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a b s t r a c t

The data in this article provide details about MRI lesion segmen-
tation using K-means and Gaussian Mixture Model-Expectation
Maximization (GMM-EM) algorithms. Both K-means and GMM-
EM algorithms can segment lesion area from the rest of brain
MRI automatically. The performance metrics (accuracy, sensitivity,
specificity, false positive rate, misclassification rate) were esti-
mated for the algorithms and there was no significant difference
between K-means and GMM-EM. In addition, lesion size does not
affect the accuracy and sensitivity for either method.
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Specifications Table

Subject area Biology
More specific subject
area

Magnetic Resonance Imaging Segmentation

Type of data image, graph, figure
How data was
acquired

Raw data were from ischemic stroke lesion segmentation online database. Segmentation data were
acquired using K-means and Gaussian Mixture Model-Expectation Maximization algorithms.

Data format analyzed data
Experimental factors All images were normalized and co-registered for all subjects
Experimental
features

The segmentation labels were determined using K-means and GMM-EM

Data source location Raw data at: http://www.isles-challenge.org/ISLES2015/; owned by ISLES. Lubeck, Germany.
Segmentation data: Northeastern University, Boston, MA, US; segmentation data is included in this
article and can be downloaded from this article

Data accessibility Segmentation data is included with this article

Value of the Data
� These data provide automatic segmentation of lesion in MRI using K-means and GMM-EM.
� These data evaluate the performance of K-means and GMM-EM algorithms regarding MRI segmentation.
� The data show that lesion size does not affect the performance of K-means and GMM-EM in lesion segmentation
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1. Data

Magnetic Resonance Imaging (MRI) data were pre-processed. Instead of using the conventional
method to manually segment lesion [1] which is time-consuming, inaccurate, and subjective, K-means
and Gaussian Mixture Model-Expectation Maximization (GMM-EM) algorithms were applied to
automatically segment lesion regions from the rest of brain tissue in MRI. The data included here
provides the lesion segmentation results using K-means (dataset as K-means estimated labels.mat) and
GMM-EM (GMM-EM estimated labels.mat) as well as the ground truth mask (ground truth mask
data.mat). These three datasets are the estimated labels and ground truth mask of brain regions for all
28 subjects.

Fig. 1 shows the brain lesion segmentation using K-means. The best performance (Fig. 1 top row)
shows that the estimated lesion regions (light blue) and the ground truth (yellow) match very well
with the accuracy of 99.27%. The accuracy of K-means varies from subject to subject. And for some
subject, the accuracy is only 56.96% (Fig. 1 bottom row).

GMM-EM is applied to segment brain lesion, since in each MRI image modality, the intensity of four
different brain tissues follows Gaussian distribution approximately as shown in Fig. 2. The segmen-
tation shows GMM-EM works well with the average accuracy of 85%. The estimated lesion regions
(light blue) matches the ground truth lesion regions (yellow) well for the best performance subject
(Fig. 3 top row) with the accuracy of 95%. While for some subjects, GMM-EM does not segment lesion
correctly with healthy regions misclassified as lesion regions. Fig. 3 bottom row shows representative
subject with accuracy of 89.02% and the edge of the brain is misclassified as lesion.

The performance metrics (accuracy, misclassification rate, sensitivity, specificity, and false positive
rate) were calculated for both K-means and GMM as shown in Fig. 4. The accuracy, sensitivity, and
specificity of K-means are 85 ± 11%, 67 ± 24%, and 86 ± 11% specifically. The accuracy, sensitivity, and
specificity of GMM-EM are 84 ± 9%, 64 ± 25%, and 84 ± 10% specifically. There is no significant dif-
ference between K-means performance and GMM-EM performance (p-values of accuracy, sensitivity
and specificity are: 0.6645, 0.7647, 0.5479). In addition, both K-means and GMM-EM performance
varies from subject to subject.

When the algorithmswere first applied to perform lesion segmentation, the intuitionmight suggest
that the bigger the lesion size, the better the algorithms performance. However, Fig. 5 shows that there

http://www.isles-challenge.org/ISLES2015/


Fig. 1. Brain lesion segmentation using K-means. A representative brain lesion segmented using K-means with accuracy of 99.27%
(top row). Yellow colored mask is ground truth, while is overlaid on top of the estimated label in blue. A representative lesion
segmentation using K-means with accuracy of 56.96% (bottom row).

Fig. 2. Signal intensity histogram of GM, WM, CSF, and lesion (if present) in T1-weighted, T2-weighted, FLAIR, and DWI MRI of a
representative subject.
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is little correlation between algorithms performance accuracy (sensitivity, and specificity) and the
lesion volume. In Fig. 5, the lesion volumes were calculated by counting the number voxels labeled as
lesion in mask imaging.



Fig. 3. GMM-EM brain segmentation visualization. The best performance (top row) of GMM-EM have the accuracy of 95% and
representative subject with accuracy of 89.02% (bottom row) shows GMM-EM misclassifies edge of the brain as lesion.
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2. Experimental design, materials, and methods

2.1. Data and feature extraction

Raw data were acquired from ischemic stroke lesion segmentation 2015 online database [2] (http://
www.isles-challenge.org/ISLES2015/), and data is one of the two sub-taskes: sub-acute ischemic stroke
lesion segmentation (SISS) training data with 28 subjects. Each of the 28 subjects contains T1-
weighted, T2-weighted, FLAIR, DWI images and a lesion mask labeled by experts as ground truth as
shown in Fig. 6.

The flowchart of the work is shown in Fig. 7. After data were acquired, pre-processing was per-
formed to make sure different images are in the same space. Then, features were extracted and
normalized. K-means and GMM-EM were used to segment lesion from the rest of the brain tissue.
Algorithms performance were evaluated by comparing the estimated lesion regionwith mask (ground
truth).

In the pre-processing step, all images were co-registered to the standard space using MNI152 1 mm
symmetric human brain atlas. In addition, for each MRI modality, images were intensity-normalized
based on the average across all subjects so that features were consistent.

For each voxel, 25 features are extracted to feed into K-means and GMM-EM algorithms. The first
four features are the signal intensity from T1-weighted, T2-weighted, FLAIR, DWI images. The next four
are the intensities from the smoothed T1-weighted, T2-weighted, FLAIR, DWI images using a Gaussian
kernel with sigma of 3 mm. Then the local information of each voxel within the brain mask is obtained
using an 11 mm � 11 mm x 11mm cubic window of neighboring voxels centered at this voxel. More
specifically, among more than 1 million voxels per subject, the mean, median, variance, 10th percentile
and 90th percentile are calculated as four individual features for each voxel from its ±5 mm neighbors
of 1330 voxels. These parameters contribute to features 9th through 24th features. The last feature was
the distance of each voxel to the image center.

http://www.isles-challenge.org/ISLES2015/
http://www.isles-challenge.org/ISLES2015/


Fig. 4. Algorithm performance evaluation and comparison. There is no significant difference between K-means and GMM-EM in
accuracy, sensitivity, and specificity.
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2.2. K-means clustering

K-means classifies n observations Xðx1; x2;…; xnÞ into k clusters with the aim at minimizing the
distance function:

Distance¼
Xk
i¼1

Xn
j¼1

xij � Ci
2

Where Ci ¼ 1
Ni

P
x2xi

x; i ¼ 1;2;…; k represents the ith.

Cluster center.
The K-means algorithm:

1. Initialize cluster centroids Ci with k random samples;
2. Assign each observation xi to the nearest cluster center;
3. Recalculate and update each cluster center Ci ¼ 1

Ni

P
x2xi

x; i ¼ 1;2;…; k ; where Ni is the number of

elements in the ith cluster;
4. Repeat steps 2 and 3 until Ci does not change.

Here, in this paper, we assign voxels into 4 groups: white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF), and lesion if present.



Fig. 5. Lesion size does not affect the performance of K-means and GMM-EM algorithms.
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2.3. Gaussian mixture model-expectation maximization

In regions where MRI signal is present with signal-to-noise (SNR) � 3, noise follows a Gaussian
distribution approximately [3e5]. The histogram of brain MRI with noise in presence can be repre-
sented by a Gaussian Mixture Model in which each tissue type such as white matter, gray matter,
cerebrospinal fluid, lesion if present follows a Gaussian distribution. In this model, each voxel is
assigned to one of the classes.



Fig. 6. MRI data acquired from ischemic stroke lesion segmentation 2015 online database. Images from 4 MRI modalities, T1-
weighted, T2-weighted, FLAIR, and DWI, are available (first row), along with mask (ground truth in yellow) overlaid on T2-
weighted image in different views (second row).

Fig. 7. Flowchart of lesion segmentation in MRI. Four kinds of images from T1-weighted, T2-weighted, FLAIR and DWI MRI mo-
dalities were acquired and pre-processed, then features were extracted. K-means and GMM-EM algorithms were used to segment
Lesion. Algorithms performance were evaluated by confusion matrix.
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Gaussian mixture model can be defined as:

pðxÞ¼
XK
k¼1

pkNðxjmk;SkÞ
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Where x is a d-dimensional observation vector, pk; k ¼ 1;…:;K are the mixture weights that satisfy

0 � pk � 1 and
PK
k
pk ¼ 1, and Nðxjmk; SkÞ is a D-variate Gaussian density for the kth mixture

component as given by the equation:

Nðxjmk; SkÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ1=djSkj
q exp

�
�1
2
ðx� mkÞTSk

�1ðx�mkÞ
�

where mk is the kth mean vector and Sk is the kth covariance matrix.
The parameters (including means, covariances and weights of each component) can be determined

by maximizing the likelihood function.
EM Algorithm.

1. Initialize means, covariances and the mixing coefficients and evaluate the initial value of the log
likelihood.

2. E step. Evaluate the posterior probability using the current parameter

gðznkÞ¼
pkNðxnjmk;SkÞPK
j¼1pjNðxnjmk;Sk

�

3. M step. Recalculate the parameters using the current posterior and update the parameters

mnewk ¼ 1
Nk

XN
n¼1

gðznkÞxn

Snew
k ¼ 1

Nk

XN
n¼1

gðznkÞ
�
xn � mnewk

��
xn � mnewk

�T

pnew
k ¼Nk

N

where

Nk ¼
XN
n¼1

gðznkÞ

4. Evaluate the log likelihood

lnpðXjm;S;pÞ¼
XN

ln
nXK

pkNðxnjmk;SkÞ
o

n¼1 k¼1

5. Repeat step 2, 3, and 4 until the convergence criterion is satisfied.
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