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Abstract

Advances in genome-scale metabolic models (GEMs) and computational drug discovery

have caused the identification of drug targets at the system-level and inhibitors to combat

bacterial infection and drug resistance. Here we report a structural systems pharmacology

framework that integrates the GEM and structure-based virtual screening (SBVS) method to

identify drugs effective for Escherichia coli infection. The most complete genome-scale met-

abolic reconstruction integrated with protein structures (GEM-PRO) of E. coli, iML1515_GP,

and FDA-approved drugs have been used. FBA was performed to predict drug targets in sil-

ico. The 195 essential genes were predicted in the rich medium. The subsystems in which a

significant number of these genes are involved are cofactor, lipopolysaccharide (LPS) bio-

synthesis that are necessary for cell growth. Therefore, some proteins encoded by these

genes are responsible for the biosynthesis and transport of LPS which is the first line of

defense against threats. So, these proteins can be potential drug targets. The enzymes with

experimental structure and cognate ligands were selected as final drug targets for perform-

ing the SBVS method. Finally, we have suggested those drugs that have good interaction

with the selected proteins as drug repositioning cases. Also, the suggested molecules could

be promising lead compounds. This framework may be helpful to fill the gap between geno-

mics and drug discovery. Results show this framework suggests novel antibacterials that

can be subjected to experimental testing soon and it can be suitable for other pathogens.

1. Introduction

The experimental drug discovery process is expensive, resource-intensive, and time-consum-

ing. Computational drug discovery approaches facilitate the identification and evaluation of

potential drug molecules. Therefore, these methods can be an effective plan to accelerate drug

development and reduce costs. Such methods are essential in the early stage of drug discovery

[1,2]. Furthermore, the drug resistance of pathogens in humans is a critical emerging issue
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nowadays. Therefore, finding new drug targets, and consequently, new anti-infective agents

are necessary. On the other hand, due to the complexity of infectious diseases, effective thera-

peutic strategies are required. Therefore, identifying multiple druggable targets, e.g., by systems

biology approaches, is preferred to those approaches which find single-targets.

In some of the previous studies, conserved genes in pathogens obtained by comparative

genomic analyses were assumed as drug targets [3]. However, genome-scale metabolic models

(GEMs) can provide more biological information, and analyzing the metabolic networks as a

system-oriented approach will accelerate the process of finding essential drug targets [4,5].

SBVS is a computational approach that searches a set of ligands to discover potential active

molecules for a protein. There is no need for physically existing molecules and this is an advan-

tage of virtual screening methods [6].

In this work, we present a structural systems pharmacology framework to identify drug-tar-

get [4] interactions by coupling analyzing a genome-scale metabolic model integrated with

protein structures (GEM-PRO) and a SBVS method. This framework uses the advantages of

both approaches and is valuable for the drug discovery field. This strategy is able to identify

drug targets on the system-level aspect and then drugs for their inhibition simultaneously.

Here, we have focused on the gram-negative bacterium Escherichia coli K-12 MG1655 as a

case. Intestinal pathogenic E. coli (IPEC) causes intestinal infection, including diarrhea or dys-

entery. Enteropathogenic E. coli (EPEC) is a subgroup of IPEC and E. coli K-12 is a well-

known model for EPEC strains [7]. E. coli K-12 is the most completely characterized organism

and a laboratory strain.

We used GEM-PRO of E. coli for extraction of essential genes for the growth as druggable

targets, and then, we identified potential modulators of the targets via a SBVS method. We

applied our computational strategy for doing drug repurposing against E. coli which can accel-

erate drug discovery efforts. We anticipate this framework can be applied for other bacterial

pathogens with validated GEM to inhibit their caused infection.

2. Material and methods

2.1. Genome-scale metabolic network model

Genome-scale metabolic models (GEMs) are fundamental and widely-trusted tools in systems

biology to study metabolism in silico. The GEMs are shown to be useful for data interpretation

and physiological predictions [8,9]. We used the genome-scale metabolic reconstruction

iML1515 and iML1428-iso (a context-specific version) of E. coli strain K-12 substrain MG1655

(Taxonomy ID: 83333) integrated with proteins (GEM-PRO) [10]. These reconstructions have

the most comprehensive information to date for E. coli metabolism. The former model,

iML1515, includes related protein structures and integrates systems and structural biology.

The context-specific model iML1428-iso considers only dominant isozymes of iML1515 reac-

tions, that is, the isozymes with higher expression in glucose M9 medium. This model is more

accurate in predicting gene knockout. Therefore, iML1428-iso was used in subsequent analy-

sis. The model iML1428-iso contains 1429 genes, 2712 reactions, 1877 metabolites. We

checked the model validation with MEMOTE (Metabolic Model Tests), a standardized testing

suite for GEMs [11]. To obtain the growth rate and perform the subsequent metabolic simula-

tions, a rich medium was considered, to simulate the human body conditions. The compo-

nents of the defined medium are listed in Supplementary S1 Table.

2.2. Identification of potential drug targets

For constraint-based modeling of metabolic fluxes in GEMs, we used COBRApy v 0.16.0 [12],

with ‘glpk’ as the linear programming solver [13]. To predict the essentiality of metabolic
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genes, single gene deletion simulations were done using flux balance analysis (FBA) by consid-

ering the gene-protein-reaction (GPR) relationships. For each gene, the flux of its correspond-

ing reaction was constrained to zero, and then, FBA was used to study its effect on biomass

production rate [14]. The wild-type biomass reaction in the model (i.e., BIOMASS_E-

c_iML1428_WT_75p37M) was set as the objective function of FBA. The rich medium was

considered for the simulations by adding some of the exchange reactions to the model using

the lower bound set equal to -0.1 mmol/gDW/h. A gene is considered essential for the cell if its

knock out decreases the growth rate to less than five percent of its maximum value.

2.3. Subsystems and GO terms of essential genes

The subsystems associated with the essential genes were identified [10]. Additionally, the

essential genes were enriched with gene ontology (GO) terms from the UniProt Knowledge-

base (UniProtKB) [15]. GO terms describe the biological role of genes from three different

aspects, namely Biological Process (BP), Molecular Function (MF), and Cellular Component

(CC) [16]. CC terms determine which genes are associated with the cell membrane. The rele-

vance of the essential genes and their encoded products (i.e., the potential drug targets) to fight

against the bacterium is investigated by analyzing their subsystems and associated GO terms.

2.4. Exclusion of identified essential genes with human homologs

To choose potential drug targets from the list of essential genes of E. coli, those genes that have

at least a human homolog are excluded from the list. To achieve this goal, we used the Patho-

Systems Resource Integration Center (PATRIC) (https://www.patricbrc.org) [17]. We used the

information about human homologs for the E. coli K12 MG1655 obtained by BLASTP in the

PATRIC database.

2.5. Identifying 3D structures and their co-crystallized ligands for the

essential gene product

For linking the metabolic network to the 3D structures of its proteins, we utilized ssbio. The

ssbio package provides a framework to work with structural information of proteins in

genome-scale network reconstructions [18]. Representative structures were mapped to each

identified essential gene. They were selected based on QC/QA criteria such as resolution, num-

ber of mutations, and completeness [10]. UniProt IDs are obtained from the UniProt metadata

and mapped to each gene. The chemical compound (cognate ligands) information was

obtained from the Ligand Expo database [19] and Protein Data Bank (PDB) metadata of the

GEM-PRO. We mapped information of the bound ligands to the essential genes using this

extracted data. Ligand Expo database provides chemical and structural information about

small molecules within the structures of the PDB. The chains of protein structures with bound

ligands needed to run the next step SBVS method are detected using the PDB metadata.

After excluding the essential genes that have human homologs, some further filters were

applied to select only the most informative protein-ligand complexes. Briefly, the genes with

no experimental structure were excluded. Among the essential genes, 117 (62%) of them have

experimentally resolved structures. Using information from Ligand Expo database that has

123871 pairs of protein-ligands, the experimental structures with no co-crystallized ligands

were also removed, as the bound ligand is needed to describe a protein binding pocket for per-

forming the SBVS in the next step. So, we considered 103 genes whose protein structures have

bound ligands (54.35%). Additionally, the essential genes that have structures with only a

metal ion as the bound ligand were excluded. Moreover, the semi-manually curated BioLiP

database was used to remove biologically irrelevant ligand-protein interactions, which are
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related to those molecules that are added merely for obtaining protein crystals. After removing

proteins with irrelevant bound ligands, 70 essential genes remained. The protein products of

some of these 70 genes have more than one bound ligand, and hence, 92 protein-ligand pairs

were considered for performing PLPS2.

Those structures that could pass the above filters were used in the SBVS step. We down-

loaded the structure files of these shortlisted proteins from the RCSB Protein Data Bank (PDB)

website.

2.6. FDA-approved drugs

The data set used for doing SBVS is the 3D structure of FDA-approved drugs downloaded

from the ZINC15 library [20]. ZINC15 is a free database of commercially-available, ready-to-

dock, and 3D compounds for virtual screening. Open Babel, an open-source chemistry toolkit,

was applied to find and remove potentially redundant molecules from the data set [21]. Finally,

the data set of 1404 MOL2 files was used in the SBVS step.

2.7. Structure-based virtual screening to rank FDA-approved drugs against

drug targets

We generated multiple conformations (maximum of 50 conformers) for each molecule using

the Confab [22] option of Open Babel to consider the molecule flexibility. Confab needs a 3D

structure of a molecule as the input file and generates diverse low-energy conformers. A

default RMSD cutoff of 0.5 Å was set in this step.

Structure-based virtual screening was performed with FDA-approved drugs for identified

drug targets of E. coli using PL-PatchSurfer2 (PLPS2) [23]. Further inspection was done to pos-

sibly select the most potential and pathogen-specific compounds that could inhibit more than

one drug target at once. These compounds are proposed to be used in polypharmacology

cases. To apply PLPS2, a protein structure file (PDB) with a co-crystallized ligand bound to it

for identification of a binding pocket, and a set of small molecule files (MOL2) are needed.

PLPS2 finds complementarities on surfaces between binding pockets and conformers of mole-

cules. First, after detecting the binding pocket, the separation of the bound ligand from its tar-

get is automatically done for all targets. The molecular surface of the targets and the

conformations of molecules are created by the Adaptive Poisson-Boltzmann Solver (APBS)

software package [24]. The input file for APBS is prepared by PDB2PQR software, via convert-

ing the PDB file to PQR format by assigning atom charge and radius information [25]. After

that, the generated surfaces are ‘sliced’ into overlapping local patches to assess the local match-

ing of the target pocket and the molecule conformation. For the surfaces of the patches, four

features, namely shape, electrostatic potential (calculated using APBS), atom-based hydropho-

bicity (calculated using XLOGP3 method) [26], and hydrogen-bond acceptor/donor are repre-

sented with three-dimensional Zernike descriptors (3DZDs) [27]. 3DZD is a vector

representation of a mathematical 3D function in Euclidean space, and it is invariant to rota-

tion. SSIC files are generated with the information of patches for targets and ligands. The num-

ber of patches, the coordinates of the center of patches, and 3DZDs of four features are in the

SSIC files. Then, to extract compatible patch pairs, a comparison between patches of a binding

pocket and a molecule conformation is performed using the Auction algorithm. Then, identi-

fied complementaries are estimated using a score. The score ranks ligands against each drug

target. To calculate the score for each molecule, the Boltzmann-Weighted Score (BS) has been

used [28,29]. To sort molecules, BS uses a weighted average of scores of all molecule conform-

ers. The performance of PLPS2 has been examined with four data sets. This SBVS approach

works faster than the other available common methods, including AutoDock Vina, DOCK6,
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and ROCS. It has been shown that the surface patch representation [30] enhances tolerance to

conformation changes of targets, and this is an advantage of PLPS2.

This approach ranks FDA-approved drugs against each identified essential target. Therefore,

the best-ranked molecules were obtained for each target. Besides, the best-ranked molecules

that have good interaction with more than one target are proposed as potential polypharmacol-

ogy cases. The polypharmacology opportunities were determined based on three different strat-

egies. In the first method, the drugs in the only top (first) rank of all targets were checked. Also,

the top five ranks and 1-percentile were considered in the second and third methods, respec-

tively. In the two latter methods, we checked molecules in other top ranks to prevent the loss of

the possibly effective molecules. In the 1-percentile approach, we divide the distance between

the best and the worst BS values into 100 equal parts for each target, and then, we take the

ligands (drugs) that are in the one percent of this distance (their scores are better than the 1-per-

centile). Then, 30 ligands that have been filtered for more proteins were selected.

Also, agglomerative hierarchical clustering dendrograms are shown on the heat maps for

both targets and drug molecules via seaborn [31] which is a Python data visualization library

based on matplotlib [32]. The individual data points are as one cluster and in each iteration

combines using a bottom-up approach. The method used for calculating the distance between

the newly formed clusters is “average” and the metric to compute the distance between m

points is “Euclidean distance” (2-norm). Score values of the final selected ligands are normal-

ized between 0 and 1 for each essential target. Then, rescaling of the scores is done with a linear

function according to the following formula based on each row (each target):

Zi ¼
maxðxÞ � xi

maxðxÞ � min ðxÞ
ð1Þ

Where xi is the BS value of the molecule, max (x) is the maximum of BS among molecules for

each target, and min (x) is the minimum of BS among molecules for each target. Therefore,

the best ligand for each target obtains the highest normalized score. Performing PLPS2 and

creating all input files needed for different steps were carried out automatically using Python

programming.

2.8. ATC-code of the selected drugs

We inspected the characteristics of the final shortlisted molecules which were predicted to stop

the growth of the bacterium in the DrugBank [33]. DrugBank is a free database with drug

information, their mechanisms, interactions, and targets. Anatomical Therapeutic Chemical

(ATC) code of selected top ligands was checked from the World Health Organization (WHO)

Guidelines 2020. The drug’s ATC Classification System classifies the active ingredients of

drugs in a hierarchy with five different levels. We investigated whether our shortlisted drugs

are anti-infectives.

3. Results and discussion

3.1. Identification of essential metabolic genes as potential drug targets

We used iML1428, the context-specific genome-scale metabolic network of E. coli K-12 inte-

grated with proteins (GEM-PRO), to determine the maximum growth rates in minimal and rich

media. Then, we identified essential genes for the growth of the bacterium. We simulated growth

on a rich medium to simulate the human body condition [14,34]. The rich medium assumption

was applied by opening the flux of exchange reactions of those metabolites that exist in the yeast

extract [35]. The availability of nutrients has a major impact on metabolic fluxes.
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We used flux variability analysis (FVA) for identifying blocked reactions. From the list of

all 2712 metabolic reactions in iML1428-iso, there are 260 universally blocked reactions

(9.58%), which cannot carry any nonzero flux while all model boundaries are unconstrained.

Also, we found 968 (35.69%) and 895 (33.00%) blocked reactions in minimal and rich media,

respectively.

The wild-type biomass reaction (BIOMASS_Ec_iML1428_WT_75p37M) was set as the

objective function. The ultimate goal of this study is to find drugs that can prevent bacterial

growth, and therefore, biomass objective function [36] is appropriate for predicting the poten-

tial drug targets [37,38]. The growth was zero in the minimal medium (glc lb = -10 mmol/

gDW/h) for the organism. To find the reason, we validated the model by MEMOTE. Accord-

ing to MEMOTE report, when the model is simulated on the provided minimal medium, one

precursor (adenosylcobalamin [’adocbl_c’]) of biomass reaction cannot be produced. This

metabolite is one of the biologically active forms of vitamin B12. To solve this problem, we set

the flux lower bound of adenosylcobalamin (EX_adocbl_e) exchange reaction to -0.1 mmol/

gDW/h. Finally, the optimization succeeded and the aerobic growth rates were 0.880 1/h and

1.065 1/h by FBA in the minimal and rich media, respectively.

In the next step, to identify the essential genes for growth, single-gene knockout simula-

tions were done using the FBA method in a rich medium. Firstly, each gene of the model is

knocked out, and the maximum flux value through the objective reaction is calculated by

FBA. The flux values smaller than 10−8 are considered zero, as they are presumably origi-

nated from computational numerical errors. Then, we selected those genes whose knocking

out results in decreased growth or no growth phenotype. More precisely, those genes whose

knockout make the growth rate to decrease to <5% of the maximum growth rate (i.e.,

<0.053 1/h) were chosen. Finally, we identified 195 essential metabolic genes for growth in

the simulated rich medium using FBA method, which comprises 10.7% of genes in the net-

work. The products of these genes were considered potential targets for drug discovery. The

list of essential genes and their UniProt IDs (i.e., the potential drug targets) is presented in

Supplementary S1 File.

3.2. Subsystems and GO terms of the essential genes

We investigated the subsystems/pathways of identified essential genes. The majority of these

genes were found to be involved in the ‘Cofactor and Prosthetic Group Biosynthesis’ (73

genes), ‘Lipopolysaccharide Biosynthesis/Recycling’ (38 genes), ‘Cell Envelope Biosynthesis’

(18 genes), and ‘Purine and Pyrimidine Biosynthesis’ (16 genes) pathways. These subsystems

are obviously important for bacterial growth.

As the most identified essential genes are in the “Cofactor and Prosthetic Group Biosynthe-

sis” subsystem, we have provided their description and BP GO terms in Supplementary S2

Table. Cofactors have an important role in metabolism. Therefore, genes involved in the bio-

synthesis process of cofactors could be potential drug targets. According to Supplementary S2

Table, "NAD salvage" and "de novo NAD biosynthetic" are the biological processes of some

identified essential genes. NAD cofactor is needed in some biological processes of prokaryotes

like redox balance and energy metabolism [39]. On the other hand, some enzymes use NAD as

a substrate in processes like DNA repair and degrade it [40]. Therefore, NAD biosynthetic pro-

cess is required and could provide drug targets to fight against bacteria [39]. As well, genes

involved in the coenzyme A and FAD biosynthetic process could be antibacterial targets [41].

Also, vitamins that are organic cofactors, their biosynthetic process are potential drug targets.

For example, the biosynthetic pathway of folic acid is a useful target for sulfonamide antibiot-

ics. Besides, the active form of thiamin (thiamin diphosphate) is a vital cofactor for organisms
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and is necessary for the activity of branched-chain amino acid metabolic enzymes [42,43]. As

we can see in Supplementary S2 Table, some of the predicted essential genes are in the biosyn-

thetic process of cobalamin (vitamin B12), thiamine (vitamin B1), riboflavin (vitamin B2),

folic acid (vitamin B9), and menaquinone (vitamin K2).

Cell-membrane-related enzymes could be good options for better drug accessibility to stop

or slow down the growth of pathogens [44]. Membrane-related essential genes and their mem-

brane-related CC GO terms are shown in Table 1.

On the other hand, analysis of the biological processes in which these genes are

involved showed that ‘cell wall organization’, ‘lipopolysaccharide biosynthesis’, ‘lipopoly-

saccharide transport’, and ‘peptidoglycan biosynthetic process’ are the enriched GO

terms. The rigid cell wall of Gram-negative bacteria is protection against osmotic lysis.

Furthermore, the cell surface of the bacteria composed of LPS, known as endotoxin, pro-

vides the first line of protection against antibiotics and other harmful agents [45,46].

Besides, LPS is synthesized in the inner membrane of the cell and is transported to the

outer membrane by transporter targets. LPS doesn’t allow antibiotics to enter the cell by

creating a barrier and makes bacteria resistant to many antibiotics [47,48]. Therefore, the

products of these genes related to cell wall and biosynthesis and transportation of LPS

have a high level of importance for bacterial growth and survival [49,50]. Bacterial cell wall

compounds are good potential drug target opportunities for killing bacteria or overcom-

ing drug resistance [45,46,51,52]. Fig 1 provides a complete overview of the subsystem dis-

tribution of 195 essential genes.

Table 1. Membrane-related essential genes.

Essential

genes

UniProt

IDs

Gene description Membrane-related CC GO term

IDs

GO Terms

b4262 P0ADC6 lipopolysaccharide transport system protein LptG GO:0005886 Plasma membrane

GO:0043190 ATP-binding cassette (ABC) transporter

complex

GO:0016021 Integral component of membrane

GO:1990351 Transporter complex

b3201 P0A9V1 lipopolysaccharide transport system ATP binding

protein LptB

GO:0043190 ATP-binding cassette (ABC) transporter

complex

GO:0005886 Plasma membrane

GO:1990351 Transporter complex

b3843 P0AAB4 3-octaprenyl-4-hydroxybenzoate decarboxylase GO:0005886 Plasma membrane

b4177 P0A7D4 adenylosuccinate synthetase GO:0016020 Membrane

b0182 P10441 lipid A disaccharide synthase GO:0019897 Extrinsic component of plasma

membrane

b3619 P67910 ADP-L-glycero-D-mannoheptose 6-epimerase GO:0016020 Membrane

b0586 P11454 apo-serine activating enzyme GO:0005886 Plasma membrane

b0594 P10378 2,3-dihydroxybenzoate-AMP ligase GO:0016020 Membrane

b0635 P0AD65 peptidoglycan DD-transpeptidase MrdA GO:0005887 Integral component of plasma membrane

b0158 P37028 vitamin B12 ABC transporter periplasmic binding

protein

GO:0030288 Outer membrane-bounded periplasmic

space

b2476 P0A7D7 phosphoribosylaminoimidazole-succinocarboxamide

synthase

GO:0016020 Membrane

b3966 P06129 cobalamin outer membrane transporter GO:0016021 Integral component of membrane

GO:0031230 Intrinsic component of cell outer

membrane

GO:0046930 Pore complex

https://doi.org/10.1371/journal.pone.0261267.t001
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3.3. Exclusion of identified essential genes having human homologs

To avoid any probable interference with normal human functions, in the next step, those

essential genes that have a human homolog were excluded from the initial list of potential

genes [14]. According to the PATRIC platform, there are 54 human homologs for the complete

reference genome of E. coli K-12 MG1655. We obtained UniProt IDs of these genes using their

PATRIC IDs and the Retrieve/ID mapping tool of the UniProt website (https://www.uniprot.

org/uploadlists/). Then, the set of these 54 human homologs was compared to the set of the

195 essential genes of E. coli, to find the common genes. Four essential genes with human

homologs are listed in Table 2.

3.4. Identifying structures and their co-crystallized ligands for each

essential gene product

We utilized E. coli GEM-PRO (iML1515_GP) to obtain representative structures of the 191

essential genes using ssbio for performing SBVS. Information about co-crystallized ligands is

obtained from the Ligand Expo database and mapped to the essential genes. For all drug tar-

gets, the chains with bound ligands are identified from the metadata incorporated in

iML1515_GP, using ssbio. To perform the SBVS, a ligand-binding pocket is needed and the

mentioned filters for the selection of the most informative protein-ligand complexes were

applied. At last, 70 essential genes remained. The structures that can succeed in these filtrations

are used in the SBVS step. The protein products of some of these 70 essential genes have more

than one bound ligand, and hence, 92 protein-ligand pairs are considered for performing

Fig 1. Subsystem distribution of 195 essential genes associated with their frequency.

https://doi.org/10.1371/journal.pone.0261267.g001

Table 2. Essential genes with human homologs.

Locus tag UniProt ID Gene symbol Human homolog EC number

b2530 P0A6B7 iscS NFS1 (cysteine desulfurase) 2.8.1.7

b2827 P15640 thyA thyA (Thymidylate synthase) 2.1.1.45

b4005 P15640 purD GART (Phosphoribosylamine-glycine ligase) 6.3.4.13

b2942 P0A817 metK MAT2A (methionine adenosyltransferase 2A) 2.5.1.6

https://doi.org/10.1371/journal.pone.0261267.t002
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PLPS2. Finally, we downloaded the PDB structure of these shortlisted proteins. The complete

list of the essential genes and their related information are presented in Supplementary S2 File.

3.5. Structure-based virtual screening

We identified essential targets in the previous steps. We ranked the ligands (FDA-approved

drugs) against each target by running PLPS2 as an SBVS method. PLPS2 generates a molecular

surface for the proteins and molecule conformations using APBS. To investigate the level of

matching between a binding pocket and a molecule conformation, generated surfaces are

divided into multiple patches. Shape, electrostatic potential, atom-based hydrophobicity, and

hydrogen-bonding are represented for the patches with 3DZDs [30]. SSIC files with informa-

tion about patches are generated for each protein and its ligands. After that, detected compati-

ble pairs of patches are ranked using BS. The ranked ligands against each identified target

associated with their score values are shown in Supplementary S3 File. Each row of the matrix

is related to ranked ligands for each essential target. As we used FDA-approved drugs, the

best-ranked molecules could be opportunities for drug repositioning with predicted antibacte-

rial indication.

In addition to the above results, polypharmacology (multi-target) cases considering all

selected drug targets were obtained using three frequency-based methods. Based on the first

method that considers only the drugs in the top rank, those drugs that interact with more than

3 essential targets are listed in Table 3.

The percentile-based approach is more suitable in cases where the scores of ranked mole-

cules for each essential target are very close to each other and causes the loss of fewer good

molecules. Figs 2 and 3 show the heat maps of selected ligands from the top five ranks and

1-percentile methods, respectively. The selected ligands are polypharmacology cases that can

stop the growth of the pathogen using the inhibition of multiple drug targets.

The colorbar of the heatmaps ranges from white (assigned to the lowest normalized score

values) to dark blue (assigned to the highest normalized score values) for each target. Thus, for

each drug target, by moving row-wise on the heat map, one can find the best interacting ligand

as the one with the darkest blue shade on that row.

The target dendrogram shows the hierarchical clustering of 92 protein-ligand pairs. This

clustering is based on the similarity of the surface patches (which, in turn, is translated to simi-

larity of the score rankings) of the selected drugs that are proposed as potentially active com-

pounds for the pathogen. Enzymes are in the same cluster if they are similar in the binding

ordering of these drugs. According to the ligand dendrogram, selected ligands are in the same

cluster if their score values to the essential enzymes are similar. The labels displayed on the ver-

tical axis of heat maps represent the top 15 targets to which the selected molecules have the

strongest interactions. According to Fig 2, the cluster of 5etp is different from the cluster of the

other 14 targets. Also, according to Fig 3, the cluster of 3K8D, LI52, 5M29, 1HV9, 2IW1,

4TMK, 1G7V, 2H1H, and 4IZ6 is different from the cluster of 2Z26, 2W70, 1EIX, 5ETP,

4MYD, and 1VA6 considering the selected ligand.

Table 3. Polypharmacology molecules selected based on the top rank of targets.

Molecule Number of targets Targets

ZINC000085537014 5 1WXI_AMP, 1Q7B_NAP, 5M29_CBY, 3KQJ_UD1, 1EQ2_NAP

ZINC000003914596 3 LI52_CTP, 5EJ8_TD6, 3ETH_ATP

ZINC000003941829 3 1GSA_ADP, 1GSA_GSH, 5ETP_5RZ

ZINC000085432544 3 2O1S_TDP, 1HV9_UD1, 5M1D_4LU

https://doi.org/10.1371/journal.pone.0261267.t003
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3.6. Investigation of ATC-code and safety of the selected drugs

We have presented drug IDs and ATC-codes of selected molecules (drugs) in Table 4. The first

level of ATC-code is the anatomical main group and contains one letter. The second level

shows the therapeutic subgroup and is two digits. The third level is the therapeutic/pharmaco-

logical subgroup and has one letter. The fourth level indicates the chemical/therapeutic/phar-

macological subgroup and is one letter. The fifth level is the chemical substance and has two

digits. According to WHO Guidelines 2020, anti-infectives are classified in J, A01AB, A02BD,

A07A, D01, D06, D07C, D09AA, D10AF, G01, R02AB, and S01/S02/S03 groups [53].

Fig 2. The heat map of selected ligands from the top five ranks of essential targets.

https://doi.org/10.1371/journal.pone.0261267.g002

Fig 3. The heat map of selected ligands from the 1-percentile method.

https://doi.org/10.1371/journal.pone.0261267.g003
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Table 4. IDs and ATC-codes of the selected molecules.

ZINC ID Drug Name DrugBank

ID

ATC-code ChEMBL ID Known Human

Targets?

method

ZINC000003944422 Ritonavir DB00503 J05AE03 CHEMBL163 2,3

ZINC000169621200 Rifaximin DB01220 A07AA11/ D06AX11 CHEMBL1617 2,3

ZINC000029416466 Saquinavir DB01232 J05AE01 CHEMBL296480 No 3

ZINC000085432544 Vinblastine DB00570 L01CA01 CHEMBL159 1,2,3

ZINC000085537053 Docetaxel DB01248 L01CD02 CHEMBL92 3

ZINC000026664090 Saquinavir DB01232 J05AE01 CHEMBL296480 No 2,3

ZINC000150338698 Capreomycin DB00314 J04AB30 2,3

ZINC000028108825 Gadofosveset

trisodium

DB06705 V08CA11 CHEMBL1615469 No 2,3

ZINC000003914596 Saquinavir DB01232 J05AE01 CHEMBL114 1,2,3

ZINC000085537014 Cobicistat DB09065 J05AR09/J05AR15/J05AR14/J05AR22 /J05AR18

/V03AX03

CHEMBL2095208 1,2,3

ZINC000049841054 Carfilzomib DB08889 L01XX45 CHEMBL451887 2,3

ZINC000068204830 Daclatasvir J05AP58/J05AP07 CHEMBL2023898 2,3

ZINC000003938482 Posaconazole J02AC04 CHEMBL1397 2,3

ZINC000003875483 Oxymorphone N02AA11 (WHO) CHEMBL963 2,3

ZINC000003938695 Norgestimate DB00957 G03AA11 CHEMBL1200934 3

ZINC000003927200 Drospirenone DB01395 G03AC10/G03FA17/G03AA12 CHEMBL1509 3

ZINC000016052277 Doxycycline DB00254 J01AA02/A01AB22/J01AA20 CHEMBL1433 3

ZINC000000538386 Sufentanil DB00708 N01AH03 CHEMBL658 3

ZINC000004097305 Flunisolide DB00180 R01AD04/R03BA03 CHEMBL1512 3

ZINC000001319780 Buprenorphine DB00921 N07BC01/N07BC51/N02AE01 CHEMBL560511 3

ZINC000008214692 Tobramycin DB00684 S01AA12/J01GB01 CHEMBL1747 2,3

ZINC000004215234 Cefditoren DB01066 J01DD16 CHEMBL1743 No 3

ZINC000003992105 Fluticasone furoate DB08906 R03AL08/R01AD12/R03AK10/R03BA09 CHEMBL1676 3

ZINC000022448097 Gadoxetic acid DB08884 V08CA10 CHEMBL2110606 No 2,3

ZINC000100013130 Midostaurin DB06595 L01XE39 CHEMBL608533 3

ZINC000096903163 Diacetyl benzoyl

lathyrol

DB11260 CHEMBL552128 No 3

ZINC000003941829 Fosamprenavir DB01319 J05AE07 CHEMBL1664 1,2,3

ZINC000004097383 Pancuronium DB01337 M03AC01 CHEMBL185073 2,3

ZINC000053229445 Rocuronium DB00728 M03AC09 CHEMBL1201244 2,3

ZINC000043450326 Omacetaxine

mepesuccinate

DB04865 L01XX40 2,3

ZINC000169289767 Trypan blue DB09158 CHEMBL1089641 2

ZINC000169621223 Rifampicin DB01045 J04AM02/J04AB02/J04AM06 /J04AM05/J04AM07 CHEMBL374478 2

ZINC000085555528 Vinblastine DB00570 L01CA01 CHEMBL22969 2

ZINC000008101127 Indocyanine green DB09374 CHEMBL1615807 No 2

ZINC000049637509 Isavuconazonium DB06636 J02AC05 CHEMBL1183349 No 2

ZINC000095551509 Grazoprevir DB11575 J05AP11/J05AP54 CHEMBL2063090 No 2

ZINC000084441937 Tetracycline DB00759 S02AA08/A02BD02/A01AB13/J01AA07 /S01AA09/

J01AA20 /J01RA08/S03AA02 /D06AA04 /A02BD08

CHEMBL1440 2

ZINC000014879992 Minocycline DB01017 J01AA08/J01AA20 /A01AB23/ CHEMBL1434 2

ZINC000019796087 Nicardipine DB00622 C08CA04 CHEMBL1598680 2

ZINC000043450324 Omacetaxine

mepesuccinate

DB04865 L01XX40 CHEMBL175858 2

ZINC000100013500 Retapamulin DB01256 D06AX13 CHEMBL1658 No 2

https://doi.org/10.1371/journal.pone.0261267.t004

PLOS ONE A computational strategy for antibacterial drug discovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0261267 December 14, 2021 11 / 15

https://doi.org/10.1371/journal.pone.0261267.t004
https://doi.org/10.1371/journal.pone.0261267


Therefore, among the drugs in Table 4, Rifaximin (DB01220), Doxycycline (DB00254), Tobramy-

cin (DB00684), Rifampicin (DB01045), Grazoprevir (DB11575), Tetracycline (DB00759), Minocy-

cline (DB01017), Retapamulin (DB01256) are in the category of anti-infectives that have been

suggested by our pipeline. It should be noted that, although the result is obtained based on integrat-

ing validated GEM with the validated SBVS method, they need to be tested experimentally. Also,

we have extracted the ChEMBL IDs of the selected drugs from the UniChem database. Then, we

have obtained the human genes (targets) related to these drugs via ChEMBL API (https://www.ebi.

ac.uk/chembl) [54]. The ten drugs that have no known human targets are listed in Table 4. Among

the selected drugs, Grazoprevir and Retapamulin are anti-infectives, and also they have no human

targets. Also, there is a record of Retapamulin [55,56] in the treatment of bacterial infections in

DrugBank. These results could be a sign of validation of our work. The compounds without any

known human targets could be better options for experimental tests against E. coli infection.

4. Conclusion

The discovery of novel antibacterial agents is necessary due to the rapid worldwide emergence

of antibiotic resistance. GEMs are representative models of organisms at the metabolism level

and they are good frameworks for the investigation of bacterial phenotypes. In this study, we

have developed a structural systems pharmacology framework based on analyzing a metabolic

network and a SBVS approach. The coupling of these two methods was done to achieve better

results. As an example of its application, we have represented that this framework works well

for E. coli and we could find anti-infective molecules for it. This can also be a general pipeline

for the development of novel antibacterials for other bacterial pathogens that have GEM. Here,

we have performed constraint-based flux analysis (FBA) on the most complete E. coli GEM--

PRO for the rational and system-level identification of essential genes whose knocking out

causes the growth of the pathogen to stop. 195 genes that are essential for the survival of the

pathogen are identified and high-priority proteins related to these genes are detected as poten-

tial drug targets to carry out SBVS. These targets are the most promising candidates due to the

availability of experimental structure in the PDB database and having cognate biologically rele-

vant ligands. The SBVS method was performed with FDA-approved drugs for these targets by

PLPS2. It evaluates interactions between a protein and a small molecule, based on molecular

surfaces with shape, electrostatic potential, hydrophobicity, and hydrogen bonding features.

Finally, we have identified new potential inhibitors among available FDA-approved drugs to

stop the growth of the pathogen. Working with available drugs instead of other small mole-

cules is an advantage because of the fast gaining drug resistance of pathogens. Therefore, the

quicker discovery of new safe drugs is urgent. Here, we have predicted a new therapeutic indi-

cation (antibacterial) for reported drugs. Consequently, these drugs can be proposed as drug

repositioning opportunities. It will be valuable if the proposed anti-infective drugs will be

shifted to in vitro and in vivo experiments soon for validation of the results.
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