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Overactivation of the innate immune system together with the impaired downstream pathway of type I interferon-responding
genes is a hallmark of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc). To date,
limited data on the cross-disease innate gene signature exists among those diseases. We compared therefore an innate gene
signature of Toll-like receptors (TLRs), seven key members of the interleukin (IL)1/IL1R family, and CXCL8/IL8 in peripheral
blood mononuclear cells from well-defined patients with active stages of RA (n = 36, DAS28 ≥ 3 2), SLE (n = 28, SLEDAI > 6),
and SSc (n = 22, revised EUSTAR index > 2 25). Emerging diversity and abundance of the innate signature in RA patients were
detected: RA was characterized by the upregulation of TLR3, TLR5, IL1RAP/IL1R3, IL18R1, and SIGIRR/IL1R8 when compared
to SSc (Pcorr < 0 02) and of TLR2, TLR5, and SIGIRR/IL1R8 when compared to SLE (Pcorr < 0 02). Applying the association rule
analysis, six rules (combinations and expression of genes describing disease) were identified for RA (most frequently included
high TLR3 and/or IL1RAP/IL1R3) and three rules for SLE (low IL1RN and IL18R1) and SSc (low TLR5 and IL18R1). This first
cross-disease study identified emerging heterogeneity in the innate signature of RA patients with many upregulated innate genes
compared to that of SLE and SSc.

1. Introduction

Rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), and systemic sclerosis (SSc) are systemic autoimmune
diseases characterized by overactivation of the innate
immune system together with impaired downstream path-
way of type I interferon- (IFN-) responding genes (IFN sig-
nature). Nevertheless, a certain heterogeneity in the IFN
signature among those diseases has been recognized, and
some patients even lack its presence [1–4].

Although the emerging role of the innate immunity in the
pathogenesis of RA, SLE, and SSc has been demonstrated,
there is no data on the cross-disease innate gene signature
as well as its heterogeneity among those diseases yet. Numer-
ous studies on individual innate immunity members in RA,
SLE, and SSc showed the crucial role of Toll-like receptors
(TLRs) and IL1 family [5, 6]. Notable examples of common
innate pathways are (i) the involvement of the adapter pro-
tein MyD88 which is required for signal transduction by
TLRs and receptors of the IL1 family, (ii) the activation of
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the type I IFN, and (iii) the presence of endogenous TLR
ligands [7]. Besides shared innate pathways, disease-specific
molecular and cellular mechanisms exist. In SLE, recent evi-
dence has suggested a close relationship between the endoso-
mal TLR activation and the disease onset [8, 9] with an
essential role of endosomal TLRs in the generation of anti-
nuclear antibodies and type I IFNs [10]. In RA, abundant acti-
vation of individual members of TLR and IL1 families was
already evidenced with a proposed role for exogenous TLR
ligands in the disease onset (i.e., Proteus infection of urinary
tract, Epstein-Barr virus, and parvovirus B19) and for endog-
enous ligands in self-sustaining of the inflammatory loop
[5, 11]. In SSc, signaling via TLR is increasingly recognized
as a key player driving the persistent fibrotic response and is
linked to the activity of TGF-β; however, the pathological role
of TLRs and their ligands in SSc still remains unclear [12].

We undertook this study to elucidate the underlying dif-
ferences in the innate immunity signature across three major
autoimmune disorders using multivariate analysis. This first
cross-disease analysis of the innate gene expression signature
of 10 TLRs, 7 key members of the IL1/IL1R family, and
interleukin 8 (CXCL8) in peripheral blood mononuclear
cells (PBMC) from patients with active SLE, RA, and SSc
revealed emerging diversity and abundance in RA compared
to SLE and SSc. Our study contributes to further understand-
ing of the innate signature underlying the immunopathology
of major autoimmune diseases, with special emphases to
discriminate shared and disease-specific expression patterns.

2. Materials and Methods

2.1. Study Subjects. The study cohort consisted of 86 Cauca-
sian patients with autoimmune diseases from a single rheuma-
tology center in Olomouc, Moravia region of Czech Republic.
All enrolled RA/SLE/SSc patients met the 2010 ACR/EULAR
classification criteria for RA [13], the ACR classification cri-
teria for SLE [14], and the 2013 ACR/EULAR classification

criteria for SSc, respectively [15]. To exclude heterogeneity
due to the activity and inactivity of the diseases, only cases
with active phenotypes of the disease classified according to
common activity scores (Disease Activity Score in 28 joints
(DAS28), SLE Disease Activity Index (SLEDAI), and revised
European Scleroderma Trials and Research group (EUSTAR)
index) were included: RA (n = 36, DAS28 ≥ 3 2), SLE (n = 28,
SLEDAI > 6), and SSc (n = 22, revised EUSTAR index > 2 25).

The demographic and clinical features, used medication,
duration of disease, and relative white blood count are
described in Table 1. Distribution of lymphocyte, neutrophil,
and monocyte counts did not differ between studied patient’s
groups (P > 0 05). The healthy control cohort consisted of 77
subjects (mean age 51 yrs, min-max 24-90 yrs, female/male
58/19) out of which were formed three age-/gender-matched
groups for each disease: 63 controls for RA (mean age 56 yrs,
min-max 41-90 yrs, female/male 45/18), 33 controls for SLE
(40, 24-50, 27/6, respectively), and 48 controls for SSc (58,
48-90, 34/14, respectively). In all healthy subjects, presence
of inflammatory autoimmune diseases in first or second
degree relatives, recent vaccination, infection, and usage of
immunosuppressive drugs were excluded by questionnaire.

The patients and control subjects provided written
informed consent about the usage of peripheral blood for
the purpose of this study, which was approved by the
ethics committee of the University Hospital and Palacký
University Olomouc.

2.2. Sample Processing and Real-Time Reverse Transcription-
Polymerase Chain Reaction (qRT-PCR). The PBMC were iso-
lated from the peripheral blood collected in K3EDTA tubes
by Ficoll density gradient centrifugation (Sigma-Aldrich,
Germany) and stored in TRI Reagent (Sigma-Aldrich, Ger-
many) at −80°C until analysis. Total RNA was extracted
using a Direct-zol RNA kit (Zymo Research, USA) according
to the manufacturer’s recommendations. After reverse tran-
scription with a Transcriptor First Strand cDNA Synthesis

Table 1: Demographic and clinical characteristics of enrolled patients.

RA (n = 36) SLE (n = 28) SSc (n = 22)
Female/male 26/10 24/4 15/7

Age (years) mean (min-max) 57.5 (39-80) 40.1 (19-67) 58.0 (38-77)

Duration of the disease (years) mean (min-max) 18.1 (9-50) 10.0 (1-20) 5.4 (0-21)

Medications (% (n))

Steroids 89 (32) 82 (23) 96 (21)

NSAIDs 78 (28) 14 (4) 0 (0)

Methotrexate 83 (30) 14 (4) 9 (2)

Other DMARDs∗ 36 (13) 100 (28) 73 (16)

Biologics 39 (14) 0 (0) 0 (0)

Relative white blood count (%)

Lymphocytes (mean (95% CI)) 24.9 (20.5-29.3) 22.9 (18.5-27.3) 21.4 (17.5-25.4)

Neutrophils (mean (95% CI)) 62.9 (57.9-67.9) 67.1 (61.6-72.6) 67.3 (62.5-72.2)

Monocytes (mean (95% CI)) 8.9 (7.9-9.9) 8.5 (7.1-9.9) 9.2 (7.9-10.4)

NSAIDs: nonsteroidal anti-inflammatory drugs; DMARDs: disease-modifying antirheumatic drugs; CI: confidence interval. ∗Other DMARDs taken were
hydroxychloroquine (RA/SLE/SSc; n = 3/26/0), leflunomide (8/0/0), sulfasalazine (2/0/0), azathioprine (0/8/12), mycophenolate mofetil (0/6/0),
cyclophosphamide (0/3/3), and cyclosporine (0/1/1).
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Figure 1: Relative mRNA expression levels of genes differentially expressed in (a) RA vs. SLE, (b) RA vs. SSc, and (c) SSc vs. SLE. Group
means are indicated by horizontal bars; error bars indicate 95% CI.
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Kit (Roche, Switzerland), qPCR was performed in a 100nl
reaction volume containing a LightCycler 480 SYBR Green
I Master mix (Roche, Switzerland) using a high-throughput
SmartChip Real-Time-qPCR System (WaferGen, USA) as
reported previously [16, 17]. Primer sequences are listed in
Table S1 (Integrated DNA Technologies, USA). The relative
mRNA expression was calculated using phosphoglycerate
kinase 1 as a reference gene [18].

In order to assess the innate immunity gene expression
pattern, the expression of TLR (TLR1-10), IL1/IL1R family
(21 members), and CXCL8 was investigated in PBMC. Based
on pilot evaluation of qPCR assays on a cohort of 20 RA, 20
SLE, and 20 SSc patients, 14 assays of IL1/IL1R family mem-
bers (IL1A, IL36RN, IL36A, IL36B, IL36G, IL37, IL38, IL33,
IL1R2, IL18RAP, IL1RL1, IL1RL2, IL1RAPL1, and IL1RAPL2)
were below the limit of detection of the system and thus
excluded from further analysis. The study continued therefore
by expression profiling of 18 innate immunity genes:TLR1-10,
7 members of the IL1/IL1R family together with CXCL8.

2.3. Statistical Analysis and Data-Mining Methods. Statistical
analysis (Mann–Whitney U test, Benjamini-Hochberg cor-
rection) of relative gene expression values was performed
using Genex (MultiD Analyses AB, Sweden) and GraphPad
Prism 5.01 (GraphPad Software, USA). P value < 0.05 was
considered as significant.

In this study, a set of multivariate data-mining analyses to
visualize and characterize the gene expression heterogeneity

between and within the diseases was applied. For a flowchart
of the analysis process used, see Figure S1.

First, correlation networks using the LRNet algorithm
[19] and Spearman’s rank correlation coefficient were con-
structed and visualized to investigate the relationships
between expressions of individual studied genes within the
innate gene signature and to nominate the most representa-
tive molecules for the particular disease.

Second, Andrews curve analysis was applied for visuali-
zation of the structure in multidimensional expression data
[20–23]. The relative gene expression values of individual
patients were transformed using Andrews’ formula (Equa-
tion S1); all calculations were performed by package Andrews
from the R library [24]. The Andrews curves were plotted to
visualize the differences between particular diseases using a
set of significantly deregulated genes and the whole set of
studied genes. The difference is demonstrated by separation
of the Andrews curve’s amplitudes and phase shift [20, 22,
23]. The curves of similar relative gene expression overlap
between studied groups (Figure S2), while separation of
curves demonstrates the differences in expression profiles
(Figure S3) [20, 22, 23]. More detailed description of the
Andrews curve analysis is stated in Supplementary File.

Third, we applied association rule mining, a technique
for finding frequent patterns, correlations, or associations
among the given data set [25] to investigate the heterogeneity
within the diseases themselves. Firstly, each gene data set
was divided into low/high expression groups by arithmetic
means of relative gene expressions within the whole data

Table 2: Relative mRNA expression levels of genes differentially expressed between (a) RA vs. SLE, (b) RA vs. SSc, (c) SSc vs. SLE.

(a) RA vs. SLE

Gene
Mean (95% CI)

FC P value PcorrRA SLE

TLR5 0.056 (0.043-0.070) 0.021 (0.011-0.032) 6.49 5 2 × 10−4 9 3 × 10−3

SIGIRR 0.300 (0.247-0.353) 0.179 (0.141-0.218) 1.76 2 0 × 10−3 2 0 × 10−2

TLR2 0.077 (0.059-0.095) 0.046 (0.029-0.063) 2.00 3 7 × 10−3 2 2 × 10−2

(b) RA vs. SSc

Gene
Mean (95% CI)

FC P value PcorrRA SSc

IL1RAP 0.015 (0.011-0.020) 0.003 (0.001-0.004) 6.08 1 7 × 10−7 3 0 × 10−6

TLR5 0.056 (0.043-0.070) 0.013 (0.007-0.019) 7.16 1 1 × 10−5 9 8 × 10−5

IL18R1 0.011 (0.008-0.014) 0.003 (0.002-0.005) 4.08 2 0 × 10−5 1 2 × 10−4

SIGIRR 0.300 (0.247-0.353) 0.155 (0.098-0.211) 2.26 5 9 × 10−4 2 6 × 10−3

TLR3 0.005 (0.003-0.007) 0.001 (6 1 × 10−5‐0 001) 28.5 1 8 × 10−3 6 6 × 10−3

(c) SSc vs. SLE

Gene
Mean (95% CI)

FC P value PcorrSSc SLE

IL1R1 0.004 (0.003-0.005) 0.002 (3 1 × 10−5‐0 004) 34.8 2 7 × 10−4 4 8 × 10−3

Pcorr value corrected for multiple comparisons (Benjamini-Hochberg correction). FC (fold change) between group medians of relative mRNA expression levels.
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set. The applied package “arules” in the R system [26] was
used to extract rules (combinations of genes and its
expression levels associated with the particular disease).
Only a minimum number of top ranked rules describing the
particular disease with a good confidence (threshold 0.75)
and support were used.

3. Results

3.1. Innate Immune Gene Expression Pattern of RA, SLE, and
SSc. In order to characterize innate immune signature in
studied diseases, the expression profiles of selected innate
immune genes between patients and healthy controls in all
diseases were compared.

To exclude the influence of age on the gene expression,
the healthy controls were subdivided into age-matched sub-
groups despite no differences being observed in the expres-
sion profile of all investigated genes in the formed

subgroups (Pcorr > 0 05). RA differed from controls by the
upregulated expression of TLR2, TLR3, TLR5, TLR8, IL1B,
IL18, IL18R1, IL1RN, IL1RAP, and SIGIRR/IL1R8
(Pcorr ≤ 0 05; Figure S4A, Table S2A). In patients treated
with anti-TNF-α therapy, a trend to lower TLR5 levels in
our RA patients was observed (P = 0 07). In SLE,
downregulation of TLR10 was observed when compared to
healthy controls (P = 0 02); however, it did not reach
significance after the correction for multiple comparisons
(Figure S4B, Table S2B). SSc differed from controls by the
upregulated expression of IL1RN, IL18, and CXCL8 and
downregulated expression of IL1RAP and IL18R1
(Pcorr ≤ 0 05; Figure S4C, Table S2C).

3.2. Cross-Disease Analysis of Innate Pattern in RA, SLE, and
SSc. To investigate the disease-specific innate immune gene
expression pattern, we compared RA, SLE, and SSc patients
to each other. RA differed from SLE and SSc by the
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Figure 2: Differential innate gene expression analysis by Andrews curves between (a) RA vs. SLE, (b) RA vs. SSc, and (c) SLE vs.
SSc—representative examples. The Andrews curves were calculated for various combinations of gene expression values from the whole set
of studied genes. Examples show the results of the Andrews curve analysis for the combination of (a) TLR3, TLR7, TLR8, IL1R1, IL1RN,
and IL18R1; (b) TLR3, TLR4, TLR6, TLR10, IL1B, IL1R1, and SIGIRR; and (c) TLR4, TLR6, TLR7, TLR8, IL1R1, IL1RN, and IL18. For
those sets of genes, a good separation of diseases was observed as visualized by separation of the curve’s amplitudes and phase shift. An
example of combination of genes which does not discriminate between disease groups is shown in Figure S2. Full lines represent the mean
values, the dashed lines 95% confidence intervals.
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upregulated expression of TLR5 and SIGIRR (Pcorr < 0 02;
Figures 1(a) and 1(b), Tables 2(a) and 2(b), and Tables S3A
and S3B). RA further differed from SLE by the upregulated
expression of TLR2 (Pcorr = 0 02; Figure 1(a), Tables 2(a)
and S3A) and from SSc by the upregulation of TLR3,
IL1RAP, and IL18R1 genes (Pcorr < 0 007; Figure 1(b),
Tables 2(b) and S3B). In SSc, the upregulated expression of
IL1R1 (Pcorr = 0 005; Figure 1(c), Tables 2(c) and S3C) was
observed when compared to SLE.

3.3. Visualization of Disease-Associated Gene Expression
Pattern by Andrews Curves. To investigate the disease-
associated gene expression pattern, Andrews curves were
used to visualize the differences between particular diseases
using a set of significantly deregulated genes and the whole
set of studied genes. First, we assessed the differences in the
innate expression pattern of genes revealed by classical statis-
tics. Although a good separation of Andrews curves on the
basis of significant genes was observed (Figure S3), better
separation of the studied diseases was obtained when a
whole set of studied genes was used (Figure 2).

3.4. Innate Pattern Characteristics of RA, SLE, and SSc. Next,
we applied the association rule analysis to identify rules (set
of genes including their expression levels) describing a cer-
tain disease within the three studied diseases. Based on the

results from the Andrews curves, association rule analysis
was performed using the whole gene set.

For RA, six rules were identified, thus showing high het-
erogeneity within this group of patients when compared to
SLE and SSc (Figure 3), where for each of them, three rules
were identified. In RA, a high level of TLR3 and IL1RAP
mRNA was identified in three and two rules, respectively.
In SLE, low expression levels of IL1RN and IL18R1 appeared
in two rules, and in SSc, a low level of TLR5 and IL18R1
mRNA occurred in three and two rules, respectively. The
obtained association rules and their support and confidence
values deciphered for RA, SLE, and SSc patients are listed
in Table 3. The accuracy of classification by using these rules
for RA, SLE, and SSc was 83%, 78%, and 77%, respectively.
Comparison of rules for each disease revealed that TLR3,
TLR5, IL18, IL18R1, and IL1R1 genes occurred in rules for
all studied diseases, showing good discriminant power
among studied autoimmune diseases as visualized by the
Andrews curves (Figure S5).

4. Discussion

This study focused on the innate immunity gene signature
among major autoimmune diseases: RA, SLE, and SSc, show-
ing heterogeneity in the innate signature among and within
these diseases. This first cross-disease study showed the high-
est diversity and abundance in the innate signature in RA
when compared to SLE and SSc.

Innate immunity plays a key role in the pathogenesis of
autoimmune rheumatic diseases as evidenced from numer-
ous studies on individual members of innate immunity path-
ways [5, 6]. However, little is known about the similarities
and differences in the innate signature at the molecular level
between and within these diseases. Therefore, we investigated
the differential expression of key innate genes in RA, SLE,
and SSc. Importantly, our study was restricted only to the
cases with active disease in order to exclude heterogeneity
due to the activity and inactivity of the diseases. To obtain a
more complex picture, the multivariate analysis was applied
to assess the complexity of the differential innate signature
having an advantage over classical statistical approaches
due to taking into account the intrinsic characteristics of
gene expression data and assessing the relationships between
studied molecules.

Firstly, we applied Andrews curve analysis for assess-
ment of differences and similarities in the gene innate sig-
nature between studied diseases, an approach particularly
useful for visualization of the structure in multidimen-
sional data [20, 21]. When using combination of genes
reaching statistical significance as well as using the whole
gene set, we confirmed the diversity among innate profiles
in RA, SLE, and SSc by Andrews curve analysis. Upregu-
lated expression of TLR3, TLR5, and SIGIRR was charac-
teristic for RA when compared to both SLE and SSc. An
intracellular receptor TLR3 recognizing dsRNA has been
shown to be involved in the RA pathogenesis: necrotic
synovial fluid cells release RNA that can activate TLR3
in RA synovial fibroblasts [27]. TLR5, a surface receptor
highly upregulated in our RA patients, recognizes bacterial
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flagellin. However, their endogenous ligand(s) in synovial
fluid able to activate TLR5 in RA is(are) still unknown
[28, 29]. In line with our results, increased TLR5 in
peripheral blood myeloid cells correlated with RA disease
activity and TNF-alpha levels [30]. There is also evidence
that anti-TNF-α therapy markedly suppress TLR5 expres-
sion in RA monocytes [31], a trend which was also
observed in our study. Also, the next highly upregulated
SIGIRR (IL1R8/TIR8), an orphan receptor required for
the anti-inflammatory effects of IL37, has been reported
in RA synovial tissue previously [32].

Also, other genes such as TLR2, IL1RAP, and IL18R1
from the differential innate signature associated with RA
revealed by our analysis were reported in autoimmune condi-
tions previously. In line with our results, abundant TLR2 on
monocyte subsets in active RA produced a spectrum of pro-
inflammatory cytokines after stimulation [33]. TLR2 recog-
nizes a wide range of conserved microbial products,
probably due to its cooperation with TLR1 or TLR6, as well
as its hypothetic ligand HMGB1 released from dying and
activated cells [34]. Regarding IL1RAP and IL18R1, their
upregulated expression in RA was reported recently [16]
and their downregulation in SSc we report here for the first
time. Finally, SSc was characterized by an increase in IL1R1
in comparison to SLE. The first evidence about critical
involvement of IL1R1, an essential mediator for proinflam-
matory IL1 signaling [35], in fibrotic processes has been
already reported in a murine lung injury model [36]. Impor-
tantly, data from our cross-disease analysis are in line with
previous studies on individual innate members and basic
statistical analysis and further highlight the activation of
innate immunity in RA when compared to SLE and SSc.
The infectious agents and endogenous ligands activating
innate receptors leading to a self-sustaining inflammatory
loop responsible for chronic and destructive progression in
RA need to be further elucidated.

Next, we investigated the differential innate signature
among and within the studied diseases by association rule
analysis, a method commonly used to uncover the most fre-
quently purchased combinations of items in a market basket
analysis. It has been shown that this analysis is highly conve-
nient for gene expression datasets [37, 38] and gives addi-
tional information due to preservation of the causality
between the gene expression level and phenotype [37]. For
RA, six rules were identified, thus showing high heterogene-
ity within this group of patients when compared to SLE
and SSc, where three rules were identified for each of
them. In RA, the association rules most frequently
included high expression of TLR3 and/or IL1RAP/IL1R3,
thus again highlighting activation of the innate system in
active RA. In SLE, a low expression of IL1RN and
IL18R1 and in SSc, a low level of TLR5 and IL18R1
occurred ofen in the rules. Applying association rules
(combinations of genes describing a particular disease),
excellent confidence and accuracy above 77% was achieved
for all investigated diseases.

Interestingly, about half of the patients in each disease
were characterized by multiple rules, while others were typi-
cal by only one gene expression pattern rule. The existence of
several innate profile subgroups within RA patients lets us
suggest that the heterogeneity in the innate pattern in RA
may contribute to various clinical disease manifestations [4,
16], thus deserving future investigation. We also hypothesize
that observed heterogeneity in the innate signature may con-
tribute to the heterogeneity in the IFN signature recently
reported in RA [4]. Our data further highlighted the applica-
tion of advanced multivariate data analysis especially for dis-
eases such as SLE, where many clinical phenotypes exist. This
may be reflected in the high variability in the expression pat-
tern which might be underestimated by univariate statistics,
especially in the case of low abundant genes. Finally, our data
points out the involvement of various key innate molecules as

Table 3: Association rules identified for (a) RA, (b) SLE, and (c) SSc.

No. Rule Support Confidence Number of patients identified

(a) RA

1 TLR3 high & IL1RAP high 0.13 1.00 11

2 TLR3 high & TLR10 high 0.12 1.00 10

3 TLR3 high & TLR9 low 0.12 1.00 10

4 TLR4 low & TLR8 high & IL1RAP high 0.14 1.00 12

5 TLR5 high & IL18 high & IL18R1 low 0.14 1.00 12

6 TLR6 low & IL1R1 high & SIGIRR high & CXCL8 low 0.12 0.91 10

(b) SLE

1 TLR5 low & TLR6 high & IL1RN low & IL18R1 low 0.10 0.90 9

2 TLR1 low & TLR8 low & IL1R1 low & IL1RN low & IL18 low & IL18R1 low 0.13 0.85 11

3 TLR3 low & IL1B high 0.10 0.82 9

(c) SSc

1 TLR5 low & IL1RN high & IL18R1 low 0.10 1.00 9

2 TLR5 low & TLR3 low & IL18 high 0.10 0.82 9

3 TLR5 low & IL1R1 high & IL18R1 low 0.10 0.75 9

The data set for each gene was divided into low/high expression by means of a particular gene expression of the whole data set.
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well as the different interplay between individual innate
receptors in the studied diseases.

To gain a more complete picture of the innate signature
in autoimmune diseases, we report also the differential pro-
file of the innate signature in studied diseases compared to
healthy controls. This comparison revealed the upregulation
of four members of TLR (TLR2, TLR3, TLR5, and TLR8) and
six members of the IL1/IL1R family (IL1B, IL1RN, IL1RAP,
IL18R1, IL18, and SIGIRR) in RA when compared to healthy
controls. In line with our results, deregulation of these genes
or their protein products was already registered in RA [16,
30, 32, 39–44]. In SLE, this study showed for the first time
downregulation of TLR10, a broad negative regulator of
TLR signaling [45, 46]. The first evidence about the possible
involvement of TLR10 in autoimmunity has been already
observed: downregulated TLR10 expression was reported in
PBMC of patients with microscopic polyangiitis [47] as well
as RA patients with active disease [16]. In contrast to the
murine models of SLE [48], we did not observe increased
TLR7 and TLR9 expression in our SLE patients. In SSc, our
study revealed upregulation of IL1RN, IL18, and CXCL8
and downregulation of IL1RAP and IL18R1. In line with
our results, upregulated IL1RN mRNA [49], increased IL18
expression in skin biopsies [50], and elevated serum IL8 in
patients with scleroderma [51] were reported. Here, we
report for the first time downregulation of IL1RAP and
IL18R1 in SSc. IL1RAP (IL1R3) is a coreceptor of IL1R1
and is indispensable for the transmission of IL1 signaling
[35]. Regarding IL18R1, it encodes the α subunit of the
IL18 receptor responsible for IL18 binding. The activated
receptor then initiates the same signaling pathway as IL1 to
activate NF-κB [52]. How these proteins contribute to the
SSc pathogenesis deserves future investigations.

The authors are aware of some limitations. The study was
performed as a cross-sectional analysis in a real-world setting
of patients in different stages of the disease; however, the
authors restricted analysis only to patients in the active disease
stage in order to obtain a more homogenous cohort. Due to
the small number of patients in the subgroups with particular
gene patterns revealed by association analysis, the subanalysis
of their association with clinical parameters was not per-
formed. Future studies on larger cohorts with well-defined
patients would be advisable to further confirm our results.

5. Conclusions

To conclude, this first cross-disease study highlighted the het-
erogeneous nature among and within RA, SLE, and SSc, with
the identification of RA having the highest diversity and abun-
dance in the innate signature when compared to SLE and SSc.
Moreover, the results from applied data mining approaches
show the importance of a multiple multivariate analysis for
better understanding of relationships between individual mol-
ecules, especially in highly heterogeneous diseases.
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