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Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in
fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting
via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase
(iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways
may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung
and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor
(MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we
evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin
fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by
daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15,
mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of
MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target
exposure and engagement by MRI-1867. Fibrosis was characterized histologically by
dermal thickening and biochemically by hydroxyproline content. We also evaluated the
potential increase of drug-efflux associated ABC transporters by bleomycin in skin
fibrosis, which could affect target exposure to test compounds, as reported in
bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in
B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate,
was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due
to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the
endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the
fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-
induced established skin fibrosis and the associated increase in endocannabinoids in
n.org September 2021 | Volume 12 | Article 7448571

https://www.frontiersin.org/articles/10.3389/fendo.2021.744857/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.744857/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.744857/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.744857/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.744857/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:resat.cinar@nih.gov
https://doi.org/10.3389/fendo.2021.744857
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.744857
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.744857&domain=pdf&date_stamp=2021-09-28


Zawatsky et al. Dual Targeting of CB1R and iNOS in Skin Fibrosis

Frontiers in Endocrinology | www.frontiersi
Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R
and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an
artifact in testing antifibrotic drug candidates that are substrates of drug-efflux
transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds
avoids this pitfall.
Keywords: endocannabinoids, skin fibrosis, bleomycin, ATP-binding cassette transporters, P-gp (P-glycoprotein),
peripheral CB1R antagonist, cannabinoid (CB) receptor 1, polypharmacology
INTRODUCTION

Scleroderma, or systemic sclerosis (SSc), is a connective tissue disease
with multiple clinical manifestations, including autoimmunity,
vascular dysfunction, and tissue fibrosis (1), and a prevalence in
the United States of around 240 cases per 1 million adults (2).
Scleroderma is a complex, heterogeneous disease with clinical forms
ranging from limited skin involvement (limited cutaneous systemic
sclerosis) to forms with diffuse skin sclerosis and severe and often
progressive internal organ involvement (diffuse cutaneous systemic
sclerosis) (3). Pulmonary fibrosis and interstitial lung diseases (ILD)
occur in about 60% of patients, contributing to mortality (4), while
dermal fibrosis causes significant morbidity in scleroderma (5, 6). In
the absence of approved therapies, there is an unmet need for
identifying new targets and treatment strategies. Due to the complex
and multifactorial pathogenesis of scleroderma, targeting multiple
signaling pathways may be essential for effective treatment (7).

Inducible nitric oxide synthase (iNOS) is an enzyme encoded
by the Nos2 gene and is responsible for generating pro-
inflammatory reactive nitrogen species (8). The relevance of
iNOS as a target is based on evidence for overproduction of NO
in the pathogenesis of SSc (9, 10). In SSc, the expression of iNOS in
the endothelium, smooth muscle cells, fibroblasts, macrophages
and many other cell types is robustly induced by inflammatory
mediators and cytokines and its activity is increased at
inflammatory sites (8). The iNOS-mediated formation of NO is
increased in inflammatory cells such as macrophages or activated
fibroblasts (10). Immunohistological studies of scleroderma skin
show that disease progression involves iNOS upregulation (11).
Previous studies also demonstrate that SSc lung macrophages
express high levels of iNOS and produce a high quantity of
ONOO- anions (11). In SSc patients, increased production of
NO is suggested by the increased expression of iNOS in
endothelial cells, fibroblasts and mononuclear cells infiltrating
the fibrotic skin (12) as well as in alveolar macrophages (13).
The role of NO synthases and especially iNOS is elegantly
dissected by the work of Cotton et al., which proposes an active
role of iNOS-induced NO production in endothelial cell damage
and advances the concept of iNOS inhibition as a viable
therapeutic strategy for SSc (14).

An additional target that is becoming increasingly relevant in
the modulation of fibrotic responses is the endocannabinoid
system. Endocannabinoids are lipid-signaling molecules that act
through cannabinoid receptors CB1 and CB2. Endocannabinoids
acting via CB1R promote fibrosis in multiple organs including
skin (15), liver (16–18), kidney (19), and heart (20). Besides,
n.org 2
CB1R activation is pro-inflammatory (21). Increased CB1R activity
has been linked to different forms of pulmonary fibrosis such as
radiation-induced pulmonary fibrosis (22), idiopathic pulmonary
fibrosis (23) and Hermansky-Pudlak syndrome pulmonary
fibrosis (HPSPF) (24). Conversely, CB1R antagonism prevents
fibroblast activation and exerts potent antifibrotic effects in skin
fibrosis (25). The role of CB1R as a pro-fibrotic receptor has also
been confirmed in fatty acid amide hydrolase knock-out mice, in
which elevated levels of anandamide induced skin fibrosis in a
CB1R-dependent manner (26).

Bleomycin is widely used to induce fibrosis in rodent models
of fibrotic disorders. We have earlier reported that bleomycin
induces drug-efflux associated ABC transporters in the lung,
which limits exposure of the fibrotic tissue to drug candidates
that are substrates of such transporters. Here we show that this
pitfall could be avoided by establishing bleomycin-induced skin
fibrosis in Mdr1(−=−)a=b -Bcrp(-/-) triple knock-out mice and using
this model to reveal the antifibrotic therapeutic efficacy of the
peripherally restricted hybrid CB1R/iNOS antagonist MRI-1867,
a known substrate of drug efflux transporters.
MATERIALS AND METHODS

Chemicals
S-MRI-1867, referred to as MRI-1867, was synthesized as described
previously (16). Rimonabant was obtained from the National
Institute of Drug Abuse Drug Supply Program (Research Triangle
Park, NC, USA). Pharmaceutical grade bleomycin was obtained
from Hospira. All other chemicals were from Sigma-Aldrich.

Animals
All animal procedures were conducted in accordance with the
rules and regulations of the Institutional Animal Care and Use
Committee of the National Institutes of Alcohol Abuse and
Alcoholism (NIAAA). C57BL/6J mice were purchased from
the Jackson Laboratory (Bar Harbor, ME, USA). Mdr1(−=−)a=b
-Bcrp(-/-) mice were purchased from Taconic (Rensselaer, NY,
USA). Animals were housed individually under a 12-hour light/
dark cycle and fed a standard diet, ad libitum (Teklad NIH-31;
Envigo, Huntingdon, UK).

Bleomycin-Induced Skin Fibrosis
This study used male C57BL/6J and Mdr1(−=−)a=b -Bcrp(-/-) (KO)
mice, ranging from 16-20 weeks of age, with an average initial
body weight of 28.5 g. Mice received daily 100µL subcutaneous
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injections dorsal to each scapula for 28 days of either vehicle
(sterile 0.9% saline), or 2 IU of bleomycin (bleo) to induce skin
fibrosis (Figure 1A).

Therapeutic Intervention
10 mg/kg MRI-1867 or its drug-free vehicle (5% DMSO, 5%
Tween 80 in 0.9% saline) were administered by oral gavage either
as a single dose in control mice or starting on day 15 and ending
on day 28 of bleomycin treatment in bleomycin-treated mice.
Frontiers in Endocrinology | www.frontiersin.org 3
Mice were sacrificed 1 h following the single dose (control) or the
last daily dose of MRI-1867 (bleo-treated mice).

Dermal Thickness Histological
Assessment
Skin tissues were fixed in 10% neutralized formalin solution for
24 hours, embedded in paraffin, and sectioned (4mm) onto glass
slides. Sections were counterstained with hematoxylin and eosin
and imaged with an Olympus BX41 microscope. Images were
A

B

D E

C

FIGURE 1 | Bleomycin-induced skin fibrosis minimizes skin exposure and target engagement by MRI-1867 in C57BL6/J mice. (A) Schematic presentation of
bleomycin-induced skin fibrosis development and therapeutic treatment regime. (B) Dermal thickness quantification for histological images. (C) Representative
histological images from skin biopsies stained with H&E Ep, Epidermis; D, Dermis; Hy, Hypodermis and adipose tissue; Pc, Panninculus carnosus. Double arrow
indicates dermal length that used for quantification. (D) Levels of MRI-1867 in control and bleomycin-treated skin biopsy specimens following acute or 14-day
chronic administration of MRI-1867 at 10 mg/kg, respectively. (E) Levels of endocannabinoids AEA and 2AG in skin biopsies. Data represent means ± SEM from
3-10 mice per group. Data were analyzed by 1-way ANOVA followed by Dunnett’s multiple comparisons test. Significant difference from corresponding values in
controls (saline and vehicle treated group) (*P < 0.05).
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taken at 4x magnification to cover 6 mm diameter skin biopsy
section from each skin section. Skin thickness was quantified by
measuring the length of a straight line between the limits of
dermal tissue using ImageJ software. Data points reflect the
means of 7-13 independent measurements from the same mouse.

Hydroxyproline Measurements by
LC-MS/MS
Skin fibrosis was quantified by measuring hydroxyproline (Hyp)
content of skin biopsies consisting of epidermis and dermis,
using LC-MS/MS as described previously (23) with slight
modifications. Briefly, 15-30 mg skin tissue was homogenized
in 600 mL of ice-cold 0.1 N perchloric acid (PCA) then 200 µl of
homogenate was aliquoted and prepared for endocannabinoid
and MRI-1867 measurements as detailed below. One mL 12 N
HCl was added to the remaining 400 µL skin homogenate and
the homogenate was hydrolyzed at 100°C for 4 hours.
Hydrolyzed samples were vortexed and centrifuged at 10,000 g
for 10 minutes, and 5 mL hydrolysate was diluted 200-fold by the
addition of 990 mL of 0.1 N PCA and 5 mL of L-Proline-13C5,

15N
as internal standard. Liquid chromatography tandem mass
spectrometry (LC-MS/MS) analyses were conducted on an
Agilent 6410 triple quadrupole mass spectrometer (Agilent
Technologies) coupled to an Agilent 1200 LC system.
4-Hydroxyproline was separated using an Intrada Amino
Acid column, 50 × 3 mm, 3 mm (Imtakt) at 40°C. Mobile
phases consisted of acetonitrile/tetrahydrofuran/25 mM
ammonium formate/formic acid = 9:75:16:0.3 (v/v/v/v) (phase
A) and acetonitrile/100 mM ammonium formate = 20:80 (v/v)
(phase B). Gradient elution (600 mL/min) was initiated and held at
0% B for 3 minutes, followed by a linear increase to 17% B by 6.5
minutes. This was followed by a step increase to 100% B, which
was held until 10 minutes after the gradient had begun, and then
by a linear decrease to 0% B by 11 minutes, which was held until
13 minutes after the gradient had begun. The mass spectrometer
was set for electrospray ionization operated in positive ion mode.
The source parameters were as follows: capillary voltage, 4,000 V;
gas temperature, 330°C; and drying gas, 8 L/min. Nitrogen was
used as the nebulizing gas. Collision-induced dissociation (CID)
was conducted using nitrogen. Hydroxyproline level was analyzed
by multiple reaction monitoring. L-Proline-13C5,

15N (Sigma,
cat#608114) was used as the internal standard. The molecular
ion and fragments for hydroxyproline were measured as
follows: m/z 132.1!86 and 132.1!68 (CID energy: 8 V and 20
V, respectively). Skin levels of hydroxyproline were determined
against a standard curve, using trans-4-hydroxy-L-proline as
standard (Sigma-Aldrich). Values are expressed as nmol/mg
wet tissue.

Endocannabinoid Extraction and Analysis
Skin homogenate (200 µL) described in the hydroxyproline
measurement section was used and transferred in 0.5 mL of ice-
cold methanol/Tris buffer (50 mM, pH 8.0), 1:1, containing 7 ng of
[2H4] arachidonoyl ethanolamide ([2H4] AEA) as internal standard.
Homogenates were extracted three times with CHCl3: MeOH (2:1,
vol/vol), dried under nitrogen flow, and reconstituted with MeOH
after precipitating proteins with ice-cold acetone. LC-MS/MS
Frontiers in Endocrinology | www.frontiersin.org 4
analyses were conducted on an Agilent 6410 triple quadrupole
mass spectrometer (Agilent Technologies) coupled to an Agilent
1200 LC system. Analytes were separated using a Zorbax SB-C18
rapid-resolution HT column. Gradient elution mobile phases
consisted of 0.1% formic acid in H2O (phase A) and 0.1% formic
acid in MeOH (phase B). Gradient elution (250 mL/min) was
initiated and held at 10% B for 0.5 min, followed by a linear
increase to 85% B at 1 min and maintained until 12.5 min, then
increased linearly to 100% B at 13 min and maintained until 14.5
min. The mass spectrometer was set for electrospray ionization
operated in positive ion mode. The source parameters were as
follows: capillary voltage, 4,000 V; gas temperature, 350°C; drying
gas, 10 L/min; nitrogen was used as the nebulizing gas. Collision-
induced dissociation was performed using nitrogen. Levels of each
compound were analyzed by multiple reaction monitoring. The
molecular ion and fragment for each compound were measured as
follows: m/z 348.3!62.1 for AEA, m/z 352.3!66.1 for [2H4] AEA,
and m/z 379.3!91.1 for 2-arachidonoylglycerol (2-AG). Analytes
were quantified using MassHunter Workstation LC/QQQ
Acquisition and MassHunter Workstation Quantitative Analysis
software (Agilent Technologies). Levels of AEA and 2-AG in the
samples were measured against standard curves. Values are
expressed as fmol/mg wet tissue.

Tissue Levels of MRI-1867
Two hundred mL of skin homogenate described above and 30 µl
serum were used and extracted as described above for
endocannabinoid extraction. MRI-1867 levels were determined
by LC-MS/MS using an Agilent 6410 triple quadrupole mass
spectrometer (Agilent Technologies) coupled to an Agilent 1200
LC system (Agilent Technologies). Levels of MRI-1867 were
analyzed by multiple reaction monitoring. The molecular ion
and fragments were measured as follows: m/z 548.1!145 and
548.1!257.1 for MRI-1867 (CID energy: 56 V and 24 V,
respectively). The amounts of MRI-1867 in the samples were
determined against a standard curve. Values are expressed as µM.

Immunohistochemistry
Immunohistochemistry was performed as previously described
(27). Tissue sections were incubated overnight at 4°C in an
optimized blocking solution: 5% blotting-grade milk (Bio-Rad,
Hercules, CA) and 5% horse serum (Vector Laboratories,
Burlingame, CA, USA) diluted in double distilled H2O. Rabbit
monoclonal anti-P-Glycoprotein antibody (Abcam, Cat.
ab170904) was diluted (1:1000 for all mouse tissues) in 5% milk
and 5% horse serum as described above for overnight incubation
at 4°C. The appropriate secondary antibody, anti-rabbit IgG
made in horse (Cat. MP-7401, Vector Laboratories) was not
diluted, and incubated at room temperature for 1 hour. Positive
immunoreactivity was revealed via chromogenic detection with
ImmPACT DAB Peroxidase (HRP) Substrate (SK-4105, Vector
Laboratories) with incubating 3 minutes, then counterstained with
hematoxylin (Gills Formula, Vector Laboratories) for five seconds
and covered with a coverslip. Images were captured with a BX41
bright-field microscope (Olympus, Center Valley, PA, USA).
Immunostaining intensity was quantified by using ImageJ
software (NIH Public Domain) by a person blind to sample ID.
September 2021 | Volume 12 | Article 744857
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Images were taken at 20x magnification from at least 5 randomly
selected areas per skin specimen.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8
(GraphPad Software Inc.). Normality test was performed by
Prism 8 to determine whether samples show normal distribution.
Then, one-way ANOVA followed by Dunnett’s multiple
comparisons test was performed. P < 0.05 was considered
significant. In multiple comparison post-hoc test, control groups
were designated to address each statistical question as indicated in
figure legends for statistical significance.
RESULTS

Bleomycin Significantly Attenuates Skin
Exposure of MRI-1867 in C57BL/6J Mice
due to Increased Expression of
P-Glycoprotein
One of the hallmarks of systemic sclerosis is skin thickening due
to fibrosis. Bleomycin is commonly used as an exogenous inducer
offibrosis inmurine models of skin and pulmonary fibrosis. In this
study, skin fibrosis was induced by daily subcutaneous injection of
bleomycin for 28 days as detailed in the methods and as depicted
in Figure 1A. We recently demonstrated that bleomycin induces
drug efflux transporters in murine lungs and that this mechanism
compromises lung exposure to chemical compounds that happen
to be substrates (27). To determine whether a similar mechanism
is triggered by bleomycin in the skin, we first assessed the skin
levels of the peripherally restricted hybrid CB1R/iNOS inhibitor
MRI-1867, a substrate of P-gp (16), in a bleomycin-induced
murine model of skin fibrosis.

Ten mg/kg is the maximally effective dose of MRI-1867 for
peripheral CB1R antagonism (16), and this dose was previously
shown to achieve dual-target inhibition of CB1R and iNOS in
lung and kidney fibrosis (23, 28). MRI-1867 was administered by
oral gavage either as a single dose in control mice or daily for 14
days in bleomycin-treated mice (Figure 1A). Bleomycin (2U/day
for 28 days) induced skin fibrosis in C57BL/6J mice, as quantified
by measuring dermal thickness (Figures 1B, C). Notably, the levels
of MRI-1867 in fibrotic skin tissue were significantly lower (0.12
µM) than in healthy control skin (15 µM after single dosing)
(Figure 1D). Skin levels of anandamide (AEA) and 2-arachidonoyl
glycerol (2AG) were higher in fibrotic compared to normal skin
(Figure 1E), suggesting an upregulated endocannabinoid system in
the fibrotic tissue. However, chronic MRI-1867 administration did
not reduce bleomycin-induced increase in endocannabinoids
(Figure 1E), suggesting a lack of CB1R engagement by MRI-1867
in the fibrotic skin of C57BL/6J mice (Figure 1E), due to
compromised skin exposure (Figure 1D). The dramatic loss in
skin exposure to MRI-1867 might be attributed to bleomycin-
induced over-expression and over-activity of P-gp, which was
observed previously in bleomycin-induced pulmonary fibrosis
(27). Indeed, P-gp protein expression was increased by bleomycin
in skin biopsy specimens from C57BL/6J mice (Figures 2A, B).
Frontiers in Endocrinology | www.frontiersin.org 5
Skin Exposure to MRI-1867 Was
Recovered in Bleomycin-Induced Skin
Fibrosis Using Mdr1(−=−)a=b -Bcrp(-/-) Triple
Knock-Out Mice
As bleomycin causes a ~100-fold reduction in skin exposure to
MRI-1867 in C57BL/6J mice, this model is unsuitable for the
preclinical testing of the antifibrotic potential of MRI-1867, a
known substrate of drug efflux transporters. Instead, we decided
to use Mdr1a/b-Bcrp triple knockout mice for this purpose as a
way to bypass the artifact caused by increased activity of drug
efflux transporters. First, we measured the levels of MRI-1867 in
the fibrotic skin of bleomycin-exposed Mdr1(−=−)a=b -Bcrp(-/-) triple
KO mice after 14 days of chronic MRI-1867 treatment at 1, 3, 10,
30, 60 mg/kg doses (Figure 3). Levels of MRI-1867 dose-
dependently increased in serum (Figure 3A). Importantly, skin
exposure to MRI-1867 was much higher in Mdr1(−=−)a=b -Bcrp(-/-)

triple KO mice compared to wild-type mice (Figure 3B), such
that the 10 mg/kg dose of MRI-1867 achieved a concentration of
8.8 µM in the fibrotic skin (Figure 3B) compared to 0.12 µM in
wild-type C57BL6/J mice (Figure 1D). Maximum skin exposure
in the triple KO mice was ~26 µM following chronic treatment
with the 30 mg/kg dose (Figure 3B). However, skin exposure was
not further increased with 60 mg/kg/day dosing, which might be
due to an altered ADME/PK profile with the higher dose of MRI-
1867. Therefore, the 30 mg/kg/day dose was selected to explore
the maximum achievable efficacy of MRI-1867 in this skin
fibrosis model and to establish the PK/PD relationship.

MRI-1867 Significantly Attenuated Dermal
Thickness and Skin Fibrosis in Bleomycin-
Induced Skin Fibrosis in Mdr1(−=−)a=b Bcrp-/-

Knock-Out Mice
Daily subcutaneous bleomycin injections for 28 days significantly
increased the levels of hydroxyproline (Figure 4A) and dermal
thickness (Figures 4B, C), and endocannabinoids in the fibrotic
skin (Figure 4D). Chronic daily oral administration of MRI-1867
for the last 14 days of the 28 day bleo treatment significantly
attenuated bleomycin-induced hydroxyproline (Figure 4A),
dermal thickness (Figures 4B, C), and endocannabinoid levels
(Figure 4D) in the fibrotic skin of Mdr1(−=−)a=b -Bcrp(-/-) mice,
suggesting that endocannabinoid tone is reduced following
treatment with MRI-1867 and that targeting CB1R is a putative
target for fibrosis alleviation.

MRI-1867 Has Higher Antifibrotic Efficacy
Than Rimonabant in Skin Fibrosis
We next compared the therapeutic efficacy of MRI-1867 and
rimonabant at a 10 mg/kg dose, which was shown to provide
equipotent CB1R antagonism (16, 23). In addition, we also tested
MRI-1867 at 1 and 3 mg/kg doses to determine the minimum
effective dose that provides anti-fibrotic efficacy in bleomycin-
induced skin fibrosis. Ten mg/kg MRI-1867 significantly reduced
bleomycin-induced dermal thickness (Figure 5A) and
hydroxyproline content (Figure 5B). Furthermore, 10 mg/kg MRI-
1867 significantly reduced dermal thickness compared to the
September 2021 | Volume 12 | Article 744857
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rimonabant and vehicle (Figure 5A). However, rimonabant did not
significantly reduce dermal thickness compared to the vehicle. At the
dose of 1 mg/kg, MRI-1867 had no significant antifibrotic effect.
While the 3 mg/kg dose significantly attenuated dermal thickness
(Figure 5A), it did not significantly reduce hydroxyproline
(Figure 5B). MRI-1867 dose-dependently attenuated bleomycin-
induced increases in skin endocannabinoids. Both rimonabant and
MRI-1867 at the 10 mg/kg dose significantly and comparably
attenuated skin endocannabinoids, suggesting similar target
engagement in fibrotic skin (Figure 5C).
DISCUSSION

We have discovered that using bleomycin to model skin fibrosis
in C57BL/6J mice introduces an artifact related to upregulation
Frontiers in Endocrinology | www.frontiersin.org 6
of drug efflux transporters in skin tissue. This would confound
studies aimed to test the pharmacokinetics and target engagement
of drug candidates that happen to be substrates. This finding aligns
with our previous work and the work of others in preclinical
models of bleomycin-induced pulmonary fibrosis (27, 29),
highlighting a limitation of bleomycin-induced fibrosis models.
We also show that using Mdr1(−=−)a=b -Bcrp(-/-) mice for preclinical
testing of such compounds would avoid this pitfall. In lung
specimens from IPF patients, efflux transporters such as P-gp
and BCRP were expressed at the same level as in lung samples
from appropriate controls (23), which indicates that the increased
P-gp expression seen in the preclinical model is not part of the
pathological process in human IPF. A recent study compared the
frequencies of 3 single nucleotide polymorphisms (SNPs) in
the ABCB1 gene, which encodes P-gp, and found no differences
between patients with systemic sclerosis and their controls in a
A

B

FIGURE 2 | Bleomycin induces drug efflux transporter P-gp in skin of C57BL6/J mice. (A) Representative histological images for P-gp immunohistochemistry
staining in skin biopsies of control and bleomycin-induced fibrotic skin. A, adipocytes; BV, blood vessels; D, Dermis; PC, Panninculus carnosus. (B) Quantification of
P-gp protein expression in skin biopsies. Data represent mean ± SEM from five subjects in each group. Data were analyzed by t-test for comparison of histological
scoring. * (p <0.05) indicates significant difference from the control group.
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Polish population. Although a specific haplotype of these SNPs
occurred significantly more frequently among patients than
among their controls, there was no evidence presented for an
association of this haplotype with altered gene or protein
expression or transporter activity of ABCB1 (30).

Additionally, the present findings demonstrate that the dual-
target inhibition of CB1R and iNOS by MRI-1867 is an effective
anti-fibrotic strategy for scleroderma that warrants further study.
This finding is in line with our previous studies showing that MRI-
1867 can attenuate fibrosis in other organs as well, including the
liver (16), kidney (28), and lungs (23, 24). This is consistent with
mounting evidence that CB1R may be part of a core mechanism of
fibrogenesis and that CB1R antagonism may have therapeutic
potential in several fibrotic disorders, including chronic kidney
(31, 32) and liver diseases (33) and cardiomyopathies (34, 35).
Although MRI-1867 was more efficacious than rimonabant at
equipotent doses for CB1R antagonism, we have not investigated
the relative contribution of CB1R and iNOS inhibition, which may
be subject to future studies. Recently, a structural analogue of
MRI-1867 was identified as a b-arrestin-2 biased CB1R antagonist,
whereas rimonabant was unbiased (36). Although we have not
explored a potential signaling bias of CB1R activation in skin
fibrosis development, the superior efficacy of MRI-1867 over
rimonabant could not be attributed to functional selectivity
since MRI-1867 does not display signaling bias in CB1R
antagonism (unpublished information).

In addition to fibrosis, numerous studies have documented
that an overactive endocannabinoid/CB1R system contributes to
visceral obesity and its complications (37), including type-2
diabetes (21), and also play a role in the pathology of alcoholic
liver disease (38) and viral hepatitis (39). Conversely, CB1R
blockade has beneficial effects in preclinical models of these
conditions as well as in overweight individuals with metabolic
syndrome (40). However, brain-penetrant CB1R antagonists,
such as rimonabant, cause psychiatric side effects due to the
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blockade of CB1R in the CNS, which had halted their therapeutic
development. Non-brain-penetrant CB1R antagonists have
recently been reported to retain the metabolic benefit of
globally acting compounds without blocking CB1R in the CNS
(21, 41–43). Thus, efforts to engage CB1Rs for mitigating fibrosis
would require antagonists with limited brain exposure in order
to avoid neuropsychiatric side effects, therefore peripheral dual-
target CB1R antagonists might be an emerging therapeutic
modality for metabolic and fibrotic disorders (44).

Previously it was shown that deletion of CB1R protected mice
from bleomycin-induced skin fibrosis (25), which aligns with the
current findings and supports the therapeutic potential of
peripheral CB1R antagonism in skin fibrosis. Deletion of CB1R
decreased the number of infiltrating T cells and macrophages in
lesioned skin (25), suggesting critical roles of CB1R in leukocyte
infiltration, inflammation, and fibroblast activation. Additionally,
bone marrow transplantation from CB1R

-/- mouse into CB1R
+/+

mouse protected the CB1R
+/+ mice from bleomycin-induced skin

fibrosis development, which implicated CB1R expressing myeloid
cell populations in inflammation-driven skin fibrosis development
(25). Additionally, CB1R signaling in keratinocytes also regulates
T-cell dependent inflammation in skin (45). It is important to note
that CB1R is expressed in multiple cell types in skin, and its role in
skin pathologies and inflammation can be context dependent (46).
This suggests that activation status and potential paracrine
regulation of endocannabinoid/CB1R system in different cells in
the local pathologic microenvironmentmight be critical factors for
the pro-inflammatory and profibrotic activity of CB1Rs in skin
fibrosis. Indeed, this notion is supported by our finding that a
significant loss of MRI-1867 exposure in the lesioned skin resulted
in loss of its anti-fibrotic efficacy despite the high level of systemic
exposure. Our finding demonstrated that CB1R inhibition is
required at the site of action to result in anti-fibrotic efficacy.
This could suggest that topical application of CB1R antagonists
might be a therapeutic strategy in skin fibrosis. However, systemic
A B

FIGURE 3 | Dose-dependent systemic and skin exposure of MRI-1867 in Mdr1(−=−)a=b -Bcrp(-/-) mice. (A) Serum and (B) Skin levels of MRI-1867 at 1 hour after the last

dose of 14 days oral administration at 1, 3, 10, 30, and 60 mg/kg doses in bleomycin-treated Mdr1(−=−)a=b -Bcrp(-/-) mice. Data represent means ± SEM from 4-10 mice

per group.
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administration should be the preferred therapeutic approach
considering its potential therapeutic benefit in multi-organ
involvement in systemic sclerosis (44).

A pro-inflammatory role of CB1R resulting in macrophage
activation was established in the pancreas during diabetes and in
the lung during pulmonary fibrosis (21, 23). Furthermore,
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interferon regulatory factor 5 (IRF5) was found to be an essential
down-stream mediator of CB1R signaling in macrophages in
diabetes (47) and transplantation of CB1R

-/- bone marrow to
pre-diabetic ZDF rats prevented b-cell loss and diabetic
complications, supporting the pathogenic role CB1R-mediated
IRF5 signaling. IRF5 is a master regulator of pro-inflammatory
A B

D

C

FIGURE 4 | MRI-1867 (30 mg/kg) attenuates bleomycin-induced fibrosis and dermal thickness in Mdr1(−=−)a=b -Bcrp(-/-) mice. (A) Hydroxyproline levels in biopsied skin.

(B) Dermal thickness analyses from skin biopsies. (C) Representative histological images from skin biopsies stained with H&E. (D) AEA and 2AG levels in biopsied
skin. Six mm skin biopsies are used for the analysis. Dermal thickness assessed from left scapular injection site biopsies, Hydroxyproline and endocannabinoid
measurements performed using right scapular injection site biopsies from each mouse. Data represent means ± SEM from 3-13 mice per group. Data were analyzed
by 1-way ANOVA followed by Dunnett’s multiple comparisons test. Significant difference from corresponding values in control (saline and vehicle treated group)
(*P < 0.05) or from values in bleomycin and vehicle-treated group (#P < 0.05).
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macrophages. Furthermore, IRF5 polymorphism increases the risk
of systemic sclerosis whereas reduced expression of IRF5 increases
survival (48, 49). Indeed, deletion of IRF5 protected mice from
development of bleomycin-induced skin and pulmonary fibrosis
(50), which makes IRF5 a potential therapeutic target in systemic
sclerosis and scleroderma. Deletion of CB1R also attenuated
bleomycin-induced increase in IRF5 in lungs and protected from
pulmonary fibrosis (23). Thus, the intriguing possibility that CB1R-
mediated IRF5 signaling may contribute to skin and pulmonary
fibrosis development in systemic sclerosis and scleroderma, needs
to be explored in future studies.

Interestingly, targeting CB1R may also be promising for
symptom management. One of the most common symptoms
of systemic sclerosis patients that affects quality of life is
gastrointestinal dysmotility, which results in constipation (51).
Previously, we found that MRI-1867 increases upper gastrointestinal
motility inmice via peripheral CB1R inverse agonism (16, 52), which
might compensate for constipation. In summary, the present
findings introduce a polypharmacology approach to the treatment
of skin fibrosis whereby simultaneous engagement of two
therapeutic targets by a single molecule is harnessed for improved
therapeutic efficacy. Clinical studies in scleroderma patients are
Frontiers in Endocrinology | www.frontiersin.org 9
warranted once MRI-1867 or related compounds become available
for human studies.
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