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Abstract: Prostate cancer (PCa) is a genetically heterogeneous cancer entity that causes challenges in
pre-treatment clinical evaluation, such as the correct identification of the tumor stage. Conventional
clinical tests based on digital rectal examination, Prostate-Specific Antigen (PSA) levels, and Gleason
score still lack accuracy for stage prediction. We hypothesize that unraveling the molecular
mechanisms underlying PCa staging via integrative analysis of multi-OMICs data could significantly
improve the prediction accuracy for PCa pathological stages. We present a radiogenomic approach
comprising clinical, imaging, and two genomic (gene and miRNA expression) datasets for 298 PCa
patients. Comprehensive analysis of gene and miRNA expression profiles for two frequent PCa
stages (T2c and T3b) unraveled the molecular characteristics for each stage and the corresponding
gene regulatory interaction network that may drive tumor upstaging from T2c to T3b. Furthermore,
four biomarkers (ANPEP, mir-217, mir-592, mir-6715b) were found to distinguish between the two
PCa stages and were highly correlated (average r = ± 0.75) with corresponding aggressiveness-related
imaging features in both tumor stages. When combined with related clinical features, these biomarkers
markedly improved the prediction accuracy for the pathological stage. Our prediction model exhibits
high potential to yield clinically relevant results for characterizing PCa aggressiveness.

Keywords: prostate cancer; radiogenomics; gene expression; miRNA expression; data integration

1. Introduction

Prostate cancer (PCa) is the second most common cancer and affects millions of men every
year [1,2]. Around 16% of men are diagnosed with PCa in their lifetime in the US [3]. Due to
the complex and heterogenic nature of PCa, many cellular pathways and molecular mechanisms
underlying PCa progression and upstaging from one stage to another have not been uncovered yet.

The prognosis and determination of best treatment strategies for PCa patients depend on the correct
estimation of PCa TNM (Tumor-Node-Metastasis)-stages, based on the universal TNM tumor stage
classification, which refer to the degree by which cancer has spread inside the prostate, to the nearby
tissues such as seminal vesicles and bladder, and beyond [4]. Traditional classification approaches that
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are based on histological examination of transrectal biopsy samples and clinical parameters exhibit
important shortcomings related to tumor heterogeneity, the invasive collection of tumor tissue, and the
failure to distinguish between clinically relevant grades/stages of cancer [5]. For instance, serum
Prostate Specific Antigen (PSA) testing is limited by its low specificity and low sensitivity for the
detection of clinically significant PCa [6]. Therefore, the diagnostic power of an abnormal PSA value
alone is relatively poor [7]. An additional histological examination of a set of tissue samples (biopsies)
is therefore required to diagnose PCa and to assess the degree of PCa aggressiveness in the form of
the Gleason score. Besides the invasiveness of biopsies, PCa also exhibits spatial heterogeneity that
confounds correct assessment of tumor stage and hence often leads to understaging [8]. A digital rectal
examination (DRE) is used to identify the clinical stage, which, together with PSA level and Gleason
score, is used for the prediction of the pathological stage which is determined after radical surgery, but
may not be predicted correctly because of under-sampling of tissue by the biopsies.

The ability to predict the pathological PCa stage clinically as precisely as possible would enable
clinicians to better determine optimal treatment strategies. Furthermore, PCa patients would benefit
from avoiding the potential side effects that are associated with surgical overtreatment [9,10]. Based on
the PSA value, the Gleason score and the clinical stage, the Partin tables [11] provide clinicians with
a prediction of the pathological stage according to the UICC TNM 8 scheme [12]. The Partin tables
consider clinical stages cT1c (clinically inapparent tumor, not palpable or visible by imaging), cT2a and
cT2b/cT2c (tumor confined within prostate). cT3 (tumor extends outside the prostate) and cT4 (tumor
invades nearby organs) [13]. The Partin tables are an example of a nomogram, designed to predict
pathological outcome based on several clinical variables [14]. Other examples of PCa nomograms
are the Memorial Sloan-Kettering (MSK) nomograms (ex: the pre-radical prostatectomy) [15] and the
five-point Likert scale [16], which are employed to predict the long-term results following radical
prostatectomy, and to predict clinically significant prostate cancer, respectively. However, although
clinically useful, the prediction accuracy of these nomograms is far from perfect [17–19] and therefore,
PCa staging remains a critical challenge.

Recent advances in high-throughput Omics and imaging technologies and their applications in
precision medicine have created new avenues for better characterizing cancer stages and for detecting
molecular biomarkers for early diagnosis and prognosis [20,21]. For instance, Betroli et al. 2016
suggested a group of 29 miRNAs that could be considered as a potential panel of biomarkers in PCa
prognosis and diagnosis [22]. Other studies used either gene expression signatures or individual
biomarkers to predict PCa aggressiveness [23–29]. These studies present a prediction improvement
compared to prediction based on traditional clinical parameters such as Gleason score and PSA
level [30,31], but there is still room for improvement. This could be due to limitations in relying
on one individual data type (gene expression or miRNA expression or other data). Also, the long
follow-up time after surgery needed to observe the final endpoint such as cancer-specific mortality or
PSA recurrence is hindering the assessment of prediction quality. At the same time, imaging modalities,
especially multiparametric MRI (mpMRI), are used in the clinics for improving PCa diagnoses. For
example, Stoyanova et al., 2016 and 2017 suggested radiogenomic models for correlating mpMRI
imaging features with clinical and molecular signatures [3,32].

In this study, we performed a comprehensive integrated analysis of gene and miRNA expression
profiles for PCa patients with the two frequently reported yet highly distinctive clinical stages T2c and
T3b. We characterized the exclusively differentially expressed genes and miRNAs, and the associated
functional terms and pathways for each stage. We further identified candidate biomarkers (ANPEP,
mir-217, mir-592, mir-6715b), which markedly improved the prediction accuracy for pathological
stage, when combined with conventional clinical features. Notably, these biomarkers are highly
correlated with aggressiveness-related imaging features such as the tumor volume intensity and the
tumor texture features. Furthermore, we unraveled the potential molecular interactions underlying
PCa progression/upstaging from stage T2c to stage T3b via construction of a PCa-GRN network and
highlighted four central hub miRNAs that could conceivably drive the upstaging process between these
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two stages. This proof of principle study demonstrates a plausible association of carcinogenic gene
and miRNA expression with PCa upstaging and progression, establishes the potential of improving
the prediction accuracy of pathological stages of PCa patients via integrating clinical and molecular
features, and finally sheds light on the promise of integrating imaging with molecular and clinical data
(radiogenomics) for clinical decision-making.

2. Results and Discussion

2.1. Description of the Radiogenomic Approach

We implemented and applied a radiogenomic approach aiming at unraveling the molecular
mechanisms underlying PCa aggressiveness and upstaging and utilizing the clinical data together
with imaging and genomic data to improve the accuracy of predicting the pathological stage. As a
case study, we directed our analysis to the two frequent yet highly distinctive PCa stages T2c and
T3b. We processed clinical data (age, PSA level, Gleason score) and two types of transcriptomic
data (gene and miRNA expression data, from the TCGA archive) for 298 primary PCa tumor cases
(T2c and T3b) and 52 healthy cases. The clinical and pathological characteristics of the PCa tumor
cohort are listed in Table 1. For revealing the functional characteristics of both stages, we identified
stage-specific genes and miRNAs. This was performed in two steps: first, we characterized the
differentially expressed genes and miRNAs between the samples from stages T2c and T3b and the
52 healthy samples. Second, we excluded those generic PCa-related genes and miRNAs, which are
differentially expressed between all the 496 available tumor samples and the 52 available healthy
samples. Imaging data were available only for 14 matching cases for both stages (6 images for T2c
and 8 for T3b) on the TCIA archive. Consequently, the available imaging data were not sufficient for
training the prediction model. Therefore, we used it for assessing the identified molecular biomarkers
via correlation analysis. Figure 1 illustrates our integrative approach for the joint analysis of clinical,
genomic, and imaging data of PCa patients. It starts with the separate pre-processing of each dataset,
followed by unraveling the molecular and functional characteristics (e.g., stage-specific genes and
miRNAs, GO functional terms, and KEGG pathways) for each stage. Next, we constructed the gene
regulatory network (GRN) that likely drives tumor upstaging from the T2c stage to the T3b stage,
and consequently identifies potential gene and miRNA biomarkers from the genomic data, based on a
strict differential expression criterion. The expression signatures of these biomarkers were correlated
with aggressiveness-related imaging features for both stages T2c and T3b. Finally, the expression
profiles of the identified biomarkers were combined with the clinical data to train classifiers and predict
the pathological stage.
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Figure 1. A schematic diagram for the radiogenomic approach involving clinical, genomic, and imaging
datasets for prostate cancer (PCa).
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Table 1. The clinical characteristics of the analyzed prostate cancer (PCa) cohort.

Pathological
STAGE

Count
Age Median
(Min–Max)

PSA-Value Median
(Min–Max)

Gleason Score
Count

Clinical Stage
Count Biochemical

Recurrence
Count Ethnicity Count

Primary + Secondary Stage

T2c 164 59 (41–77) 0.1 (0.01–14.69)

3 + 3 25 T1b 0 Yes 6 Black or African
American 3

3 + 4 84 T1c 84 No 131 White 58

4 + 3 31 T2 4

Not available 27 Not available 103
≥8 24

T2a 16
T2b 10
T2c 23
T3a 2
T3b 0
T4 0

Not available 25

T3b 134 62 (46–78) 0.1 (0.01–37.36)

3 + 3 1 T1b 2 Yes 29 White 27

3 + 4 8 T1c 23 No 94

Not available 107

4 + 3 21 T2 6

Not available 11
≥8 104

T2a 14
T2b 12
T2c 16
T3a 14
T3b 16
T4 1

Not available 30
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2.2. Functional Characteristics of T2c and T3b Stages

Differential expression (DE) analysis resulted in 127 genes and 5 miRNAs that characterize (i.e.,
that are specifically differentially expressed in) the T2c stage. This was done by comparing the T2c
samples to the healthy samples and selecting the DE genes/miRNAs which were not identified in the
comparison of the T3b samples to the healthy samples, nor identified in the comparison of all tumor
samples to all healthy samples, see Figure 2 (genes) and Figure S1 (miRNAs). Similarly, 450 genes and
21 miRNAs were found to be specifically DE for the T3b stage samples, see Figure 3 (miRNAs) and
Figure S2 (genes). The functional characteristics of each tumor stage were backed up by inspecting
the associated GO biological processes and KEGG pathways via conducting a functional enrichment
analysis. The functional analyses of stage-specific genes and miRNAs revealed diverse functional GO
terms and KEGG pathways for each stage. We thus listed the significant pathways that were enriched
in the specific genes for stage T2c and stage T3b, which may be of relevance to the etiology of the
corresponding PCa stage, in Table 2. Moreover, Figure 2c visualizes the generic GO terms enriched
within the T2c-specific genes, while in Table S1 the top 20 significant GO terms and the underlying gene
sets are listed. Matching with the “growth” theme featured by the GO terms, a frequently occurring
gene family in these gene sets is the FGF or fibroblast growth factor gene family, which is known to be
associated with prostate tumorigenesis [33], concordant with the T2c stage. For the T3b stage, specific
genes were involved in a much wider spectrum of GO terms, see Table S2. For instance, the gene
ACTG2, which is associated with prostatic stromal cells [34], was involved in seven significant GO
terms. Similarly, the genes ETV1 and SRD5A2 were involved in five and four significant GO terms;
they were found to be over-expressed in primary versus metastatic PCa, concordant with the T3b stage,
and associated with an increased prostate cancer risk [35], respectively. A similar analysis was applied
to the stage-specific miRNAs (21 for T3b and 5 for T2c) as shown in Figure 3 and Figure S1. Markedly
more miRNAs and related PCa-pathways (such as the PI3k-Akt pathway [36] and prostatic neoplasms)
are implicated in advanced PCa stages (Figure 3) than in earlier stages (Figure S1).

Table 2. Potential KEGG pathways featuring the molecular mechanisms of the two prostate cancer
(PCa) stages T2c and T3b.

Enriched Pathways Which Characterize the T2c Stage but Not the T3b Stage

Pathways Involved Genes Adj-Pval

hsa05218: Melanoma FGF6, FGF8, FGF23, FGF3 3.00 × 10−3

hsa04010: MAPK signaling pathway FGF6, DUSP4, FGF8, FGF23, FGF3, PLA2G4D 3.00 × 10−3

hsa04810: Regulation of actin cytoskeleton FGF6, FGF8, FGF23, MYLPF, FGF3 9.00 × 10−3

hsa04151: PI3K-Akt signaling pathway FGF6, FGF8, COL6A5, FGF23, FGF3, EIF4E1B 1.00 × 10−2

hsa04014: Ras signaling pathway FGF6, FGF8, FGF23, FGF3, PLA2G4D 1.1 × 10−2

hsa04015: Rap1 signaling pathway FGF6, FGF8, FGF23, FGF3 4.7 × 10−2

Enriched Pathways Which Characterize the T3b Stage But Not the T2c Stage

Pathways Involved Genes Adj-Pval

hsa04080: Neuroactive ligand-receptor interaction
GABRD, MCHR1, GABRA2, GABRA3, GABRB2, ADCYAP1R1, GRIA3, NTSR2,

GHRHR, HRH3, PRLR, GALR1, HRH2, P2RX2, NPFFR1,
CHRNA1, ADRA1D, GABRQ

2.23 × 10−5

hsa05033: Nicotine addiction GABRD, GABRA2, GABRB2, GABRA3, GRIA3, GABRQ 9.70 × 10−4

hsa04972: Pancreatic secretion KCNMA1, CD38, ATP2B4, PLA2G2A, PLA2G2C, CPA1, ATP1A2, PRKCB 2.09 × 10−3

hsa05143: African trypanosomiasis IL6, HBA2, HBB, SELE, PRKCB 3.58 × 10−3

hsa04727: GABAergic synapse GABRD, PLCL1, GABRA2, GABRB2, GABRA3, GABRQ, PRKCB 5.94 × 10−3

hsa04510: Focal adhesion CAV3, CAV1, RASGRF1, PAK3, RAC3, ACTN2, ITGB3, FLNC, COL4A6, PRKCB, FN1 6.53 × 10−3

hsa04723: Retrograde endocannabinoid signaling GABRD, GABRA2, GABRB2, GABRA3, GRIA3, GABRQ, PRKCB 1.34 × 10−2

hsa05144: Malaria IL6, CXCL8, HBA2, HBB, SELE 1.46 × 10−2

hsa05146: Amoebiasis GNAL, IL6, CXCL8, ACTN2, COL4A6, PRKCB, FN1 1.67 × 10−2

hsa04020: Calcium signaling pathway GNAL, CD38, ATP2B4, ERBB4, HRH2, PLN, P2RX2, ADRA1D, PRKCB 2.27 × 10−2

hsa04970: Salivary secretion KCNMA1, CD38, ATP2B4, ATP1A2, ADRA1D, PRKCB 2.53 × 10−2

hsa04270: Vascular smooth muscle contraction KCNMA1, ACTG2, PLA2G2A, PLA2G2C, ADRA1D, KCNMB1, PRKCB 2.77 × 10−2

hsa05032: Morphine addiction GABRD, GABRA2, GABRB2, GABRA3, GABRQ, PRKCB 3.14 × 10−2

hsa05205: Proteoglycans in cancer CAV3, MIR10B, WNT16, CAV1, ERBB4, ITGB3, FLNC, PRKCB, FN1 4.02 × 10−2

hsa05412: Arrhythmogenic right ventricular
cardiomyopathy (ARVC) SGCG, DMD, ACTN2, ITGB3, CTNNA3 4.85 × 10−2
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Figure 2. Functional characteristics of genes specific to the T2c stage in prostate cancer (PCa). (a) The
heatmap for the top 200 differentially expressed genes (DEG) between T2c tumor samples and healthy
samples. Blue denotes down-regulation whereas red-yellow denotes up-regulation. The dendrograms
on the upper and left sides show the hierarchical clustering tree of samples and genes, respectively. (b)
A Venn diagram of the overlap between the DEGs identified for: T2c stage versus healthy samples,
T3b stage versus healthy samples, and all tumor samples versus healthy samples. (c) A scatter plot
shows the visualization of the top enriched generic GO terms of the 127 genes, that are exclusively
deregulated in the T2c tumor samples, based on the GO semantic similarities. GO term node colors
indicate the p-values for the enrichment of the GO terms. These generic GO terms represent implicitly
their subterms, which are not visualized in the plot, but listed in Supplementary Table S1. The scatter
plot was generated using the web tool REVIGO [37]. The original data for Figure 2 was shown in
Supplementary Materials.

2.3. Construction of the Prostate Cancer (PCa-GRN) Network

Next we performed differential expression analysis of the gene and miRNA expression data
between the two stages. This yielded 125 differentially expressed (DE) genes and 19 DE miRNAs.
We constructed a GRN network that combines transcriptional and post-transcriptional regulatory
interactions between the DE genes and DE miRNAs (see Methods). We refer to this network as the
PCa-GRN network although it represents the progression between two PCa stages only. The PCa-GRN
network comprises nine miRNAs regulating 30 target genes, see Figure 4. This PCa-GRN network
indicates how miRNAs are playing a critical role in the complex regulation system underlying PCa
progression and upstaging as exemplified here from T2c to T3b. This is concordant with the results of
the TCGA consortium analysis [1] where they found various miRNA expression patterns between
different categories of PCa tumors. In order to quantify the mechanistic impact of these miRNAs and
to characterize the central hub nodes that contribute essentially to the overall regulation, we computed
the node degree centrality parameters and ranked the nodes according to their degrees. We identified
4 central hub miRNAs (mir-592, mir-587, mir-147, mir-661) that dominate the PCa-GRN network and
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maintain the interactions between these miRNAs and their neighboring genes. Hence, they could
act as driver miRNAs and genetic regulators for PCa progression across the two stages. Remarkably,
the aberrant expression patterns of the 4 candidate driver miRNAs have been connected to pathogenesis
of various cancer types such as breast carcinoma and colorectal cancer via regulating cancer–specific
pathways such as AKT/mTOR signaling pathways [38,39]. However, their molecular interactions with
PCa-specific deregulated genes, and their regulation mechanisms within PCa progression were not
reported before. This could highlight new insights into these candidate driver miRNAs as potential
targets for new drugs delaying PCa progression.

Figure 3. Functional characteristics of miRNAs specific to the T3b stage in prostate cancer (PCa).
(a) The heatmap for the top 100 differentially expressed (DE) miRNAs between T3b tumor samples
and healthy samples. Blue denotes down-regulation whereas red-yellow denotes up-regulation. The
dendrograms on the upper and left sides show the hierarchical clustering tree of samples and miRNAs,
respectively. (b) A Venn diagram of the overlap between the DE miRNAs identified for: T2c versus
healthy samples, T3b stage versus healthy samples, and all tumor samples versus healthy samples. (c)
A table lists the enriched functional terms, enriched diseases, and tissue specificity of the 21 miRNAs
that are exclusively deregulated in the T3b tumor samples. The original data for Figure 3 was shown in
Supplementary Materials.

2.4. Functional Homogeneity within the Prostate Cancer (PCa-GRN) Network

Furthermore, we evaluated the biological evidence for the PCa-GRN network in more depth
to better assess the functional integrity of the biological processes underlying the etiology of PCa
progression and upstaging. We estimated the functional homogeneity of the PCa-GRN genes and the
target genes of the nine miRNAs by calculating the functional similarity scores between all gene pairs
and comparing the resulting distribution to the similarity score distribution of randomly selected gene
pairs from the PCa-GRN network. Interestingly, the PCa-GRN genes have significantly more cellular
functional homogeneity than randomly selected ones (p-values < 1.2 × 10−4, Kolmogorov–Smirnov
test), see Figure 5. Therefore, the nine miRNAs, and their 30 target genes comprising the PCa-GRN
network could highlight new insights into a miRNA-gene based network that is representing the
molecular interactions and dysregulation mechanisms underlying PCa progression from the T2c stage
to the T3b stage.
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Figure 5. Functional homogeneity of the constructed prostate cancer (PCa-GRN) network. The plot
depicts the cumulative distribution of GO functional semantic scores of gene pairs of the PCa-GRN
genes (red) versus randomly selected genes (black). The p-value was calculated using the
Kolmogorov–Smirnov test.

2.5. Biomarker Identification

To identify distinguishing biomarkers of genes and miRNAs between the two PCa stages,
we restrained the FDR cutoff to 0.001 and increased the fold change threshold to 2.5-fold. Intriguingly,
we identified the DE gene ANPEP and the DE miRNAs mir-217, mir-592, mir-6715b, that survived the
above criteria. The gene ANPEP and the miRNA mir-6175b were downregulated in the T3b tumor
samples while the miRNAs mir-217 and mir-592 were downregulated in the T2c tumor samples,
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see Figure 6a. PCA analysis of the normalized expression profiles for these four biomarkers revealed
reasonable separation between the T2c and the T3b samples, see Figure 6b. Interestingly, many studies
reported the aberrant expression patterns of the ANPEP gene in PCa cells [40,41] and furthermore
ANPEP was suggested to be a potential prognostic biomarker for PCa patients [42]. Many studies
reported the implications of mir-217, mir-592, mir-6715b either as a potential therapeutics to enhance
chemosensitivity response in PCa [43], or in promoting proliferation of PCa cancer cells [44], or in
the pathogenesis of other cancer types [45], respectively. However, their potential as molecular
biomarkers in clinical outcomes has not been outlined before. Hence, miRNAs mir-217, mir-592,
and mir-6715b are novel candidate biopsy-derived diagnostic biomarkers for PCa stages as will be
demonstrated in the next section. To unravel the deregulation mechanisms of these four potential
biomarkers, we investigated their association (see Methods) with other features from DNA methylation,
somatic mutations, and protein expression levels of PCa samples, see Figures S3–S5. For instance,
the expression of ANPEP was inversely proportional to the hypermethylation of many differentially
methylated regions (DMRs) and CpG islands (Figure S3c). This may explain the mechanisms of ANPEP
downregulation in advanced stages of PCa. Further research work is warranted to comprehensively
analyze the implications of such observations in PCa progression and diagnosis.
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Figure 6. The molecular biomarkers and their correlation with the corresponding imaging features.
(a) The normalized expression levels of the four molecular (“genomic”) biomarkers in tumor stages T2c
and T3b. (b) Principal Component analysis (PCA) clustering of tumor samples T2c and T3b based on
the normalized expression levels of the four biomarkers. (c) Screenshots from the Osirix software [46]
for fusion of MRI delineated prostate regions of interests. We outline the prostate volume in coronal
axis T2-weighted fast MRI images for both T2c and T3b samples. (d) The correlation matrix between
the normalized expression levels of the four biomarkers and the extracted aggressiveness-related
radiographic features C2 and C3. The significant correlations (FDR < 0.05) are marked with (*).
C2 category represents the histogram of tumor volume intensity and basic statistical metrics such
as mean, median, standard deviation, and kurtosis. The C3 feature category denotes the texture
analysis of the tumor volume and includes Gray-Level Co-occurrence Matrix (GLCM) features such
as contrast, energy, and homogeneity metrics [3]. The original data for Figure 6 was shown in
Supplementary Materials.
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2.6. Correlation Analysis with Aggressiveness-Related Imaging Features

To assess the biological relevance of our candidate biomarkers with respect to PCa progression
and upstaging, we investigated their correlation to aggressiveness-related imaging features extracted
from corresponding MRI images of PCa patients with the two stages under investigation (T2c and T3b),
see Methods. We extracted the feature classes C2 and C3 which are related to PCa aggressiveness and
upstaging as described by Stoyanova et al., 2016 [3]. The C2 class describes the distribution of intensities
of tumor volume intensity and basic statistical metrics such as mean, median, standard deviation, and
kurtosis. The C3 feature class refers to the texture analysis of the tumor volume including the Haralick
GLCM features: contrast, energy, homogeneity, and entropy metrics, see Figure 6c. We computed the
Pearson correlation between the expression profiles of our candidate biomarkers and the C2 and C3
imaging features for both stage groups (T2c and T3b). Figure 6d shows relatively high positive and
negative correlation between the aggressiveness–related features and the expression signatures of the
four biomarkers, especially ANPEP (max r = 0.97 and min p-value = 0.032) in T2c patients, and max
r = 0.94 and min p-value = 0.025 in T3b patients. Significant correlations are marked by an asterisk. It is
also noteworthy that the C3 features exhibited significant differential correlation between T2c patients
T3b patients. For the T3b patient group, the C3 features (except the entropy) were found to be much
better than the C2 features in correlating with the biomarker expression signatures. This also matches
the findings about the plausible diagnostic power of the C3 feature class especially in advanced PCa
stages [47].

2.7. Assessing the Predictive Power of the Identified Biomarkers

We randomly partitioned the data into two stratified sample sets, the training data (70%) and the
test data (30%) and performed the biomarker identification again only on the training dataset (the 70%
of the data). We repeated the aforementioned procedure for multiple runs (10 times), see Methods.
In fact, the set of biomarkers did not change and we explain this invariance by the strict selection
criteria (2.5 fold and FDR of 0.001) we used for identifying them, and we also note their power in
separating the two classes as shown by the PCA analysis in Figure 6b. For each run, we performed the
training and testing procedure, the results of which are described next.

In order to evaluate our candidate biomarkers as diagnostic features for predicting the
corresponding pathological stages, we used three machine-learning methods (Naïve Bayes, Support
Vector Machines (SVM) and Random Forest) on three feature sets: (1) the clinical features only (age,
PSA level, and Gleason score), (2) the molecular features only (the expression profiles of the candidate
biomarkers ANPEP, mir-217, mir-592, mir-6715b), and (3) the combined set (all 7 features). We used
three machine-learning methods to ensure the reliability of the prediction efficacy of all used features.
Theoretical backgrounds about the three used machine-learning methods and the parameters used
for training and testing processes are described in full details in the Supplementary files. Figure 7
exemplifies the prediction accuracy by receiver operating characteristic (ROC) curves for each method
on the three feature sets described above. Prediction accuracy was evaluated using the area under the
ROC curve (AUC), which measures the ability of a method (based on the respective set of features) to
differentiate between the pathological stages. All prediction results are tabulated in Supplementary
Table S8.

The results revealed that the predictions using the molecular features only (AUC = 0.844,
AUC = 0.812 and AUC = 0.848 for SVM, Random Forest and Naïve Bayes, respectively, see
Supplementary Table S8) show a slightly lower or equal accuracy, when compared to the predictions
using clinical features only (AUC = 0.872, AUC = 0.814, and AUC = 0.841 for SVM, Random Forest,
and Naïve Bayes, respectively). In line with our findings, Shen et al. were able to differentiate PCa
patients with different degrees of aggressiveness using a different set of four miRNA biomarkers
(mir-20a, mir-21, mir-221, and mir-145) with an AUC prediction accuracy of 0.82 [48]. It might be
also worthwhile to investigate the predictive power of other molecular features (e.g., differentially
methylated regions (DMRs)) identified from other OMICs datasets, which were associated with the
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biomarkers we found, since these biomarkers yielded prediction accuracies close to the ones based
on clinical features, in predicting pathological stage. Recent studies have adopted other models of
machine-learning such as Fuzzy logic [19] and neural networks [49] for predicting PCa stages based
on clinical features only and reported AUC values (0.82 and 0.7, respectively) comparable to those
computed by our models using the clinical features as well.
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Figure 7. Prediction performance using the clinical features, the genomic features, and the combined
feature set, for predicting the pathological stage (T2c versus T3b). The shown receiver operating
characteristic (ROC) curves are representatives of the ROC curves obtained from the three prediction
methods, selected because their area under the curve (AUC) value is closest to the average AUC value
of the respective method over all 10 runs, see Supplementary Table S8.

Interestingly, predicting the pathological stages based on the combined set of both clinical and
molecular features returned the largest AUC for all the three methods (AUC = ~0.9 for SVM, Random
Forest and Naïve Bayes), thereby outperforming the prediction models based on either clinical or
molecular feature sets separately. Hence, this highlights the potential usefulness of combining features
from heterogeneous datasets to achieve better prognosis for PCa patients.
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3. Materials and Methods

3.1. Datasets

RNA-Seq, miRNA-Seq, and clinical data for normal and prostate tumor samples were
downloaded from the GDC data portal (https://portal.gdc.cancer.gov), namely the TCGA-PRAD
project. For consistency, we only considered matching samples, which were common between the
two datasets (RNA-Seq, and miRNA-Seq). Each TCGA sample refers to a tissue biopsy taken from a
unique individual. This resulted in a total of 546 samples composed of 52 healthy control samples and
496 tumor samples with different tumor stages. The matching imaging traits for the examined tumor
stages (T2c, T3b) were obtained from the Cancer Imaging Archive (TCIA) [50], i.e., again from the
TCGA-PRAD project [51]. The datasets can be downloaded using the URLs listed in Supplementary
Table S3.

3.2. Data Pre-Processing

3.2.1. Genomic Data

The gene and miRNA expression datasets were obtained in raw read counts and were consequently
normalized, corrected for library size, and log2-transformed using the Bioconductor [52] package
DESeq2 v.1.12.4 [53] that is part of the statistical programming language R [54].

3.2.2. Clinical Data

The clinical data were also normalized using quantile normalization [55] to remove the outliers
that might affect the efficacy of the prediction process.

3.2.3. Imaging Data

The MRI imaging data for the examined two stages were subjected to median filters for noise
reduction and further segmented using the NIH ImageJ software [56] to determine the region of interest
(ROI) delineating the tumor. Next, the imaging feature categories C2 and C3, which are related to the
aggressiveness and upstaging of PCa as described by Stoyanova et al. 2016 [3], were extracted. Briefly,
C2 category represents the histogram of tumor volume intensity and basic statistical metrics such as
mean, median, standard deviation, and kurtosis. The C3 feature category concerns the texture analysis
of the tumor volume and includes Gray-Level Co-occurrence Matrix (GLCM) features such as contrast,
energy, and homogeneity metrics.

3.3. Differential Expression and Association Analysis

The DESeq2 Bioconductor package [53] was used for the differential expression analysis for both
gene and miRNA expression data. Namely, genes/miRNAs that exhibited 1.5-fold changes and False
Discovery Rate (FDR) cutoff of 0.05 were classified as differentially expressed (DE) genes/miRNAs.
The potentially distinctive biomarkers were identified as those DE genes/miRNAs, which showed
at least 2.5 -fold changes and FDR < 0.001. The association of the identified biomarkers with
methylation, protein levels, and somatic mutation data was assessed using the Spearman correlation
(cutoff threshold = 0.65) and the F-statistic measure (FDR < 0.05). FDR was controlled using the
Benjamini–Hochberg [57] adjustment.

3.4. Construction of Prostate-Specific GRN Network (PRAD-GRN)

The molecular interactions between the differentially expressed (DE) genes and the DE miRNAs
were compiled from the regulatory databases of the TFmiR webserver [58]. We considered only
interactions that are supported by experimental evidence. Next, we reduced the entire network to a
subnetwork whose target nodes or regulator nodes are known to be associated with prostate cancer
in order to contextualize the network towards prostate cancer, generating the PCa-GRN. To this

https://portal.gdc.cancer.gov
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end, the human miRNA disease database (HMDD) [59] as well as DisGeNET [60,61] (a database for
gene-disease association) were used as sources for prostate cancer-associated miRNAs and genes,
respectively. Key driver genes/miRNAs were identified by determining the highly central nodes (hub
nodes) via applying the degree centrality measure on the PCa-GRN. The PCa-GRN network was
visualized with Cytoscape V3.3.0 [62].

3.5. Assessment of the Constructed Prostate Cancer (PCa-GRN) Network

3.5.1. Functional Homogeneity within the PCa-GRN Genes (Semantic Validation)

In order to assess the biological relevance of the identified molecular interactions to PCa phenotype
(here represented by tumor progression), we used the GoSemSim R package [63] to estimate semantic
similarity scores according to the Gene Ontology (GO) annotations. Statistical significance was
computed by comparing the similarity scores of the PCa-GRN genes to the similarity scores of
randomly selected genes (using the same number of genes). We repeated the permutation procedure
100 times and adopted the Kolmogorov–Smirnov test to check whether the similarity scores of PCa-GRN
gene pairs were statistically higher than the scores of randomly selected pairs.

3.5.2. Enrichment Analysis of Genes and miRNAs

The functional annotation tool DAVID [64] was used to identify significantly enriched functional
categories in the gene sets. Enrichment analysis of the miRNA sets was performed using TAM [65].
For this, we determined which functional categories were annotated to at least 2 genes/miRNAs and
at the same time are significantly overrepresented in the gene/miRNA study set, as previously done
in [66]. For both gene and miRNA enrichment analysis, Fisher’s Exact test was employed followed by
the Benjamini–Hochberg [57] adjustment for controlling the FDR, with a cutoff value of 0.05.

3.6. Correlation Analysis

The pairwise correlations between the expression signatures of the identified biomarkers and
the extracted aggressiveness-related imaging features was performed using Pearson correlation.
The significance was computed using the R method cor.test followed by the Benjamini–Hochberg
adjustment for controlling the false discovery rate (FDR), with a cutoff value of 0.05.

3.7. Prediction Models

We performed multiple runs (10×) with random data partitions (70% of the data for training and
30% for testing). The sampling of all partitions was stratified, so that the distribution of the two classes
is proportional to the original distribution in the whole dataset. The molecular biomarkers were then
identified by differential expression, see “Differential Expression and Association Analysis”, above,
with the strict thresholds of at least 2.5-fold changes and FDR < 0.001. The molecular biomarkers
and/or the clinical features already available, were then used to train three machine-learning methods,
Naïve Bayes, Support-Vector Machine (SVM) and Random Forest. Model training and data partitioning
were performed using the R caret package [67] with the default parameter settings for all classifiers.
Besides the method’s own default parameter selection in the training step, no additional parameter
tuning was performed.

This whole learning process was performed for every method after removing the NA entries from
all datasets. Classifiers were trained based on three datasets; the clinical features only, the molecular
features only and finally the combined set of both clinical and molecular features, resulting in nine
classifiers that were trained and tested. The AUC (Area Under Curve) characteristic was used as
the evaluation metric for the prediction results. We used the pROC package [68] for ROC (Receiver
operating characteristic) analysis and for computing the averaging step over the runs to obtain one
value as the average AUC for the nine classifiers. The learning and prediction parameters are described
in sufficient details in Supplementary Tables S4–S6.
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4. Conclusions

The current study presented an integrated regulatory analysis of gene and miRNA expression
data for PCa samples to unravel molecular features, related GO functional terms, and pathways
underlying PCa progression, and to identify potential biomarkers that can distinguish different PCa
stages. The biomarkers we found belong to genes and miRNAs that play critical roles in PCa and other
cancer types and showed high correlation with aggressiveness-related imaging features extracted from
mp-MRI images. When combined with the traditional clinical features and using the power of machine
learning, these biomarkers were able to improve the prediction accuracy of the corresponding PCa
pathological stages.

To this end, future research work is demanded for predicting the best treatment strategy, such as
chemotherapy, radiotherapy, or surgery. Other future research includes the development of similar
integrative approaches such as those based on patient similarity networks that better take into
consideration the molecular heterogeneity of PCa. This is actually one major limitation of our approach.
Another limitation is the insufficient number of imaging samples that prevented us from combining
the imaging features together with clinical and molecular features for enhancing the prediction of
the PCa stages. If more imaging samples were provided for the different PCa stages, then such an
analysis would have been easily possible. Further joint analysis of the associated molecular features
(from DNA methylation, other non-coding RNAs, and somatic mutations) with the four identified
biomarkers, as well as wet- lab experiments may enable to characterize more clinically relevant OMICs
features that can potentially be used for diagnosis and prognosis of PCa. Finally, our approach can be
applied to other cancer types or complex diseases with progressive stages and might be also extended
for studying cellular developmental stages as well.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/9/1293/s1,
Figure S1: Functional characteristics of the miRNAs specific to T2c stage in PCa. Figure S2: Functional
characteristics of genes specific to the T3b stage in PCa. Figure S3: Association analysis of the ANPEB gene
biomarker with other PCa OMICs datasets. Table S1: GO Functional Enrichment of the 127 genes, which are
exclusively dysregulated in the T2c stage and not in the T3b stage. The table lists the top 20 significant GO
Biological process (BP) terms. Table S2: GO Functional Enrichment of the 450 genes, which are exclusively
dysregulated in the T3b stage and not in the T2c stage. The table lists the top 20 significant GO Biological process
(BP) terms. Table S3: the download URLs of the analyzed data sets in this study. Table S4: Parameters of the
random forest models constructed by the caret train method for the three different input datasets. Table S5:
Parameters of naive bayes models constructed by the caret train method for the three different input datasets.
Table S6: Parameters of SVM models constructed by the caret train method for the three different input datasets.
Table S7: Overview of the three datasets used to train the prediction model. Table S8: the AUC performance of the
different methods and datasets splitted into the 10 runs.
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