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Abstract

We have developed a robust RNA sequencing method for generating complete de novo assemblies with intra-host
variant calls of Lassa and Ebola virus genomes in clinical and biological samples. Our method uses targeted RNase
H-based digestion to remove contaminating poly(rA) carrier and ribosomal RNA. This depletion step improves both the
quality of data and quantity of informative reads in unbiased total RNA sequencing libraries. We have also developed a
hybrid-selection protocol to further enrich the viral content of sequencing libraries. These protocols have enabled rapid
deep sequencing of both Lassa and Ebola virus and are broadly applicable to other viral genomics studies.
Background
Lassa virus (LASV) and Ebola virus (EBOV) belong to a
class of RNA viruses that cause hemorrhagic fevers with
high case fatality rates, have limited or no treatment op-
tions, and have the potential for extensive transmission
[1-6]. The need for methods to study these viruses has
never been greater. LASV is endemic to many parts of
West Africa [1], and EBOV is currently spreading in
Guinea, Liberia, Sierra Leone, Senegal, and Nigeria [7].
The current EBOV outbreak has caused approximately
3,000 deaths to date, and is now the largest outbreak, the
first in West Africa, and the first to affect urban areas.
LASV and EBOV are both single-stranded RNA vi-

ruses. LASV, a member of the Arenaviridae family, is an
ambisense RNA virus whose genome consists of an L
and an S segment of 7.4 kb and 3.4 kb in length, respect-
ively, encoding two proteins on each segment [8]. LASV
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is transmitted by the multimammate rodent Mastomys
natalensis, its natural reservoir, which is asymptomati-
cally infected with the virus [9-11]. EBOV belongs to the
Filoviridae family of single-stranded negative-sense RNA
viruses. Its genome is approximately 19 kb in length and
it encodes seven proteins [12,13].
LASV and EBOV genomics can inform surveillance,

diagnostic, and therapeutic developments, yet few full
length genomes have been published [14-16]. The LASV
and EBOV whole-genome sequences published prior to
our study were sequenced using selective amplification of
viral sequences by RT-PCR. Virus-specific primers are
however biased towards known strains and variants and do
not capture divergent or unknown viruses in the sample.
Massively parallel RNA sequencing (RNA-seq) based

on randomly primed cDNA synthesis has the potential
to transform LASV and EBOV genomics, providing a
comprehensive, largely unbiased qualitative and quanti-
tative view of all RNA in a sample [17-19]. It therefore
enables detection and assembly of genomes from highly
divergent lineages, unrelated co-infectants, or even novel
viruses, making it possible to study viruses that are re-
sponsible for fevers of unknown origin and other dis-
eases without known causative infectious agent [20-22].
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As a bonus, total RNA-seq can also provide an expres-
sion profile of the infected host simultaneously with viral
sequence generation.
Sequencing viral genomes directly from clinical and

biological samples, however, holds special challenges.
Samples may contain very little viral RNA and are heav-
ily contaminated with human RNA; in some instances,
the nucleic acid is severely degraded. While poor sample
quality affects viral sequencing in general, it is exacer-
bated for EBOV and LASV. Here, sample quality is often
compromised by cold chain gaps in remote rural areas
in hot climates and by complications with handling, con-
tainment and biological inactivation at the highest bio-
safety level (US Biosafety Level 4 or equivalent).
The comprehensive and unbiased nature of total RNA-

seq also presents a challenge in samples where non-viral
RNA makes up the vast majority of material being se-
quenced. As with most RNA-seq approaches, unwanted
RNA contaminants waste many sequencing reads and
negatively impact sequencing performance. The largest
single component of RNA in clinical samples is human
RNA, particularly ribosomal RNA (rRNA). In addition, a
prevalent artificial contaminant in RNA preparations is
poly(rA) carrier RNA, present in commonly used com-
mercial viral RNA extraction kits (for example, those from
QIAGEN and Ambion). Although non-nucleic-acid car-
riers such as linear polyacrylamide are suitable substitutes,
many existing sample collections already contain poly(rA).
Here we describe the development of efficient and

cost-effective methods for sequencing of EBOV and
LASV that are based on unbiased total RNA-seq. These
techniques have already been used to rapidly generate
large catalogs of LASV and EBOV genomes ([23],
Andersen et al., in preparation), including many from
the 2014 EBOV outbreak, and can be broadly applied to
a wide range of RNA viruses.

Results
Challenges of sequencing LASV samples
We initially set out to understand the major issues that
arise when sequencing LASV from clinical and biological
samples. To do so we prepared 50 RNA-seq libraries dir-
ectly from human patient andMastomys natalensis samples.
We performed randomly-primed reverse transcription,
followed by second-strand synthesis and ligation of
Illumina adapters to the cDNA (see Materials and
methods). Two major challenges emerged in our analysis.
First, we discovered that RNA samples extracted using

commercial kits containing poly(rA) RNA carrier re-
sulted in high-molecular-weight byproducts (Additional
file 1: Figure S1A). To confirm that these byproducts
came from carrier RNA, we added poly(rA) to RNA ex-
tracted without carrier and compared the resulting li-
brary to a poly(rA)-free control library from the same
sample; the high-molecular-weight products were ob-
served only when carrier RNA was added (Figure 1A).
Poly(rA) also negatively impacted the raw Illumina se-
quencing data. As shown in Figure 1B, the median base
quality dropped significantly about halfway through the
forward and reverse 150-base reads, presumably due to
poly(A) reads interfering with calibration of base-calling
on the flow cell, while a poly(rA)-free library stayed well
above a quality score of 25 until the end of the run.
Second, after sequencing the libraries to >20 million

Illumina reads per library, we found that only a small frac-
tion (<0.1%) aligned to the LASV-Josiah reference genome
[24] in all but two of the blood isolates (Additional file 1:
Figure S1B). A large fraction of reads aligned to the hu-
man genome, approximately 75% of them to rRNA. There
is also a population of libraries in which host rRNA was
low (<40%). In these libraries, a majority of reads did not
map to LASV or the host genome. These ‘other’ reads
consisted of either low-quality or contaminating reads
from bacterial genomes such as Escherichia coli, including
sequences that were likely introduced during library con-
struction from contaminating nucleic acid in commercial
enzyme stocks. For example, reads containing DNA
polymerase I sequences aligned exclusively to the cod-
ing sequences of the N-terminally truncated Klenow
fragment - the enzyme used for the deoxyadenosine
addition step during library construction (Additional
file 1: Figure S1C). However, ‘other’ reads also aligned to
much of the Escherichia coli genome, and to many other
organisms as well. There was thus no single, obvious
source for the contamination (data not shown).
The median fraction of LASV reads in these test li-

braries was 0.0003% (Additional file 1: Figure S1B), pro-
hibitively low for efficient and cost-effective sequencing
at the depth required for de novo assembly and for
confident calling of intra-host variants. We therefore de-
veloped methods to: (1) deplete carrier poly(rA) before
library construction; (2) deplete rRNA before library
construction; and (3) to enrich LASV reads in libraries
before Illumina sequencing. We then demonstrated the
utility of these approaches to EBOV sequencing during
the 2014 Ebola virus disease (EVD) outbreak.

Removal of poly(rA) carrier RNA in LASV samples
improves sequencing quality
To alleviate the detrimental effects of poly(rA) RNA car-
rier on sequencing quality, we developed a targeted
RNase-H-based depletion method [25] to remove it
prior to library construction. We used 40mer oligo(dT)
probes to form RNase H-cleavable DNA-RNA hybrids
with poly(rA) (Figure 1C), which successfully depleted
poly(rA) from a sample with carrier added (Figure 1A;
right panel). The depth of sequencing reads along the
LASV genome after depletion was similar to the original
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poly(rA)-free aliquot (Additional file 1: Figure S2), sug-
gesting little off-target hybridization of the oligo(dT)
probes.

Depletion of host rRNA enriches LASV sequences in a
variety of samples
To deplete host rRNA in human clinical samples, we pur-
sued selective RNase H-based depletion using oligodeox-
yribonucleotides tiled along human cytoplasmic and
mitochondrial human rRNA sequences [26]. We achieved
almost complete removal of rRNA (from approximately
80% of the reads to less than 1%) with a concomitant en-
richment of LASV content in a human plasma sample. As
shown by rarefaction analysis of a representative sample
(Figure 2A), rRNA depletion increased the unique LASV
content in the sequence data to an estimated saturation at
approximately 25,000 non-duplicated LASV reads com-
pared to at most 5,000 without depletion.
The host rRNA depletion not only improved overall se-

quencing depth along the LASV genome (Figure 2B) but
revealed finer details of the viral replication dynamics. It
uncovered pronounced differences in coverage between
the L and S segments, which are known to be present at
different copy numbers in infected cells [8]. It also ex-
posed the dip in coverage at the stem-loop between the
NP and GPC gene, RNA secondary structure common to
many viral genomes [8,27,28].
As most LASV isolates collected from human serum

or plasma contain very little total RNA (sub-nanogram
levels), we further developed a prescreening process to
identify samples suitable for host depletion. We used a
real-time qRT-PCR assay for 18S rRNA as a surrogate
for quantification of total RNA. We then performed
rRNA depletion on nine samples spanning a wide range
(approximately 200-fold) of input RNA to determine the
minimum amount of RNA required for efficient LASV en-
richment. As shown in Figure 2C, our protocol enriched
unique LASV content at least five-fold in all samples with
at least one million copies of 18S rRNA. Thus, the rRNA
selective depletion method can be applied to extremely
low-input RNA samples containing as little as picograms
of total RNA. In comparison to previous selective RNase
H depletion publications [25,26], our method was success-
ful with approximately 1,000-fold less material.
We demonstrated the utility of host rRNA depletion

on tissue samples collected from LASV-infected rodents
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and non-human primate disease models. These tissue
samples contain higher levels of 18S rRNA than human
plasma or serum (on average 5 times more - data not
shown). Using the same human rRNA probes, we de-
pleted rRNA and enriched unique LASV reads approxi-
mately five-fold in a Mastomys natalensis spleen sample
(Figure 3A). Most of the remaining 10% (approximately)
rRNA reads aligned to 28S rRNA sequences which are di-
vergent between humans and rodents [29]. Similarly, our
protocol reduced the rRNA content in six different tissue
samples from cynomolgous macaques to approximately
10% (Figure 3B). Depletion of rRNA led to an increase in
LASV content in all macaque samples, reaching the high-
est levels in adrenal gland and spleen, two tissues known
to accumulate LASV during infection [30].
Hybrid selection of sequencing libraries rescues
LASV genomes
Despite efficient depletion of carrier RNA and host
rRNA, in a number of cases the fraction of LASV se-
quencing reads stayed well below 1%. For these samples,
sequencing to the depth required for de novo assembly
of LASV genome (>10×) and for detecting intra-host
variants with minor allele frequencies as low as 5%
(>100×) remains cost prohibitive.
In order to capture LASV genomes in ultra-low cover-

age libraries, we used solution hybrid selection [31,32] to
further enrich the LASV content of sequencing libraries.
Hybrid selection has been previously shown to effect-
ively capture pathogen sequence in difficult clinical sam-
ples [33]. We designed a complex set of 42,000 100mer
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oligonucleotides based on a diverse set of consensus LASV
genomes sequenced using our host rRNA depletion proto-
cols (Andersen et al., in preparation). We then synthesized
the oligonucleotides on a microarray, PCR-amplified them
as a pool, and prepared single-strand biotinylated RNA
baits for hybrid capture [31].
We tested the LASV hybrid selection method on a set

of 13 libraries from different sample sources (human,
Mastomys) and geographical regions (Nigeria, Sierra Leone)
that had been previously sequenced (Andersen et al., in
preparation). This test set included libraries that contained
high host content (that is, rRNA and mRNA) or produced
poor LASV genome coverage. We also included libraries
with low duplication rates indicating under-sampling of
LASV sequences. These libraries may potentially contain
unique LASV sequences that were masked by host or
other contaminating content in the library.
The average enrichment of unique LASV content in the

sequencing data was 86-fold (Additional file 1: Table S1;
median enrichment, 9.6-fold; range, approximately 2 to
724). We note that the hybrid-selected libraries were se-
quenced to a higher degree of saturation with generally
much higher duplication rates including four data sets
with >99% duplicate reads (samples G2230, ISTH0230,
ISTH1137, LM032). Nonetheless, the average coverage
of the LASV genome with unique, non-duplicate reads
reached approximately 1,080× (Table 1 and Additional
file 1: Table S2; range, 5 to 1,083×; median (average)
coverage, 53×). We performed rarefaction analysis of li-
braries from a representative sample (Additional file 1:
Figure S3; ISTH1137) to illustrate the greater LASV se-
quence complexity in hybrid selection libraries com-
pared to standard libraries at lower read depths (max
sampling, 4 million reads).
The hybrid selection approach not only lowers the

cost of sequencing, but is a powerful approach for char-
acterizing viral genomes. Only two of the original librar-
ies provided enough coverage to call intra-host single
nucleotide variants (iSNVs) at high confidence (13 and
12, respectively). In both cases, hybrid selection in-
creased the number of detectable iSNVs (to 21 and 29,
respectively). Importantly, none of the 25 previously ob-
served iSNVs dropped out during the selection process
(Additional file 1: Tables S3 and S4). Furthermore, the
correlation of the allele frequencies before and after hy-
brid selection was excellent (r = 0.95 and 0.97; Figure 4A
and B), indicating that hybrid selection with our LASV
bait introduces little, if any, allelic bias. This is consist-
ent with data reported for human exome sequencing
[31]. Moreover, four of the initial 13 libraries failed to



Table 1 LASV genome coverage from standard RNA-seq and hybrid selection libraries

Standard Hybrid selection

LASV sample Total reads
(×106)

Median
coverage

Normalized
coveragea

Assembled
LASV genome?

Total reads
(×106)

Median
coverage

Normalized
coveragea

Assembled
LASV genome?

G090 5.2 1 0.28 No 1.2 20 19.25 Yes

G2230 1.3 2 7.73 No 1.2 1 24.84 No

G733 6.9 85 17.18 Yes 1.3 527 636.71 Yes

G771 24.5 65 3.55 Yes 2.5 14 12.56 Yes

ISTH0073 35.0 115 3.86 Yes 1.5 208 197.28 Yes

ISTH0230 7.3 4 0.33 No 1.3 6 4.28 Yes

ISTH1137 8.1 18 2.86 Yes 8.0 47 6.84 Yes

ISTH2020 8.9 28 5.26 Yes 1.2 53 78.84 Yes

ISTH2025 40.2 13 0.60 Yes 1.2 30 43.83 Yes

ISTH2050 6.9 20 3.44 Yes 1.2 18 41.94 Yes

LM032 14.9 121 8.99 Yes 12.3 1,003 88.18 Yes

LM222 6.3 6 0.96 Yes 2.6 390 158.73 Yes

Z002 5.8 0 0.08 No 1.1 23 26.09 Yes
aAverage base coverage per 1 million reads. Successful LASV genome assembly required >1× coverage of 90% of LASV ORF covered. Coverage metrics are based
upon unique, non-duplicated LASV reads. G-series: Sierra Leone clinical isolates (4). ISTH series: Nigeria clinical isolates (6). LM and Z series: Mastomys natalensis
isolates. Other metrics including average (×) coverage and % genome coverage at >1× are included in Additional file 1: Table S2.

A

LM032 (rodent)
r = 0.97

H
yb

rid
 s

el
ec

tio
n 

iS
N

V
 fr

eq
 (

%
)

G733 (human)
r = 0.953

Standard iSNV freq (%)

0

10

20

30

0 10 20 30

0

10

20

30

40

50

60

0 10 20 30 40 50 60

H
yb

rid
 s

el
ec

tio
n 

iS
N

V
 fr

eq
 (

%
)

Standard iSNV freq (%)

B

Figure 4 Hybrid selection of LASV. Frequencies of intra-host
variants (iSNVs) observed in (A) human (G733) and (B) rodent
(LM032) in standard and hybrid selected libraries. Data fit to a linear
regression with y-axis intercepts set at 0. r: Pearson correlation value.

Matranga et al. Genome Biology 2014, 15:519 Page 6 of 12
http://genomebiology.com/2014/15/11/519
produce complete de novo assemblies of the LASV gen-
ome, despite approximately 5 to 7 million reads gener-
ated per library. In contrast, after hybrid selection, three
of these four samples yielded complete de novo assem-
blies from only slightly more than one million reads
each (Table 1).

rRNA depletion and deep sequencing of EBOV genomes
from the 2014 outbreak
As we were completing our study of LASV, we were
asked to take on a new effort to sequence EBOV clinical
samples when the 2014 outbreak spread to our research
site in Sierra Leone. As our poly(rA) and host rRNA de-
pletion approach had worked well with a wide range of
clinical LASV samples we examined its utility on the
first cases from the outbreak in Sierra Leone [16]. We
sequenced four individual clinical isolates with and with-
out poly (rA) and rRNA depletion and generated ap-
proximately one million Illumina reads per library.
Using our approach, we were able to lower the rRNA

contamination in all four samples from >80% to <0.5%
(Figure 5A). The concomitant increase of EBOV content
was approximately 13- to 24-fold, with unique content
reaching approximately 35% of total reads in one of the
rRNA depleted libraries. Although we sequenced eight
libraries on a single MiSeq run, we achieved >50× aver-
age coverage for 99% of the EBOV genome (Figure 5B).
The host rRNA depletion similarly enabled better

characterization of the viral genome. We called two iSNVs
with >5% minor allele frequency in a single sample (ap-
proximate position indicated in Figure 5B); these iSNVs
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did not reach the detection threshold in the undepleted
sample. The pattern of coverage along the EBOV genome
was very consistent across all samples, with pronounced
dips largely corresponding to boundaries between genes.
Coverage levels likely mirror the expression levels of indi-
vidual genes during EBOV replication [13]. As with LASV,
these details could only be resolved with higher coverage
of EBOV seq made possible by efficient depletion of rRNA
(Figure 5B).

Discussion
We have overcome key technical challenges in deep RNA
sequencing and de novo assembly of LASV and EBOV ge-
nomes. We have shown that both poly(rA) and rRNA con-
taminants can be efficiently removed by targeted RNase
H-based digestion prior to library construction. Selective
depletion is a cost-effective, high throughput alternative to
size-selection for removing unwanted carrier RNA from
viral samples. Since we are selectively depleting rRNA in
our current protocol, there are no added steps when de-
pleting carrier RNA. Further, depletion of poly(rA) prior
to cDNA synthesis limits homopolymer A and T sequence
in final libraries, resulting in cleaner preparations and en-
suring higher quality sequencing runs.
Enrichment by rRNA depletion allowed unbiased total

RNA-seq while still achieving sufficient coverage for de
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logical features in genome organization such as stem-loop
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numbers and expression levels during replication (Figures 2
and 5). Strand-specific RNA-seq methods [26] may help
discriminate between the viral genome and complementary
RNA intermediates within the viral population.
We were able to enrich for viral content in two dis-

tinct RNA viruses and in a variety of sample types, often
with very low input of RNA. EBOV and LASV are quite
different ssRNA viruses - one negative-sense and one
segmented - and our method significantly increases the
viral content in sequencing libraries from both. The ap-
proach worked well with samples that included human
blood from clinical sources (Figures 2 and 5), and rodent
and non-human primate tissues (Figure 3). Depletion of
rRNA effectively enriched viral RNA in samples containing
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Our approach, while designed for LASV, enables robust,
universal, rapid sequencing and was readily transferrable
to sequencing EBOV during the 2014 outbreak. We had
initially developed and implemented our techniques to
generate over 300 LASV genomes from Nigeria and Sierra
Leone, and from humans and Mastomys. When an out-
break spread to our field site in Sierra Leone, we were able
to quickly apply our technology to sequence 99 EBOV ge-
nomes from 78 patients in Sierra Leone to approximately
2,000× coverage, processing two batches of samples each
within 1 week. By successfully pairing our approach with
Nextera (Illumina) library construction, we are able to de-
crease the overall process time three-fold. We were thus
rapidly able to make our data available to the community,
to enable timely insights for surveillance and control ef-
forts and to inform diagnostic and therapeutic develop-
ments during the epidemic.
Hybrid selection in RNA-seq libraries can further en-

rich for virus in ultra-low input samples and can also
serve as a cost-effective first-line sequencing method. As
our data and previous exome studies indicate that single-
base mismatches between target and bait sequences cause
little allelic bias (Figure 4), future bait designs may con-
taining fewer variants but instead targeting more viruses.
This multi-virus hybrid selection could rescue unbiased
total-RNA-seq libraries that did not yield complete assem-
blies and could indeed itself become a first-line sequen-
cing method. The more expensive total-RNA-seq could be
reserved for those samples that are not captured by the
hybrid selection array. This approach may prove efficient
for examining a variety of sample types (serum, nasal as-
pirate, spinal tap, urine, and so on) and enable many labs
around the world to more rapidly detect a wide variety of
viruses causing disease in their home countries.

Conclusion
Our newly developed viral sequencing protocol combines
selective depletion of contaminating carrier RNA and host
rRNA with unbiased total RNA-seq of randomly-primed
cDNA. It thereby improves the quality of raw sequencing
data and boosts the fraction of unique informative reads,
producing sufficient LASV and EBOV reads for de novo
genome assembly and intra-host variant calls in diverse
clinical and biological samples. Our RNase H-depletion-
RNA-seq method may be more broadly applicable to se-
quence and assemble the genomes of many RNA viruses,
known or unknown. We also developed a hybrid selection
method to enrich viral content of libraries prior to sequen-
cing, significantly lowering the cost of sequencing and res-
cuing RNA-seq libraries with very low coverage. While
enrichment by hybrid selection requires prior sequence
knowledge, hybrid selection with a complex multi-virus
bait may prove to be a broadly applicable, viable and cost-
effective approach to sequencing.
Materials and methods
Ethics statement
Lassa fever patients were recruited for this study using pro-
tocols approved by human subjects committees at Tulane
University, Harvard University, Broad Institute, Irrua Special-
ist Teaching Hospital (ISTH), Kenema Government Hospital
(KGH), Oyo State Ministry of Health, Ibadan, Nigeria, and
Sierra Leone Ministry of Health. All patients were treated
with a similar standard of care and were offered the drug
Ribavirin, whether or not they decided to participate in the
study. For Lassa fever (LF) patients, treatment with Ribavi-
rin followed the currently recommended guidelines [9] and
was generally offered as soon as LF was strongly suspected.
Due to the severe outbreak for Ebola Virus Disease

(EVD), patients could not be consented through our stand-
ard protocols. Instead use of clinical excess samples from
EVD patients was evaluated and approved by Institutional
Review Boards in Sierra Leone and at Harvard University.
The Office of the Sierra Leone Ethics and Scientific Review
Committee, the Sierra Leone Ministry of Health and
Sanitation, and the Harvard Committee on the Use of
Human Subjects have granted a waiver of consent to se-
quence and make publically available viral sequences
obtained from patient and contact samples collected
during the Ebola outbreak in Sierra Leone. These bodies
also granted use of clinical and epidemiological data for
de-identified samples collected from all suspected EVD
patients receiving care during the outbreak response.
The Sierra Leone Ministry of Health and Sanitation also
approved shipments of non-infectious non-biological sam-
ples from Sierra Leone to the Broad Institute and Harvard
University for genomic studies of outbreak samples.

Sample collections and study subjects
Human samples were obtained from patients with LF; all
samples were acquired on the day of admission before any
treatment regimens had been started. The time from onset
of symptoms to admission at the hospital was similar be-
tween patients from Sierra Leone and Nigeria (average
values, Sierra Leone = 9.3 days (range, 0 to 20 days);
Nigeria = 9.7 days (range, 0 - 30 days)). Human samples
were obtained from patients suspected with EVD and
stored in -20°C freezers; samples were collected using
existing collection and processing protocols at Kenema
Government Hospital (KGH), under the emergency re-
sponse efforts established by KGH. For LF and EVD sam-
ples, 10 mL of whole blood was collected and plasma or
serum was prepared by centrifugation at 2,500 rpm for
15 min. Diagnostic tests for the presence of LASV were
performed on-site using PCR [35] and/or ELISA antigen
capture assays [36]. Both assays have comparable sensitiv-
ity [37]. Diagnostic tests for the presence of EBOV were
performed using on-site PCR [38]. All samples were re-
tested by PCR upon receipt at Harvard University.
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Rodents (all from Sierra Leone) were trapped in case-
households, humanely sacrificed, and samples were col-
lected from spleens.
Previously collected cynomolgous macaques tissue sam-

ples were used [39] from macaques exposed via aerosol to
a target dose of 1,000 PFU of LASV Josiah at the United
States Army Medical Research Institute of Infectious Dis-
eases (USAMRIID) biosafety level 4 laboratory. Aerosols
were created by an automated bio-aerosol exposure sys-
tem using a 3-jet Collison nebulizer (BGI, Inc., Waltham,
MA, USA). Samples were used from day 12 post infection.
All viral samples were inactivated in AVL buffer (Qiagen)

or TRIzol (Life Technologies) following standard oper-
ating procedures. Samples were stored in liquid nitrogen
or at -20°C. In some cases, RNA was isolated at the clin-
ical site using the QIAamp Viral RNA Minikit (Qiagen),
lyophilized using RNAstable (Biomatrica) (all according
to the manufacturer’s protocol) and stored at room
temperature in desiccator cabinets. Inactivated samples
were shipped on dry ice to Tulane or Harvard University
and stored at -80°C (all samples) or room temperature
(Biometrica) until further processing.

Viral RNA isolation
RNA (from AVL) was isolated using the QIAamp Viral
RNA Minikit (Qiagen) according to the manufacturer’s
protocol, except that 0.1 M final concentration of β-
mercaptoethanol was added to each sample. RNA (from
Trizol) was isolated according to the manufacturer’s
protocol with slight modifications. Briefly, 200 μL 1-
bromo-2 chloropropane (BCP) was added for every 1 mL
TRIzol used. After phase separation, 20 μg of linear acryl-
amide was added to the aqueous phase. All extracted RNA
was resuspended in water and treated with Turbo DNase
(Ambion) to digest contaminating DNA.

Quantification of RNA content using qRT-PCR
Host RNA (18S rRNA) were quantified using the
Power SYBR Green RNA-to-Ct 1-Step qRT-PCR assay
(Life Technologies) and human 18S rRNA primers (5′-CC
TGAGAAACGGCTACCACATC-3′ (forward), 5′-AGAG
TCCTGTATTGTTATTTTTCGTCACT-3′ (reverse)).
Human genomic DNA (Promega) was used as a stand-
ard control. All reactions were performed on the ABI
7900HT (Applied Biosystems).

Carrier RNA and host rRNA depletion
Poly(rA) and host rRNA was depleted using RNase H
selective depletion [26]. Briefly, 616 ng oligo (dT) (40 nt
long) and/or 1,000 ng DNA probes complementary to hu-
man rRNA were hybridized to 5 μL sample RNA in 10 μL.
The sample was then treated with 20 units of Hybridase
Thermostable RNase H (Epicentre) for 30 min at 45°C. The
complementary DNA probes were removed by bringing the
reaction up to 75 μL and treating with RNase-free DNase
kit (Qiagen) according to the manufacturer’s protocol.
rRNA-depleted samples were purified using 2.2× volumes
AMPure RNA clean beads (Beckman Coulter Genomics)
and eluted into 10 μL water for cDNA synthesis.

Illumina library construction and sequencing
For the experiments in this study, selectively-depleted
EBOV and LASV RNA were fragmented for 4 minutes
at 85° C using NEBNext Fragmentation buffer (New
England Biolabs). After fragmentation, samples were
purified using 2.2x volume AMPure RNA clean beads
(Beckman Coulter Genomics). In the production proto-
col implemented after this study we removed the frag-
mentation step [23]. Random-primed cDNA synthesis
and Illumina paired-end library construction followed
the previously published RNase H libraries protocol [26]
with some modifications. First, controls were used to
monitor our library construction process. We spiked in
1 pg of one, unique synthetic RNA (ERCC, [40] using a
different RNA for each individual sample to aid in track-
ing our viral sequencing process and potential index
cross-contamination. Libraries were prepared from hu-
man K-562 total RNA (Ambion) with each batch as a
control. Second, we removed poly(rA) carrier, high mo-
lecular weight products. For some of the initial library
preps and for method comparison, we removed longer
products using a time-course Pippen Prep (Sage Science)
to collect all material <2 kb. In our current protocol, we
use the selective depletion approach to remove carrier
RNA (see above). Third, we generally used six to 18 cy-
cles of PCR to generate our libraries from 10% to 40% of
the adapter-ligated product. Each individual sample was
indexed with an 8 bp unique barcode and libraries were
pooled equally and sequenced on the HiSeq2000 (101 bp
paired-end reads; Illumina), the HiSeq2500 (101 or
150 bp paired-end reads; Illumina), or the MiSeq
(150 bp paired-end reads; Illumina) platforms.

Hybrid selection
Bait design and hybrid selection was done similarly to a
previously published method [31]. Briefly, baits were de-
signed by first concatenating all LASV consensus sequences
into two single bait sets (one for Nigerian clades and an-
other for the Sierra Leone clade, see Additional file 2).
Duplicate probes, defined as a DNA sequence with 0
mismatches, were removed. The baits sequences were
tiled across the LASV genome creating a probe every 50
bases. Two sets of adapters were used for each bait set.
Adapters alternated with each 50 base probe to allow sep-
arate PCR amplification of two non-overlapping sets of oli-
gos for each bait set. The oligo array was synthesized on a
CustomArray B3 Synthesizer, as recommended by the
manufacturer, and amplified by two separate PCR
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reactions with primers containing T7 RNA polymerase
promoters. Biotinylated baits were then prepared through
in vitro transcription (MEGAshortscript, Ambion). RNA
baits for each clade were prepared separately and mixed at
the equal RNA concentration prior to hybridization. LASV
libraries were added to the baits and hybridized over a
72 h. After capture and washing, libraries were amplified
by PCR using the Illumina adapter sequences. Libraries
were then pooled and sequenced on the MiSeq platform.

Demultiplexing of sequencing runs and QC
Raw sequencing reads were demultiplexed using the Picard
v1.4 pipeline [41] and saved as BAM files [42]. To avoid
barcode cross-contamination between samples the default
settings were changed to allow for no mismatches in the
barcode and a minimum quality score of Q25 in the indi-
vidual bases of the index. Sequencing quality metrics were
collected using FastQC v0.10.0 [43] and only high-quality
sequencing libraries were used in subsequent analyses.

Assembly of full-length LASV and EBOV genomes
BAM files were converted to Fastq format and then all
viral reads were extracted prior to de novo assembly.
This was done using the program Lastal r247 [44] with a
custom-made database containing full-length filovirus
(EBOV) or arenavirus (LASV) genomes. Since the reads
are not strand specific our assemblies and iSNV calls
(see below) represent the viral genome, the cRNA and
mRNAs. All viral Lastal-aligned readswere de novo as-
sembled using Trinity r2011-11-26 with a minimum
contig size of 300 [45]. Contigs were oriented and manu-
ally curated in the software package Geneious v6.1. Once
contigs had been generated, all sequencing reads from in-
dividual samples were aligned back to its own EBOV and
LASV consensus using Novoalign v2.08.02 (Novocraft)
with the following stringent parameters -k -l 40 -g 40 - ×
20 -t 100. Duplicates were removed using Picard v1.4 and
BAM files were locally realigned using GATK v2.1 [46]. If
multiple sequencing runs had been performed for the
same sample, BAM files were merged using Picard v1.4
before further analyses. Consensus sequences were called
using GATK v2.1. All generated genomes were manually
inspected, checked, and corrected for accuracy, such as
the presence of intact ORFs, using Geneious v6.1. Regions
were depth of coverage was less <2× were called as ‘N’.
Samples that failed to generate high-quality consensus se-
quences were excluded from all further analyses.

Alignment to viral, host, and bacterial reference genomes
To determine the composition of each library, reads
were aligned to viral and host references as previously
described [34]. The reference genomes used were human
genome assembly (GRCh37/hg19), human rRNA se-
quences (NR_003286.1, NR_003287.1, V00589.1, NR_0032
85.2, gi|251831106:648-1601, gi|251831106:1671-3229),
and viral reference (LASV or EBOV consensus; submissions
in process). To identify the bacterial contaminants, reads
were aligned to the E.coli full genome (gi|48994873) or
DNA polymerase I (polA, NC_000913.3).

Rarefaction analysis
Rarefaction analysis was performed by down sampling
the reads at 200 intervals using using custom scripts
[47,48]. For each sampling, we counted the number of
unique reads. Reads where both fragments of the read
aligned at the same starting position were considered
PCR duplicates of the same molecule and were counted
as a single unique read. Saturation points were estimated
by fitting the data to the Michealis-Menten equation
using curve fitting tool (MATLAB) (Figure 2A).

Intra-host variant calling
Reads were realigned to a consensus sequence and variants
were called using mpileup: samtools mpileup -Q 0 -B -q 1
-d 10000 and VarScan v2.3 [49] with the following parame-
ters: varscan.jar pileup2snp –min-reads2 5 –min-var-freq
0.01 –p-value 0.1 –min-coverage 5 –min-avg-qual 5.
Stringent post-call filtering variables were applied includ-
ing minimums of overall coverage (5×), frequency (5%),
and base quality (q25).

Data availability
Next-generation viral RNA-seq data can be found in
the NCBI database [50] under Bioproject numbers
PRJNA254017 (LASV) and PRJNA257197 (EBOV). See
Additional file 3 for accession numbers.

Additional files

Additional file 1: Supplementary material including: Figures S1 to
S3, Tables S1 to S3.

Additional file 2: Probe design for Lassa virus hybrid selection.

Additional file 3: Accession numbers for data submission.
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