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Abstract
We present a rigorous statistical model that infers the structure of P. falciparummixtures—

including the number of strains present, their proportion within the samples, and the amount

of unexplained mixture—using whole genome sequence (WGS) data. Applied to simulation

data, artificial laboratory mixtures, and field samples, the model provides reasonable infer-

ence with as few as 10 reads or 50 SNPs and works efficiently even with much larger data

sets. Source code and example data for the model are provided in an open source fashion.

We discuss the possible uses of this model as a window into within-host selection for clinical

and epidemiological studies.

Author Summary

Since the 1960’s researchers have observed that Plasmodium falciparum infections, the
cause of most severe malaria, are frequently composed of several different strains of the
parasite. In this work, the authors use Bayesian methods on whole genome sequence data
to model the structure of these mixtures. Results from this method are consistent with pre-
vious approaches but provide finer resolution of these mixtures. As whole genome data in
malaria research becomes increasingly common, this work will allow researchers to delve
further into the within-host dynamics of the parasite, a much-discussed but previously dif-
ficult-to-access aspect of this disease.
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Introduction
The protozoan parasite Plasmodium falciparum (Pf) is the cause of the vast majority of fatal
malaria cases, killing at least half a million people a year [1–3]. The parasite’s ability to develop
resistance to drugs and the rapid spread of that resistance across geographically-separated pop-
ulations presents a constant threat to international control efforts [4–6]. While research has
elucidated many genetic factors this process, much of the genetic epidemiology of the parasite
—including the effective recombination rate and the rate of gene flow across populations—is
still unclear [5, 7, 8].

Understanding the implications of multiplicity of infection (MOI), where multiple strains
appear to be present within a single patient’s bloodstream, is a long-standing challenge [9–13].
While MOI-focused studies implicate MOI levels with a range of conditions, including clinical
severity [14], age-specific severity [15–18], parasitemia levels during pregnancy [19], and other
effects [20–23], there is no broad consensus about its role in controlling the course of an infec-
tion. Still, a wide variety of studies and genetic assays—most commonly through typing the
MSP genes—show MOI as a regular feature of clinical Pf isolates [24–26].

WGS technologies applied to Pf extracted directly from infected patients’ bloodstreams pro-
vide an unprecedented window into the structure of genetic mixture within samples [27, 28].
Initial work on this data shifted focus from estimating MOI to analysis based on inbreeding
coefficients [13, 29–31]. These metrics, a form of F-statistic, give an estimate of the departure
of within-sample allele frequencies from those expected under a Hardy-Weinberg-type equilib-
rium with the ambient population. From this perspective, each patient’s bloodstream is seen as
a subpopulation comprised of an admixture of all strains in the local environment, ranging
from a perfectly random sampling of all nearby strains (panmixia) to the repeated sampling of
just a single strain (unmixed).

The initial study applying WGS to clinical Pf isolates from eight countries on three conti-
nents showed the parasite to exhibit significant population structure at continental scales, with
the amount of subpopulation structure varying significantly among regions [27]. Employing
an F-statistic approach to measure the inbreeding coefficient from thousands of single nucleo-
tide polymorphisms (SNPs), this work also argued that the degree of mixture varies signifi-
cantly across populations, with highly mixed samples occurring relatively frequently in west
Africa but only occasionally in Papua New Guinea. The authors suggest an association between
increased levels of observed mixture and increased transmission intensity in the local environ-
ment. Transmission intensity, the rate at which individuals are infected with Pf, likely deter-
mines some part of the frequency of out-crossing within parasite populations and so may be
critical to understanding gene flow and strategies for resistance control [32].

In this paper, we present a statistically rigorous model that synthesizes these two distinct
and previously disparate approaches to analyzing Pf clinical mixtures: assessing the number of
distinct genetic types within a sample (the MOI approach [31]) and measuring the degree of
panmixia with respect to the local population (the panmixia approach [33]). The model makes
two significant innovations: first, a reversible jump Markov Chain Monte Carlo (MCMC)
implementation to capture uncertainty in the number of strains, and second the inclusion of a
panmixia term to deal with unexplained variation in the mixture. This work possesses similari-
ties in character to the COIL algorithm [34], but can capture more complex mixture structure
and is geared toward analyzing WGS data (>1000 SNPs) rather than a small number of SNPs
(*50 SNPs).

This model centers around how the two sub-models—MOI and panmixia—contribute to
the observed within-sample non-reference allele frequencies (WSAF) as they relate to the popu-
lation-level non-reference allele frequencies (PLAF). For clarity, we will deprecate the use of
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non-reference in front of the term allele frequency, since they are all calibrated in this fashion.
We will use the acronyms WSAF to denote the within-sample allele frequency and PLAF to
denote population-level allele frequency to avoid confusion about the particularly allele fre-
quency being indicated. The goal of the model is to explain observed ‘bands’ that emerge when
examining SNPs WSAF as a function of their PLAF (Fig 1).

The model assumes (1) that the number of bands is a consequence of the number of distinct
strains present within a sample, (2) that SNPs are unlinked, and (3) that unexplained variation
is assumed to be due to a small fraction of genomes sampled under panmixia. To distinguish
from an inbreeding coefficient—a similar but distinct concept—we refer to this fraction as a
panmixia coefficient. The collection of WSAF bands then appears as a function of the finite
mixture of the strains, with the slope in WSAF bands with respect to the PLAF explained by
both the SNP distribution and the panmixia coefficient.

Fig 1. Example samples. Four representative samples with WSAF for each SNP plotted against the PLAF, showing an absence of mixture (a), a
partially panmixed sample (b), a simple mixture (c), and a complex mixture (d).

doi:10.1371/journal.pcbi.1004824.g001
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Fig 2 lays out how the consequent banding patterns can arise. In the simplest case, a sample
is composed of a single, unmixed strain, and all SNPs exhibit a WSAF of zero or one (see Fig 2
(a)), based on whether they agree with the reference. Consequently, the WSAF is independent
of PLAF, leading to two flat bands at these values. We call these samples unmixed, since this is
how a single strain with some divergence from the reference will appear. In the case where
there are a finite number of strains mixed within a sample, then at a given SNP position some
number of the strains will exhibit a reference allele and some a non-reference allele. The WSAF
for that SNP is determined by the proportions of non-reference strains in the sample mixture.
Observing many SNPs displays ‘bands’ of constant WSAF across the PLAF. Thus, for K com-
ponent strains there are 2K possible combinations of biallelic states, leading to that number of
bands.

Fig 2. Model diagram. The structure of the model can be understood in terms of four related states connecting the WSAF to the PLAF: no
mixture (upper left); simple mixture (lower left); panmixture (upper right); and complex mixture (lower right).α is exaggerated for explanation;
realistic values are less than 0.05.

doi:10.1371/journal.pcbi.1004824.g002
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A fraction of the Pf organisms present within the blood may not be from any of the domi-
nant strains. We model these as randomly sampled from the local population according to sim-
ple panmixia. Observationally, this leads to a consistent change in the slope of each of the
bands. To see this, consider an admixture of two distinct Pf populations: a single strain, repre-
senting 1 − α of the within-sample genomes, and the remaining α that we assume follow pan-
mixia. The α tilt in the WSAF arises from the fact that for this proportion of organisms the
probability of sampling non-reference allele is proportional to the PLAF (Figs 1(c) and 2(c)).
Samples with high K appear to have additional tilt due to the higher probability of non-refer-
ence alleles occurring at high PLAF (Figs 1(d) and 2(d)).

The paper proceeds as follows. We first detail the structure of the WGS data, introduce
some notation, and the essential mathematical structure of the model. We then present an
extensive simulation study on the performance of the model, an application of the model to
artificial laboratory mixtures, and an examination of its application to field isolates collected
from northern Ghana. We conclude by discussing the strengths and weaknesses of the model,
a means of experimental validation, and potential consequences for the etiology of clinical
malaria.

Materials and Methods

Data
The field WGS data come from Illumina HiSeq sequencing applied to Pf extracted from 419
clinical blood samples collected from infected patients in the Kassena-Nankana district (KND)
region of Upper East Region of northern Ghana. Collection occurred over approximately 2
years, from June 2009-June 2011. The raw sequence reads for these data are accessible through
the PF3K project https://www.malariagen.net/projects/parasite/pf3k. This includes data from
the MalariaGEN Plasmodium falciparum Community Project on www.malariagen.net/
projects/parasite/pf. On the website for this method, we provide read count data subsampled
from the full data set. The artificial laboratory samples were sequenced and called per protocols
given in [35]. The raw sequence data is available through the European Nucleotide Archive
with the accessions available in the S1 Text.

The full sequencing protocol and collection regime are described in [27]. After quality con-
trol measures, all samples were examined, and following a documented protocol comparing
against world-wide variation, 198,181 single-nucleotide polymorphisms (SNPs) were called
[27]. These are exclusively coding SNPs found outside of the telomeric and subtelomeric
regions that exhibit unusual structural properties. Each SNP xcall provides the number of refer-
ence and non-reference read counts observed at each variant position within the genome,
ascertained against the the 3D7 reference [36]. These data were exhaustively examined for spu-
rious heterozygosity and evidence of DNA contamination, with mixed calls verified using
time-of-flight mass spectrometry at greater than 99% accuracy [27].

For this project, we further filtered the data. First, multiallelic positions were reclassed as
biallelic. We then excluded positions that exhibited no variation within the KND samples, any
level of missingness (no read counts observed), or minor allele frequency less than 0.01. To
remove low quality samples, we removed those with more than 4,000 SNPs missing and fewer
than 20 read counts, following an inflection point observed in S1 Fig. These cleaning measures
left 2,429 SNPs in 168 samples. These SNPs exhibit desirable properties for model inference—
high and consistent coverage across all samples—that could likely be expanded to non-coding
or less stringent cleaning standards without issue. More than 95% of the remaining samples’
sequencing was completed without PCR amplification. We observe little apparent population
structure among the samples, evidenced either by principal components analysis or a

A Bayesian Model for Mixture in P. falciparumMixture within Clinical Infections

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004824 June 30, 2016 5 / 20

https://www.malariagen.net/projects/parasite/pf3k
http://www.malariagen.net/projects/parasite/pf
http://www.malariagen.net/projects/parasite/pf


neighbor-joining tree of the pairwise difference among samples (S2 Fig). The data preparation
scripts are available with the source code for the model, https://github.com/jacobian1980/
pfmix/.

Notation
Following the data preparation and cleaning, our analysis begins with a set of N = 168 clinical
samples, each composed ofM = 2,429 SNPs. At each SNP j within each clinical sample i, we
observe rij reads that agree with the reference genome and nij reads that do not agree. The total
number of read counts in sample i at SNP j is then nij + rij. For a sample i, we write the com-
plete data across all SNPs asDi ¼ ½ðri1; ni1Þ; � � � ; ðriM; niMÞ�. For each SNP j, we associate a
PLAF pj. The collection of all pj we refer to as P.

Conditional upon the number of strains K, there are 2K bands, indexed by r = 1, � � �, 2K. The
full collection of bands we callQ, with qijr indicating the WSAF for sample i at SNP j in band r.
The probability of a SNP lying within the distinct bands across the PLAF is specified by a mix-
ture component λr, which is a function of the PLAF detailed below. The degree of panmixia in
a sample is given by α, a value between zero and one. A complete list of the model parameters
is given in Table 1.

Model
Statistically, the model takes the form of a finite mixture model with the mixture components
associated with individual bands [37, 38]. We take a Bayesian approach to inference and con-
struct the model by giving an overall rationale for the decomposition of the posterior distribu-
tion, and then justify the appropriate choice of probability distributions for each of the terms
[39].

Table 1. Parameters and definitions for the model and its description.

Parameter Definition

N Number of samples

M Number of SNPs

K Number of strains

i = 1, � � �, N Index for samples

j = 1, � � �, M Index for SNPs

r = 1, � � �2K Index for bands / strain mixtures

pj (Non-reference) allele frequency for SNP j

P ¼ ½pj� The PLAF for all SNPs

Q ¼ ½qij� Within-sample allele frequency for SNP j in sample i

α Degree of panmixia within a sample, panmixia
coefficient

S ¼ ½s1; � � � ; sK � Strains in a sample

W ¼ ½w1; � � � ;wK � Strain proportions in a sample

λr Band proportions within sample

ν Variation parameter for Beta-binomial

WSAF Within-sample allele frequency

PLAF Population-level allele frequency

doi:10.1371/journal.pcbi.1004824.t001
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Decomposition. We assume that samples are independent of each other and that the SNP
data for each sample depends solely on the number of bands (K), the WSAF (Q), the PLAF
(P), and a shape parameter ν. As samples are treated independently, we deprecate sample-spe-
cific subscripts for the model parameters. Considering the data for a single sample,Di, the pos-
terior distribution can then be written as:

PðQ;P;W; a; n;KjDiÞ / PðDijQ;P;W; a; n;KÞ � PðQ;P;W; a; n;KÞ
¼ PðDijQ;P; n;KÞ � PðQ;P; n;K;W; aÞ: ð1Þ

We also assume that the WSAF depends only on the PLAF, the panmixia coefficient, the
number of strains, and their proportions within the sample, allowing the right-hand side of Eq
(1) to be further decomposed, by noting that:

PðQ;P; n;K;W; aÞ ¼ PðQjP; n;K;W; aÞ � PðP; n;K;W; aÞ: ð2Þ

While the strain proportions clearly depend on the number of strains, the remaining parame-
ters we take to be independent of this value and of each other. This means that the last right-
hand side term in Eq (2) becomes:

PðP; n;K;W; aÞ ¼ PðPÞ � PðnÞ � PðWjKÞ � PðKÞ � PðaÞ: ð3Þ

Substituting Eqs (2) and (3) into Eq (1), yields the final decomposition:

PðQ;P;W; a; n;KjDiÞ / PðDijQ;P; n;KÞ � PðQjP; n;K;W; aÞ�
PðPÞ � PðnÞ � PðWjKÞ � PðKÞ � PðaÞ: ð4Þ

We now specify each of the terms on the right-hand side above as probability distributions.
Likelihood: PðDijQ;P; n;KÞ. Within band r, the WSAF at SNP j in sample i is qijr. Sup-

posing that read counts at j are identically and independently distributed with probability qijr,
we model the probability of the data (rij, nij) as a Beta-binomial distribution, allowing us to fit
greater dispersion than expected under a pure binomial. We parameterize this distribution in
terms of qijr and ν rather than the more commonly used shape and scale parameters, α and β,
with the relationship qijr � ν = α and (1 − qijr) � ν = β. This parameterization allows us to write
the model in terms of the allele frequency that defines each band. The additional ν is a shape
parameter that serves as an over-dispersion parameter. These give a likelihood expression for a
SNP within a band as:

Pðnij; rijjr; qijr; nÞ ¼ nij þ rij
nij

� �
� Bðnij þ qijr � n; rij þ ð1� qijrÞ � nÞ

Bðqijr � n; ð1� qijrÞ � nÞ
; ð5Þ

where B is the beta function.
As any SNP could lie within any band, we employ a novel version of the finite mixture

model to capture this segregation. Given K strains, there are then 2K ways that the strains can
be assorted into non-reference and reference allele states at any given position j. A given band r
arises from Cr strains exhibiting the non-reference allele and 2

K − Cr strains exhibiting the ref-
erence allele. Supposing no population structure among the strains and neglecting linkage
among SNPs, the probability that a given SNP will be in that band is simply the probability of
drawing Cr non-reference alleles and 2

K − Cr reference alleles, conditional upon pj:

PðSNP j 2 band rjpjÞ ¼ pCrj � ð1� pjÞ2
K�Cr

¼ lrðpjÞ:

A Bayesian Model for Mixture in P. falciparumMixture within Clinical Infections

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004824 June 30, 2016 7 / 20



Consequently, the density of the mixture coefficients for each band varies across the PLAF but
such that they always sum to 1 across all bands at any SNP position j. This gives a likelihood
across all bands as:

PðDijjQ;P; n;KÞ ¼
X2K
r¼1

PðSNP j 2 band rjpjÞ � Pðnij; rijjr; qijr; nÞ

¼
X2K
r¼1

lrðpjÞ � Pðnij; rijjr; qijr; nÞ:

Following from the assumption of no linkage, SNPs will independently assort into bands. This
leads to a product-sum form for the likelihood forDi:

PðDijQ;P; n;KÞ ¼
YM
j¼1

X2K
r¼1

lrðpjÞ � Pðnij; rijjr; qijr; nÞ
" #

: ð6Þ

Band structure: PðQjP; n;K;W; aÞ. The complex mixture model contains two distinct
subcomponents that we call the simple mixture model and the panmixture model, respectively.
Both models generalize the unmixed case, though in different ways. We first characterize the
unmixed model and the two extensions before showing how these can be combined to create
the complex model. In practice, we only fit data using the full model and allow it to indicate the
number of strains, their proportions, and the degree of panmixia. We do not know the number
of strains a priori so we employ a reversible jump approach to infer the posterior distribution
on K. However, for the purpose of detailing the model, we assume that K is known.

Unmixed model. In an unmixed sample only one strain is present and the panmixture coeffi-
cient is zero (i.e. K = 1 and α = 0). Consequently, all SNPs exhibit a WSAF of either zero or one
(Fig 2(a)). There are then two bands, r = 1, 2 and qij1 = 0 and qij2 = 1.

Simple mixture model. Conditional upon K, the distinct strains, s1, � � �, sK, are combined
together in the sample with proportions,W ¼ ðw1; � � � ;wKÞ, but that α = 0. Necessarily, ∑k wk

= 1. For each SNP j, the probability of being within band r is given by λr(pj), as above. Band r is
defined by a vector vr = (1{s1 2 r}, � � �, 1{sK 2 r}), where 1{sk 2 r} is a function indicator function on
whether strain k exhibits a non-reference allele within the sample. The WSAF of band r for
SNP j (qijr) is then given by the sum of proportions for strains that exhibit a non-reference
allele:

qijr ¼
XK
k¼1

wk � 1fsk2rg: ð7Þ

Taken across all r bands, this leads to 2K bands with zero slope and corresponding proportions
(0, w1, � � �, wK, w1 + w2, w1 + w3, � � �, 1).

Panmixture model. In the simplest case, the panmixture model represents the admixture of
two distinct Pf populations when K = 1: a single strain, representing 1 − α of the within-sample
genomes, and a random sample of alleles from the local population for the remaining α
genomes. α can be considered the fraction of unexplained variation in the sample. When α = 0
the model reduces to the unmixed case (see Figs 1(b) and 2(b)). For each position j, there are
still only two bands: the higher one corresponding to the non-reference allele being present in
the dominant strain, and the lower one corresponding to its absence. However, the WSAF for
these bands varies according to pj with slope α. To resolve qijr, first consider the upper band,
r = 2. At any position j, 1 − α of the reads come from the dominant strain. The remaining
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reads, each sampled randomly from the local population, each have probability pj of being
non-reference. This leads to qij2 = (1 − α) + α � pj. For the lower band, the dominant strain con-
tributes no non-reference reads so qij1 = α � pj.

Complex mixture model. The complex model synthesizes the simple mixture and panmix-
ture models so that both K and αmay vary. In this case, at position j, α of the reads are sampled
randomly from the across the local population, contributing a fraction of α � pj non-reference
alleles. The state of the remaining reads are determined byW as in Eq (7). For band r at posi-
tion j, the WSAF is then given by:

qijr ¼ ð1� aÞ �
XK
k¼1

wk � 1fsk2rg

 !
þ a � pj: ð8Þ

There are then 2K bands with proportions (0, w1, � � �, wK, w1 + w2, w1 + w3, � � �, 1) and slope α.
Priors. For the remaining four probability distributions we place the following vague prior

distributions:

WjK � DIRICHLETð1KÞ
a � UNIFORMð0; 1Þ
n � EXPONENTIALð5Þ
K � zero-truncated POISSONð2Þ;

where 1K is a vector of K ones.

Inference
We infer the model parameters using a standard reversible jump MCMC approach [40, 41]
with one exception: we first calculate maximum-likelihood estimates (MLE) for P across all
samples and then treat these as fixed when inferring the remaining parameters [42]. This
choice is motivated by statistical expedience and computational speed: except for P, the param-
eters of the model are independent across samples and so this approximation enables the algo-
rithm to infer parameters in parallel rather than jointly. This avoids the difficulties of
performing inference on the number of strains within all samples simultaneously. Running in
parallel also increases the computational speed of the implementation by at least an order of
magnitude. Since the sample collection is large enough that the PLAF is nearly independent of
any given sample, we do not expect this approximation to significantly bias inference.

For each SNP j, the MLE derives from treating the non- and reference reads within a sample
as coming from a binomial distribution with parameter pj. This leads to:

p̂j ¼
XN

i

nij

�XN
i

ðnij þ rijÞ:

To infer the number of strains, K, for each sample, we employ a pair of complementary split/
merge reversible jump MCMCmoves. To specify the split move first not that in moving from
K! K + 1 that the transformation only affects the parameterW . If we randomly select wk, 1�
k� K, then we can split this into two components, u � wk and (1 − u) � wk, where u is drawn
from a uniform distribution. This establishes a diffeomorphism between parameters at K and
K + 1 with Jacobian wk. The proposal ratio is (K

2 − K)/K = K − 1. The acceptance ratio then is
the product of the proposal ratio, Jacobian, the likelihood ratio, and the prior likelihood. The
merge move randomly selects two states, k1 and k2, and merges them to k0 by setting w0 = wk1 +
wk2. The Jacobian and proposals are the reciprocal of those for the split move.
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Conditional on P and K, for each of the three parameters, α,W , and ν, we propose new val-
ues directly from the prior distribution. This leads to Metropolis-Hastings ratios almost solely
dependent on the ratio between the likelihood and priors for the proposed state to those for the
current. The inference scheme is implemented in set of scripts for the R computing language,
and can be found under the Academic Free License at https://github.com/jacobian1980/pfmix/
s. For a single sample with K = 5, a sufficiently long MCMC run takes approximately 10 min-
utes on a single high-performance computing core.

Results

Simulations under the model
To demonstrate the efficacy of the model and our implementation, we present a simulation
study examining the algorithm’s performance under a range of simulated data. We consider
two distinct aspects of the inference: how well the model infers the number of strains, and, con-
ditional upon that number, how well it infers the model’s other parameters. We simulate data
from the model in the following way. Conditional upon the number of SNPs (M), panmixture
coefficient (α), number of strains (K) and the sum of the read counts (C) we draw a vector of
probabilities (W) from a uniform Dirichlet distribution. We combine the values ofW in all
possible permutations to create the 2K bands and assign the PLAF for the SNPs evenly from 1/

M to 1, so that the jth SNP has PLAF j
M
. For each SNP, we first probabilistically select the band

it occupies according to Eq (6). We then simulate read counts from the likelihood (Eq 5) with
qijr per Eq (8). For all simulations, we set ν = 10. We run the simulation across the range of val-
ues forM, α, K and C given in Table 2. For each parameter set, we create 10 independent
realizations.

Number of components. Fig 3 shows the algorithm’s performance for inferring the num-
ber of components becomes more accurate with the number of SNPs and the number of reads,
with 50 SNPs and 25 read counts sufficient to reliably recover the simulated values. With more
SNPs, the requirement on read counts can be reduced to 10 with similar performance. Condi-
tional upon α, the simulations indicate that the number of SNPs is the largest determinant of
performance, and the sum of the read counts playing an important supporting role. Inference
of the number of strains is generally strong at low panmixture levels (small α values), but is
noticeably more conservative for α = 0.1.

Parameters. Fig 4 shows similar performance for inference of the strain proportions,W ,
and panmixture coefficient, α. ForW , we report the mean squared deviation. For α, we report
the absolute normalized deviation to account for relative difference from the true value. For
both parameters, we observe that the number of SNPs is the strongest determinant of accuracy,
withM = 150 ensuring moderately strong performance. Again, high αmoderately decreases
the quality of inference for the strain proportions.

Table 2. Table of simulated parameter values.C is the number of read counts whileM, K and α are as in Table 1.

Parameter Values:

M 50 150 500 2500

C 10 25 100 250

α 0.001 0.01 0.1

K 1 3

doi:10.1371/journal.pcbi.1004824.t002
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Laboratory artificial mixtures
We apply the algorithm to 18 artificial laboratory mixtures. These artificial samples were gen-
erated by taking stock of two standard Pf lines, DD2 and 7G8, and adding them together in the
fixed proportions given in S1 Table, and completing then Illumina sequencing and variant-call-
ing with using the same protocols as [27]. Samples had a median of 65 reads for the variants
considered here. Complete sequencing protocols and laboratory methods detailed in [35] (data
available at European Nucleotide Archive). Both strains have high-confidence reference
sequences. We subsample 2000 SNPs from the 23,109 SNPs available for comparison based on
non-reference WSAF. The results in S1 Table show very strong agreement between the labora-
tory and inferred mixtures. The inferred α for all samples was less than 0.001 and had Bayes
factor for non-zero α as less than 1, indicating that the samples have little unexplained mixture
observed relative to the field samples.

Clinical samples from northern Ghana
Applying the algorithm to the 168 high-quality samples from KND, we observe numbers of
strains ranging from 1 to 7, with α falling between 0 and 0.14, and a moderate correlation

Fig 3. Component inference.Maximum a posteriori (MAP) inferred number of components by number of read counts across 10 simulations, with
dotted line at the true number of components.

doi:10.1371/journal.pcbi.1004824.g003
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between K and α (Fig 5). The largest subset of samples were unmixed, with K = 1 and α< 0.01,
though the majority of samples exhibit low but noticeable levels of admixture, with K = 2, 3, 4
and 0.01� α� 0.03. A small number of samples exhibit complex mixtures, with K> 4 and α
typically greater than 0.02. These samples also exhibit the most variance in the posterior esti-
mate of K, frequently ranging from 3 to 8. To examine the necessity of the panmixia model to
capture unexplained variation in the field samples, we calculate a Bayes factor for each sample
under the two models,M0: α = 0 andM1: α 6¼ 0. Since this is a single parameter, we employ the
Savage-Dickey ratio calculation as in [43]. We find that 78 samples give factors larger than 10,
indicating strong evidence forM1, and 9 samples give factors larger than 100, indicating over-
whelming evidence forM1.

Fig 4. Performance for parameter inference. Upper row: mean squared deviation for strain frequencies by number of read counts (left) and by number
of SNPs (right). Lower row: absolute normalized deviation for panmixia coefficient by number of read counts (left) and by number of SNPs.

doi:10.1371/journal.pcbi.1004824.g004
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To visually inspect the quality of the results, we generate figures for each of the samples
showing the observed WSAF and PLAF data, the inferred model structure, and data simulated
under the inferred model following the observed PLAF. We show examples of these plots for
three typical samples in Fig 6. Nearly all samples (158/168), across all different mixture pat-
terns, show strong visual correspondence between the observed and model-simulated data.
Samples where PCR amplification was used (9 samples) exhibit no unusual features other than
low values for α relative to the remaining samples. We also observe a strong correlation
between the inferred number of components and an estimate for the inbreeding coefficient for
each sample (Fig 7) [29]. These results are consistent with the high rate of MOI previously
observed in Ghanaian clinicial samples [24, 44, 45].

Discussion
In this work we show how to infer strain mixture within Pf isolates using WGS with two
improvements over previous efforts: an additional model for unexplained variation based on a
panmixia and a reversible jump implementation that accounts for uncertainty in the underly-
ing number of strains. Simulations show that the model can perform accurate inference (MSE
< 0.05 for strain proportions) with as few as 50 SNPs and 10 read counts per SNP. Simulations
with more than 100 SNPs or at least 25 read counts give highly accurate results (MSE< 0.02).
In artificial laboratory mixtures the model provides excellent agreement with baseline mixture.

Fig 5. Ghanian sample summary. The frequency of inferred number of strains per sample (left) and and the panmixia coefficient by number of strains
(right). MAP estimates used.

doi:10.1371/journal.pcbi.1004824.g005
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Fig 6. Examples of real andmodel-simulated data. For three samples (rows), we present the observed data WSAF plotted against the PLAF (first
column), a diagram of the inferred model indicating the bands, proportions, and panmixia coefficient (second column), and data simulated under the
inferred model. Panmixia coefficient and strain proportions are the MAP values. In the second column, the model’s PLAF-varying mixture densities are
shown in grey scale, with black equal to one.

doi:10.1371/journal.pcbi.1004824.g006

A Bayesian Model for Mixture in P. falciparumMixture within Clinical Infections

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004824 June 30, 2016 14 / 20



Fig 7. Number of strains by F-statistic. Boxplot of the inbreeding coefficient (1 − Fis) for each sample grouped by the MAP number of inferred strains.

doi:10.1371/journal.pcbi.1004824.g007
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In field samples the model provides strong agreement with observed data and evidence based
on Bayes factors indicates that some unexplained variation is present in a significant fraction of
samples.

While the method works efficiently in practice, a number of possible improvements could
strengthen its statistical performance. Most immediately, creating a full Bayesian approach
rather than the parallelizing implementation here—while likely not improving the parametric
inference for individual samples—would provide the full posterior distribution across all sam-
ples. The panmixia model is one of several possible approaches to dealing with additional
within-sample variation that rigorous model comparison could reveal. The model also does
not perform haplotype phasing to resolve the sequence of the underlying strains [46–48]. The
analysis here suggests that a method for estimating haplotypes would be straight-forward for
some samples but difficult for others (say, when α is greater than 0.05). Researchers may be
particularly interested in whether, in these phased samples, particular stretches of the genome
appear more or less frequently in the dominant strains than others, indicating structures of
immunological or environmental selection. This is a natural avenue for statistical methods
development.

The model makes a number of simplifying assumptions that may be violated in practice.
The model presumes that SNPs are unlinked and consequently independent for the purpose of
calculating the likelihood. Given the high recombination rate of Pf this assumption may hold
for the majority of pairs of SNPs, but neglects correlations that appear locally (* 10 kB). How-
ever, we expect that this independence assumption serves to moderately weaken the inferential
power of the model rather than cause any type of bias since it effectively fails to include possibly
informative data. More problematic is the model’s implicit assumption of limited population
structure. In the case of the KND samples, and perhaps in much of west Africa, this assumption
appears supported [27, 49]. In other contexts, specifically southeast Asia, recent population
bottlenecks and selection suggest that this assumption will be violated [50]. The consequences
on this model inference are unknown but may be partially resolved with appropriate simula-
tion studies.

The model will work with any technology capable of typing multiple variants and where the
measurement of the fraction of non-reference variants is unbiased. It was developed for WGS
data but is not specific to the sequencing employed and should work similarly for Illumina, 454
and Pacific Bioscience read technologies. As noted in the results, we observe that the small
number of field samples where PCR amplification was used did not appear unusual other than
exhibiting relatively low α values. This is could be due to preferential amplification of the dom-
inant strains, suggesting that PCR-based approaches may obscure some aspects of natural
infections. This model is not appropriate for data from RFLP assays or DNA microarrays with-
out substantial modification.

In principle, the model can be explicitly tested against experimental mixtures more complex
than those presented above. Laboratory facilities with the capacity to store many field strains
(>100) could generate artificial samples in an experimental analog of our simulation proce-
dure. Starting with N unmixed strains at equal dilution, they could create mixtures by first fix-
ing the required sequencing volume as η, and the desired parameters for panmixia (α), number
of component strains (K), and their mixture parameters,W . For the finite mixture component,
they would then combine volumes of Z �W from the K strains. For the panmixture component,
they would then fix some large number but experimentally feasible number of strains (say 50)
and randomly sample from all of them a volume of η/50. Combining these into a final sample
and applying WGS sequencing, will yield data that we hypothesize will closely follow the inte-
grated model outlined above, with ν capturing the experimental variation. Naturally, consistent
results would indicate the sufficiency of the model but not its necessity, holding out the
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possibility of a more minimal description. These results could be further compared against
other next-generation technologies—such as single-cell sequencing—that have been deployed
to understand Pf clinical mixtures [51].

The model presents an important new tool for interrogating the biology of clinical Pf infec-
tions. The ability to measure the structure of strain mixture connects to many aspects of Pf epi-
demiology including seasonality, transmission intensity, outcrossing, and rates of gene flow. It
also presents a means for clarifying the poorly detailed structure of intra-host infection dynam-
ics, such as strain selection or density-dependent selection [52], by resolving how the model
parameters change within the course of an infection or in response to drug intervention. This
approach can serve as a means for researchers to empirically resolve these hypotheses.
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