, patient A shows less fat infiltration than patient B, but since the fat
is only affecting one muscle and making it look such as subcutaneous fat, U-Net fails to
draw a precise boundary. This can be seen best in the 3D label in Figure 5. Adapting more
complex edge detection algorithms could mitigate these errors in future research. One limit
of describing predictions of CNNs is to compare them to manual segmentation, which is
seen as the gold standard. Since manual segmentation is time consuming, time pressure as
well as software tools might reduce the accuracy of drawn labels. The better the quality of
the manual annotation used for training the better the results. However, achieving constant
quality of segmentations, especially concerning the small details, can be very difficult and
even more time consuming as generating segmentations for data analysis. Furthermore, for
voxels that are on the border to subcutaneous fat it is difficult to decide if they should be
labeled to a specific muscle or not. However, most post-processing steps involve smoothing
and erosion of the labels to diminish partial volume effects [29]. When overlaying manually
segmented and with CNNs predicted labels, it is obvious that some variance is due to the
areas close to subcutaneous fat, as seen in Figure 4. This variance is tolerable but is leading
to a lower DS. While the predicted labels show some spuriously classified voxels, the here
presented labels can be manually refined to decrease segmentation time compared to full
manual segmentation. In addition to that, the accuracy of the volume might not be the
most important factor when analyzing clinical parameters such as fat fraction or diffusion
parameters. A promising approach already showed diffusion parameters to be consistent
comparing manual segmentation and semi-automated segmentation on the upper leg [36].
An interesting question for future studies would be to see the needed accuracy of a 3D
labeling technique when analyzing clinical parameters [37].

5. Conclusions

Our results provide evidence that using a heterogeneous training dataset an automated
unified solution can be used for muscle segmentation, with varying image contrasts, and
for FOVs or health status of the participants. The CNNs ability to generalize to new data is
dependent on the heterogeneity of the database. Our data suggest that a global database
from various scanners and sides is desirable. To conclude, we were able to show that CNNs
will be able to remove the time consuming bottleneck from qMRI analysis, paving the way
to apply qMRI data acquisition in a clinical routine as a non-invasive surrogate biomarker.
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Appendix A

Table A1. Overview of mean Dice score and average Hausdorff distance calculated by muscle.

Predicting
Training

Dice Coefficient Average Hausdorff Distance

Homogeneous
Phom

Mean ± SD

Heterogeneous
Phet

Mean ± SD

Homogeneous
Phom

Mean ± SD

Heterogeneous
Phet

Mean ± SD

Homogeneous
Thom

U-Net

GM 0.92 ± 0.04 0.46 ± 0.36 0.14 ± 0.16 4.21 ± 4.21
GL 0.81 ± 0.15 0.34 ± 0.36 0.39 ± 0.49 5.26 ± 4.88

SOL 0.85 ± 0.12 0.48 ± 0.32 0.34 ± 0.44 3.47 ± 3.08
TA 0.90 ± 0.03 0.35 ± 0.41 0.15 ± 0.11 9.20 ± 8.03

PER 0.87 ± 0.06 0.38 ± 0.39 0.19 ± 0.14 8.69 ± 8.70
EDL 0.79 ± 0.04 0.31 ± 0.35 0.30 ± 0.11 8.96 ± 7.41
TP 0.85 ± 0.07 0.32 ± 0.41 0.31 ± 0.36 16.07 ± 13.89

ResNet

GM 0.91 ± 0.04 0.46 ± 0.34 0.13 ± 0.08 3.93 ± 3.10
GL 0.77 ± 0.13 0.36 ± 0.33 0.66 ± 0.70 4.50 ± 3.99

SOL 0.84 ± 0.10 0.50 ± 0.30 0.39 ± 0.40 3.43 ± 3.25
TA 0.88 ± 0.05 0.34 ± 0.41 0.25 ± 0.27 10.68 ± 9.00

PER 0.84 ± 0.09 0.39 ± 0.35 0.31 ± 0.32 5.12 ± 4.09
EDL 0.77 ± 0.07 0.28 ± 0.36 0.36 ± 0.16 12.60 ± 10.56
TP 0.83 ± 0.05 0.33 ± 0.40 0.32 ± 0.30 10.39 ± 8.64

DenseNet

GM 0.77 ± 0.13 0.31 ± 0.34 0.75 ± 0.66 5.87 ± 4.27
GL 0.71 ± 0.16 0.27 ± 0.33 0.89 ± 0.58 11.17 ± 11.47

SOL 0.78 ± 0.12 0.33 ± 0.36 0.70 ± 0.45 8.42 ± 7.78
TA 0.84 ± 0.07 0.30 ± 0.39 0.24 ± 0.12 19.01 ± 15.56

PER 0.72 ± 0.14 0.29 ± 0.31 1.11 ± 1.22 7.97 ± 5.50
EDL 0.68 ± 0.10 0.23 ± 0.32 0.69 ± 0.38 15.24 ± 12.65
TP 0.80 ± 0.08 0.29 ± 0.38 0.26 ± 0.11 17.75 ± 15.53

U-Net

GM 0.92 ± 0.04 0.83 ± 0.12 0.11 ± 0.08 0.42 ± 0.60
GL 0.78 ± 0.18 0.73 ± 0.14 0.41 ± 0.45 0.60 ± 0.40

SOL 0.84 ± 0.13 0.83 ± 0.08 0.40 ± 0.52 0.40 ± 0.35
TA 0.90 ± 0.04 0.85 ± 0.06 0.15 ± 0.10 0.25 ± 0.17

PER 0.87 ± 0.08 0.82 ± 0.08 0.21 ± 0.20 0.34 ± 0.30
EDL 0.77 ± 0.08 0.75 ± 0.10 0.36 ± 0.08 0.45 ± 0.35
TP 0.86 ± 0.05 0.80 ± 0.06 0.19 ± 0.10 0.31 ± 0.41
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Table A1. Cont.

Predicting
Training

Dice Coefficient Average Hausdorff Distance

Homogeneous
Phom

Mean ± SD

Heterogeneous
Phet

Mean ± SD

Homogeneous
Phom

Mean ± SD

Heterogeneous
Phet

Mean ± SD

Heterogeneous
Thet

ResNet

GM 0.92 ± 0.04 0.83 ± 0.10 0.16 ± 0.17 0.49 ± 0.44

GL 0.83 ± 0.10 0.73 ± 0.12 0.32 ± 0.28 0.66 ± 0.44

SOL 0.85 ± 0.10 0.83 ± 0.07 0.33 ± 0.39 0.36 ± 0.25

TA 0.90 ± 0.03 0.84 ± 0.05 0.16 ± 0.13 0.26 ± 0.15

PER 0.86 ± 0.08 0.80 ± 0.09 0.30 ± 0.33 0.41 ± 0.35
EDL 0.79 ± 0.06 0.73 ± 0.10 0.38 ± 0.24 0.52 ± 0.38
TP 0.85 ± 0.03 0.79 ± 0.08 0.18 ± 0.06 0.34 ± 0.25

DenseNet

GM 0.91 ± 0.03 0.83 ± 0.10 0.16 ± 0.14 0.44 ± 0.44
GL 0.87 ± 0.06 0.78 ± 0.11 0.22 ± 0.15 0.59 ± 0.55

SOL 0.86 ± 0.08 0.85 ± 0.07 0.35 ± 0.42 0.36 ± 0.32
TA 0.89 ± 0.05 0.85 ± 0.07 0.22 ± 0.30 0.30 ± 0.25

PER 0.87 ± 0.07 0.82 ± 0.07 0.26 ± 0.32 0.33 ± 0.25
EDL 0.78 ± 0.06 0.75 ± 0.10 0.40 ± 0.27 0.55 ± 0.53
TP 0.86 ± 0.03 0.81 ± 0.84 0.17 ± 0.04 0.31 ± 0.18

EDL = extensor digitorum longus; GL = gastrocnemius lateralis; GM = gastrocnemius medialis; PER = peroneal group; SOL = soleus;
TA = tibialis anterior; TP = tibialis posterior.

References
1. Díaz-Manera, J.; Llauger, J.; Gallardo, E.; Illa, I. Muscle MRI in muscular dystrophies. Acta Myol. 2015, 34, 95–108.
2. Alic, L.; Griffin, J.F.; Eresen, A.; Kornegay, J.N.; Ji, J.X. Using MRI to quantify skeletal muscle pathology in Duchenne muscular

dystrophy: A systematic mapping review. Muscle Nerve 2021, 64, 8–22. [CrossRef] [PubMed]
3. Díaz-Manera, J.; Walter, G.; Straub, V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 2021, 63,

640–650. [CrossRef] [PubMed]
4. Wattjes, M.P.; Kley, R.A.; Fischer, D. Neuromuscular imaging in inherited muscle diseases. Eur. Radiol. 2010, 20, 2447–2460.

[CrossRef] [PubMed]
5. Bas, J.; Ogier, A.C.; Le Troter, A.; Delmont, E.; Leporq, B.; Pini, L.; Guye, M.; Parlanti, A.; Lefebvre, M.-N.; Bendahan, D.; et al. Fat

fraction distribution in lower limb muscles of patients with CMT1A. Neurology 2020, 94, e1480–e1487. [CrossRef]
6. Pons, C.; Borotikar, B.; Garetier, M.; Burdin, V.; BEN Salem, D.; Lempereur, M.; Brochard, S. Quantifying skeletal muscle volume

and shape in humans using MRI: A systematic review of validity and reliability. PLoS ONE 2018, 13, e0207847. [CrossRef]
[PubMed]

7. Ogier, A.C.; Hostin, M.-A.; Bellemare, M.-E.; Bendahan, D. Overview of MR Image Segmentation Strategies in Neuromuscular
Disorders. Front. Neurol. 2021, 12, 255. [CrossRef]

8. Baudin, P.Y.; Azzabou, N.; Carlier, P.G.; Paragios, N. Prior knowledge, random walks and human skeletal muscle segmentation.
Med. Image Comput. Comput. Assist. Interv. 2012, 7510, 569–576. [CrossRef]

9. Andrews, S.; Hamarneh, G. The Generalized Log-Ratio Transformation: Learning Shape and Adjacency Priors for Simultaneous
Thigh Muscle Segmentation. IEEE Trans. Med. Imaging 2015, 34, 1773–1787. [CrossRef]

10. Shakya, S.R.; Zhang, C.; Zhou, Z. Comparative study of machine learning and deep learning architecture for human activity
recognition using accelerometer data. Int. J. Mach. Learn. Comput. 2018, 8, 577–582. [CrossRef]

11. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.
[CrossRef]

12. Oukil, S.; Kasmi, R.; Mokrani, K. U-Net and K-Means for Dermoscopic Skin Lesion Images: Segmentation and Comparison. In
Soft Computing and Electrical Engineering; Springer: Cham, Switzerland, 2020; Volume 2.

13. Hänsch, A.; Schwier, M.; Gass, T.; Morgas, T.; Haas, B.; Dicken, V.; Meine, H.; Klein, J.; Hahn, H.K. Evaluation of deep learning
methods for parotid gland segmentation from CT images. J. Med. Imaging 2018, 6, 011005. [CrossRef] [PubMed]

14. Tong, G.; Li, Y.; Chen, H.; Zhang, Q.; Jiang, H. Improved U-NET network for pulmonary nodules segmentation. Optik 2018, 174,
460–469. [CrossRef]

15. Qamar, S.; Jin, H.; Zheng, R.; Ahmad, P.; Usama, M. A variant form of 3D-UNet for infant brain segmentation. Futur. Gener.
Comput. Syst. 2020, 108, 613–623. [CrossRef]

http://doi.org/10.1002/mus.27133
http://www.ncbi.nlm.nih.gov/pubmed/33269474
http://doi.org/10.1002/mus.27099
http://www.ncbi.nlm.nih.gov/pubmed/33155691
http://doi.org/10.1007/s00330-010-1799-2
http://www.ncbi.nlm.nih.gov/pubmed/20422195
http://doi.org/10.1212/WNL.0000000000009013
http://doi.org/10.1371/journal.pone.0207847
http://www.ncbi.nlm.nih.gov/pubmed/30496308
http://doi.org/10.3389/fneur.2021.625308
http://doi.org/10.1007/978-3-642-33415-3_70
http://doi.org/10.1109/TMI.2015.2403299
http://doi.org/10.18178/ijmlc.2018.8.6.748
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1117/1.JMI.6.1.011005
http://www.ncbi.nlm.nih.gov/pubmed/30276222
http://doi.org/10.1016/j.ijleo.2018.08.086
http://doi.org/10.1016/j.future.2019.11.021


Diagnostics 2021, 11, 1747 15 of 15

16. Zhuang, X.; Xu, J.; Luo, X.; Chen, C.; Ouyang, C.; Rueckert, D.; Campello, V.M.; Lekadir, K.; Vesal, S.; RaviKumar, N.; et al. Cardiac
Segmentation on Late Gadolinium Enhancement MRI: A Benchmark Study from Multi-Sequence Cardiac MR Seg-mentation
Challenge. arXiv 2020, arXiv:2006.12434.

17. Long, F. Microscopy cell nuclei segmentation with enhanced U-Net. BMC Bioinform. 2020, 21, 8–12. [CrossRef] [PubMed]
18. Veit, A.; Wilber, M.; Belongie, S. Residual Networks Behave Like Ensembles of Relatively Shallow Networks. arXiv 2016,

arXiv:1605.06431.
19. He, F.; Liu, T.; Tao, D. Why ResNet Works? Residuals Generalize. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5349–5362.

[CrossRef]
20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition; IEEE Computer Society: Tapei, Taiwan, 2015; pp. 770–778. [CrossRef]
21. Drozdzal, M.; Vorontsov, E.; Chartrand, G.; Kadoury, S.; Pal, C. The Importance of Skip Connections in Biomedical Image

Segmentation. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2016; Volume 10008, pp. 179–187.

22. Lin, B.; Xle, J.; Li, C.; Qu, Y. Deeptongue: Tongue Segmentation Via Resnet. In Proceedings of the 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing—Proceedings, Calgary, AB, Canada, 15 April 2018; Institute of Electrical
and Electronics Engineers, 2018; pp. 1035–1039.

23. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2016; IEEE: New
York, NY, USA, 2016; pp. 2261–2269. [CrossRef]

24. Jegou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The one hundred layers tiramisu: Fully convolutional DenseNets for
semantic segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1175–1183.

25. Stawiaski, J. pretrained densenet encoder for brain tumor segmentation. In Proceedings of the Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland,
2019; Volume 11384, pp. 105–115.

26. Forsting, J.; Rehmann, R.; Froeling, M.; Vorgerd, M.; Tegenthoff, M.; Schlaffke, L. Diffusion tensor imaging of the human thigh:
Consideration of DTI-based fiber tracking stop criteria. Magma Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 343–355. [CrossRef]

27. Rehmann, R.; Froeling, M.; Rohm, M.; Forsting, J.; Kley, R.A.; Schmidt-Wilcke, T.; Karabul, N.; Meyer-Frießem, C.H.; Vollert, J.;
Tegenthoff, M.; et al. Diffusion tensor imaging reveals changes in non-fat infiltrated muscles in late onset Pompe disease. Muscle
Nerve 2020, 62, 541–549. [CrossRef]

28. Güttsches, A.-K.; Rehmann, R.; Schreiner, A.; Rohm, M.; Forsting, J.; Froeling, M.; Tegenthoff, M.; Vorgerd, M.; Schlaffke, L.
Quantitative Muscle-MRI Correlates with Histopathology in Skeletal Muscle Biopsies. J. Neuromuscul. Dis. 2021, 8, 669–678.
[CrossRef]

29. Schlaffke, L.; Rehmann, R.; Rohm, M.; Otto, L.A.; De Luca, A.; Burakiewicz, J.; Baligand, C.; Monte, J.; Harder, C.D.; Hooijmans,
M.T.; et al. Multi-center evaluation of stability and reproducibility of quantitative MRI measures in healthy calf muscles. NMR
Biomed. 2019, 32, e4119. [CrossRef] [PubMed]

30. Rehmann, R.; Schneider-Gold, C.; Froeling, M.; Güttsches, A.; Rohm, M.; Forsting, J.; Vorgerd, M.; Schlaffke, L. Diffusion Tensor
Imaging Shows Differences Between Myotonic Dystrophy Type 1 and Type 2. J. Neuromuscul. Dis. 2021, Pre-press, 1–14. [CrossRef]

31. Çiçek, Ö. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, UK, 19–22 September 1999; Springer:
Cham, Switzerland, 2016; pp. 424–432.

32. Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging
2015, 15, 29. [CrossRef] [PubMed]

33. Guo, Z.; Zhang, H.; Chen, Z.; van der Plas, E.; Gutmann, L.; Thedens, D.; Nopoulos, P.; Sonka, M. Fully automated 3D
segmentation of MR-imaged calf muscle compartments: Neighborhood relationship enhanced fully convolutional network.
Comput. Med. Imaging Graph. 2021, 87, 101835. [CrossRef] [PubMed]

34. Dam, L.T.; Van Der Kooi, A.J.; Verhamme, C.; Wattjes, M.P.; De Visser, M. Muscle imaging in inherited and acquired muscle
diseases. Eur. J. Neurol. 2016, 23, 688–703. [CrossRef]

35. Degardin, A.; Morillon, D.; Lacour, A.; Cotten, A.; Vermersch, P.; Stojkovic, T. Morphologic imaging in muscular dystrophies and
inflammatory myopathies. Skelet. Radiol. 2010, 39, 1219–1227. [CrossRef]

36. Secondulfo, L.; Ogier, A.C.; Monte, J.R.; Aengevaeren, V.L.; Bendahan, D.; Nederveen, A.J.; Strijkers, G.J.; Hooijmans, M.T.
Supervised segmentation framework for evaluation of diffusion tensor imaging indices in skeletal muscle. NMR Biomed. 2021, 34,
e4406. [CrossRef]

37. Schlaffke, L.; Rehmann, R.; Froeling, M.; Kley, R.; Tegenthoff, M.; Vorgerd, M.; Schmidt-Wilcke, T. Diffusion tensor imaging of
the human calf: Variation of inter- and intramuscle-specific diffusion parameters. J. Magn. Reson. Imaging 2017, 46, 1137–1148.
[CrossRef] [PubMed]

http://doi.org/10.1186/s12859-019-3332-1
http://www.ncbi.nlm.nih.gov/pubmed/31914944
http://doi.org/10.1109/TNNLS.2020.2966319
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/cvpr.2017.243
http://doi.org/10.1007/s10334-019-00791-x
http://doi.org/10.1002/mus.27021
http://doi.org/10.3233/JND-210641
http://doi.org/10.1002/nbm.4119
http://www.ncbi.nlm.nih.gov/pubmed/31313867
http://doi.org/10.3233/JND-210660
http://doi.org/10.1186/s12880-015-0068-x
http://www.ncbi.nlm.nih.gov/pubmed/26263899
http://doi.org/10.1016/j.compmedimag.2020.101835
http://www.ncbi.nlm.nih.gov/pubmed/33373972
http://doi.org/10.1111/ene.12984
http://doi.org/10.1007/s00256-010-0930-4
http://doi.org/10.1002/nbm.4406
http://doi.org/10.1002/jmri.25650
http://www.ncbi.nlm.nih.gov/pubmed/28152253

	Introduction 
	Materials and Methods 
	Datasets 
	Manual Segmentation 
	Data Selection and Composition 
	Preprocessing 
	Postprocessing 
	Convolutional Neuronal Networks 
	Evaluation 

	Results 
	Discussion 
	Conclusions 
	
	References

