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Abstract 

Background:  In many cases, both the rupture rate of cerebral arteriovenous malformation (bAVM) in patients and 
the risk of endovascular or surgical treatment (when radiosurgery is not appropriate) are not low, it is important to 
assess the risk of rupture more cautiously before treatment. Based on the current high-risk predictors and clinical data, 
different sample sizes, sampling times and algorithms were used to build prediction models for the risk of hemor-
rhage in bAVM, and the accuracy and stability of the models were investigated. Our purpose was to remind research-
ers that there may be some pitfalls in developing similar prediction models.

Methods:  The clinical data of 353 patients with bAVMs were collected. During the creation of prediction models for 
bAVM rupture, we changed the ratio of the training dataset to the test dataset, increased the number of sampling 
times, and built models for predicting bAVM rupture by the logistic regression (LR) algorithm and random forest (RF) 
algorithm. The area under the curve (AUC) was used to evaluate the predictive performances of those models.

Results:  The performances of the prediction models built by both algorithms were not ideal (AUCs: 0.7 or less). The 
AUCs from the models built by the LR algorithm with different sample sizes were better than those built by the RF 
algorithm (0.70 vs 0.68, p < 0.001). The standard deviations (SDs) of the AUCs from both prediction models with differ-
ent sample sizes displayed wide ranges (max range > 0.1).

Conclusions:  Based on the current risk predictors, it may be difficult to build a stable and accurate prediction model 
for the hemorrhagic risk of bAVMs. Compared with sample size and algorithms, meaningful predictors are more 
important in establishing an accurate and stable prediction model.

Keywords:  Brain arteriovenous malformation, Logistic regression, Random forest, Prediction model, AUC​

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Brain arteriovenous malformation (bAVM) is a cerebro-
vascular disease characterized by direct shunts between 
arteries and veins and abnormal vascular masses [1]. 
The main presenting clinical symptoms are hemorrhage 
and epilepsy. Because of the high mortality and dis-
ability associated with bAVMs rupture in many cases, 

particularly how to prevent and treat rupture, is always 
the focus of research. However, whether to intervene 
when bAVMs occur is still controversial [2–4]. Some-
times both the rupture rate of bAVMs in patients and 
the risk of endovascular or surgical treatment(when 
radiosurgery is not appropriate) are not low, it is impor-
tant to assess the risk of rupture more cautiously before 
treatment.

The common method of developing a prediction model 
or a scoring system for disease risk is to build a math-
ematical model based on correlated clinical predictors. 
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For binary category data, multivariate logistic regression 
(LR) is the conventional algorithm [5, 6]. With the devel-
opment of computational algorithms, different machine 
learning methods have been introduced into this field [7]. 
Of them, random forest (RF) is considered to be a prom-
ising method. Previous studies on predicting the risk of 
diseases have reported many successful cases in which 
RF was applied [8, 9].

In this study, we collected the clinical data of 353 
patients with bAVMs and built prediction models by the 
LR algorithm and RF algorithm based on multiple ran-
dom samplings and different training sample sizes, and 
areas under the curve (AUCs) were used to assess the 
performances of the models. The purpose of our study 
is to test and compare the stability and performances of 
prediction models built by both algorithms and to inves-
tigate the deficiencies in these prediction models.

Methods
Case selection and data collection
All patients with bAVMs confirmed by digital subtraction 
angiography (DSA) from January 2013 to December 2019 
were enrolled in our study. Patients with the following 
conditions were excluded: 1) a combination with brain 
injury or brain tumors; and 2) incomplete clinical data. 
Variables that were reported to be correlated with bAVM 
rupture in previous studies were collected [1, 6, 10]. Gen-
eral variables including age and sex were collected, and 
morphological variables pertaining to the bAVMs were 
separately measured on DSA images by 2 neurosurgeons 
(Wengui Tao and Laochao Yan), including the location, 
size, associated aneurysm, draining type, and number of 
draining veins. Other variables, including rupture infor-
mation, were recorded.

All procedures in this retrospective study that involved 
human participants were approved by the ethical com-
mittee of Xiangya hospital and performed in accordance 
with the institutional ethical standards, the 1964 Helsinki 
declaration and its later amendments, or comparable eth-
ical standards.

Building prediction models by the LR algorithm and RF 
algorithm based on multiple repeated samplings 
and different sample sizes
RStudio (version 1.1.383; RStudio Inc.) was used to build 
the prediction models. Variables including sex, location, 
correlated aneurysm, draining type, and rupture were 
set as factor (categorical) variables, and variables includ-
ing age, size, and the number of draining veins were set 
as numeric (continuous) variables. Rupture was set as 
the dependent (response) variable, and the other 7 vari-
ables were set as independent (explanatory) variables. In 
the LR algorithm, the independent variables were filtered 

by the step method, and significant variables were finally 
used for the predicting formula. In the RF algorithm, 
default values were set for the "ntree" and "mtry" param-
eters (500 and 3).

According to the 10 events per variable (EPV) rule [11–
13], we sampled different sizes of training datasets from 
all 353 cases each time, and the remaining cases were 
defined as test datasets. The sample sizes of the training 
datasets were 140, 175, 210, 245 and 280, and the cor-
responding test datasets were 213, 178, 143, 108 and 73. 
For each pair of datasets, the number of random sam-
pling times was 1, 10, 50, 100, 300, 600, 1200 and 2100.

Calculating AUCs to assess the performances of prediction 
models
AUCs were used to assess the performances of the pre-
diction models. The mean ± standard deviations (SD) 
was used to depict the AUCs.

After the source code was confirmed, multiple sam-
plings, building the models, predictions, calculating the 
AUCs and plotting were fulfilled by a computer.

Statistical analysis
Paired sample T-tests were used to compare the AUCs 
that resulted from the different prediction models built 
by the LR and RF algorithms. A p value < 0.05 was con-
sidered to be statistically significant.

Results
Demographics
The clinical data of 353 patients with ruptured and 
unruptured bAVMs are summarized in Table  1. Of all 
patients, 220 were male, and 133 were female, with a 
mean age of 32.82 ± 15.77  years. A total of 264 (74.8%) 
bAVMs were located in the cerebral lobes (superficial), 
40 (11.3%) in the corpus callosum, basal ganglia or lateral 
ventricle (deep), and 49 (13.9%) in the cerebellum or brain 
stem (infratentorial). Ten (5.4%) patients had aneurysms 
related to bAVMs. The mean size of the bAVM nidus was 
3.71 ± 2.15  cm. Seventy-four (21.0%) patients only had 
deep draining veins. A total of 198 (43.9%) patients only 
had single draining veins. BAVMs in 228 patients were 
confirmed to be ruptured and 125 unruptured.

*p value < 0.05: statistically significant

Univariate analysis
Univariate analysis showed that age, location, associated 
aneurysm, size and the number of draining veins were 
significantly different between patients with unruptured 
and ruptured bAVMs. All these variables were used in LR 
and RF analyses.
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Performances of the prediction models
All the AUCs showed that the performances of the pre-
diction models built by the LR algorithm were bet-
ter than those built by the RF algorithm (p < 0.001), see 

Fig.  1 and Table  2. The AUC results showed that while 
the training sample size increased in the LR algorithm, 
the AUCs were slightly improved from 0.70 to 0.71 (> 100 
sampling times). However, in the RF algorithm, the AUCs 

Table 1  Summary of the clinical data

Overall
(n = 353)

Unruptured
(n = 125)

Ruptured
(n = 228)

p value

Age [mean (SD)] 32.82 (15.77) 35.14 (14.10) 31.55 (16.50) 0.041*

Sex = male (%) 220 (62.3) 84 (67.2) 136 (59.6) 0.199

Location (%) < 0.001*

Superficial 264 (74.8) 115 (92.0) 149 (65.4)

Deep 40 (11.3) 4 (3.2) 36 (15.8)

Infratentorial 49 (13.9) 6 (4.8) 43 (18.9)

Associated aneurysm (%) 19 (5.4) 1 (0.8) 18 (7.9) 0.01*

Size [mean (SD)] 3.71 (2.15) 4.39 (2.02) 3.33 (2.13)  < 0.001*

Draining type = deep (%) 74 (21.0) 20 (16.0) 54 (23.7) 0.119

Draining veins = multiple (%) 155 (43.9) 65 (52.0) 90 (39.5) 0.031*

Fig. 1  AUCs for the mean ± SD with the training sample size and changes in the sampling times. a–d The instability of the prediction models built 
by the LR algorithm (red line) and RF algorithm (blue line) based on different single sampling times and sample sizes. a-l show that the prediction 
models built by the LR algorithm were better than those built by the RF algorithm. AUCs above 100 samplings showed that the performances 
of the prediction models built using the LR algorithm could be slightly improved as the training sample size increased, but the RF algorithm 
demonstrated the opposite performance. SDs of the AUCs from the prediction models built by both algorithms with different sample sizes 
displayed wide ranges. a-l separately represent the sampling times: 1, 1, 1, 1, 5, 10, 50, 100, 300, 600, 1200, and 2100 (related data are shown in 
Table 2). AUC​ area under the curve, LR logistic regression, RF random forest, SD standard deviations
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decreased. The standard deviations (SDs) of the AUCs 
showed a maximum fluctuation range > 0.1 in different 
samplings, and different single samplings also reflected 
unstable performances of the prediction models (see the 
first row of Fig. 1).

Discussion
BAVMs represent an intracranial hemorrhagic disease. 
The annual rupture rate of bAVMs reported in vari-
ous literature is different [14–18]. For each patient and 
lesion, the risk of rupture should be assessed separately. 
Of patients who survive after the initial hemorrhage, 
approximately 20% die, and one-third remain moderately 
disabled after 3 months [1]. For patients with unruptured 
bAVMs, the psychological impacts associated with the 
long-term fear of hemorrhage should not be underesti-
mated [19]. Additionally, it is necessary to compare the 
risk of bAVMs rupture with that of treatment. All these 
showed that predicting the hemorrhagic risk was impor-
tant for unruptured bAVMs. Some studies proposed pre-
dictors for hemorrhagic risk, such as female sex, deep 
location, deep draining veins, single draining veins, and 
associated aneurysm [20–23]. Depending on these pre-
dictors, some authors tried to develop prediction models 
or scoring systems for the hemorrhagic risk of bAVM [6]. 
A successful prediction model or a scoring system would 
help clinical workers find suitable and low-risk manage-
ment options for patients.

For binary categorical clinical data, the LR algorithm 
is the conventional method for building prediction mod-
els [5]. In recent years, machine learning algorithms 
have been introduced in this field. The highly accurate 
results and simplified procedures that resulted from the 
introduction of these methods are impressive. Of these 
machine learning algorithms, the RF algorithm is consid-
ered most promising because of its better performance, 
especially for big data [24].

The common method for building a prediction model 
is to obtain a training dataset from the whole data by date 
sequence or randomly and then to build a model in the 
form of a predicting formula (LR) or a predicting pro-
cedure hidden in black boxes (machine learning). The 
remaining data are defined as the test dataset and used 
to test the model. The AUC is usually used to evaluate 
predicting performances. The training sample size of the 
training dataset should meet the basic request of the 10 
events per variable (EPV) rule [11–13].

In this study, our original purpose was to try to build 
prediction models for predicting the risk of bAVM rup-
ture by the LR algorithm and RF algorithm and to com-
pare the performances of those models. However, the 
results were not as expected, and the models displayed 
instability and uncertainty. When we performed multiple 

random samplings for the training dataset, the coeffi-
cients of the prediction formula from the LR algorithm 
varied, and the AUC also displayed different values, as 
did the RF algorithm. To explore this problem further, 
we increased the number of sampling times, changed the 
ratio of the training sample size to the test sample size, 
and even changed the number of independent variables; 
additionally, we observed the change in AUCs and tried 
to identify rules. Although the AUCs were widely dis-
persed with varying sample sizes and random sampling 
times, they still displayed certain patterns. Being familiar 
with these patterns can help us understand the possible 
uncertainty and instability of prediction models, help us 
build optimal prediction models, and avoid pitfalls.

The independent variables (explanatory variables) used 
in this study have been accepted by most researchers and 
are considered to be risk factors for bAVM rupture [1, 
6, 10], but their performances in predicting hemorrhage 
were not ideal in this study. Their deficiencies did not 
radically change regardless of the algorithms we used or 
the increased sampling times or different training sam-
ple sizes. We believed that obtaining an ideal prediction 
model for predicting bAVM rupture might depend on the 
identification of new, more valuable predictors.

According to statistics, it is generally considered that if 
we try to obtain an effective result in regression analysis, 
the sample size should meet the 10 EPV rule. Our study 
showed that if the training sample size for the LR algo-
rithm was increased on the basis of the 10 EPV rule, the 
predicting performance would only be improved slightly. 
This result indirectly proved the 10 EPV rule. Although 
the RF algorithm has shown advantages in many studies, 
in this study, its performance was not better than that of 
the LR algorithm. This result suggested that if there were 
not some significant independent variables, it would also 
be difficult for the RF algorithm to display its power.

In most previous studies on prediction models, the 
training dataset was almost always based on a single 
random sampling or date order; in fact, the number of 
sampling times was not specified in the statistics [5, 6]. 
However, in our study, the SDs reflected the instability 
that resulted from different samplings.

This study was based on clinical data from 353 patients 
with bAVMs; limitations in the sample size may affect the 
conclusions, and data were collected from a single center. 
The reliability and generality of the conclusions should be 
verified in a multicenter study.

Conclusions
Both the prediction model by LR algorithm or RF algo-
rithm based on the current risk predictors are not ideal. 
Compared with sample size and algorithms, meaningful 
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predictors are more important in establishing an accurate 
and stable predictive model.
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