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Abstract: Stereo video has been widely applied in various video systems in recent years. Therefore,
objective stereo video quality metric (SVQM) is highly necessary for improving the watching ex-
perience. However, due to the high dimensional data in stereo video, existing metrics have some
defects in accuracy and robustness. Based on the characteristics of stereo video, this paper consid-
ers the coexistence and interaction of multi-dimensional information in stereo video and proposes
an SVQM based on multi-dimensional analysis (MDA-SVQM). Specifically, a temporal-view joint
decomposition (TVJD) model is established by analyzing and comparing correlation in different
dimensions and adaptively decomposes stereo group of frames (sGoF) into different subbands. Then,
according to the generation mechanism and physical meaning of each subband, histogram-based
and LOID-based features are extracted for high and low frequency subband, respectively, and sGoF
quality is obtained by regression. Finally, the weight of each sGoF is calculated by spatial-temporal
energy weighting (STEW) model, and final stereo video quality is obtained by weighted summation
of all sGoF qualities. Experiments on two stereo video databases demonstrate that TVJD and STEW
adopted in MDA-SVQM are convincible, and the overall performance of MDA-SVQM is better than
several existing SVQMs.

Keywords: stereo video; quality metric; stereo video decomposition; image entropy

1. Introduction

Stereo video can provide a more immersive watching experience for viewers, so stereo
video systems have been widely used in various fields [1,2]. The processing in stereo video
system will inevitably introduce distortions in stereo videos, which will seriously affect
the user experience [3]. Therefore, the research on quality metric is of great significance
for performance optimization of stereo video system and has aroused more and more
attention [4]. Generally speaking, stereo video quality evaluation can be divided into
subjective evaluation and objective evaluation. Among them, subjective evaluation is
implemented by evaluate the quality of stereo video according to the watching experience
of viewers. Because human eyes are the terminal receivers of stereo video, subjective
evaluation is considered to be best in reliability and accuracy. However, such an evaluation
process is time-consuming and laborious. Furthermore, subjective evaluation cannot be
integrated in practical video systems. Therefore, the objective metric which can evaluate
stereo video quality automatically is highly demanded [5].

Considering the dependence of stereo video quality metric (SVQM) on reference video,
objective SVQM can be divided into three categories, that is full-reference (FR), reduced-
reference (RR) and no-reference (NR) [6]. As the names indicate, FR and NR metrics need to
obtain all or part of the undistorted reference video, while NR metric only needs to process
the distorted video. Obviously, in a video system, the receiver cannot get information from
a reference video. Therefore, NR metric has better practical value. However, due to the lack
of reference, the design of NR metric is much more difficult. Compared with FR and RR
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metrics, its development speed is slow, but has more room for improvement. Hence, this
work will attempt to propose an objective NR metric for stereo video quality evaluation.

Benefiting from the rapid development of traditional image and video quality metric,
objective quality metrics for stereo video are gradually proposed. In the early stage of the
research, the design of SVQM is mainly realized by referring to image quality metric (IQM)
and 2D video quality metric (VQM). For example, the well-performed IQM and VQM [7–9],
such as SSIM, VSI, VQM, etc., are directly implemented to calculate the quality score of
each frame or each view, and then the overall quality is obtained by weighted average
of the frame or view qualities. Although, there is a certain correlation between the frame
quality and the stereo video quality. However, this category of method only focuses on the
spatial information in stereo video and ignores the vital role of temporal and inter-view in-
formation. Therefore, the performance is obviously not satisfactory. To solve this problem,
a series of metrics start focusing on the processing of multi-dimensional information in
stereo video. From this starting point, multi-dimensional transformations [10,11], such as
3D-DCT, 3D spatial-temporal structure and 3D structure tensor, have been integrated in
SVQM designing. Naturally, such a strategy provides inspiration for the further develop-
ment of SVQM. Motivated by this strategy, this work will attempt to design an NR-SVQM
from the perspective of multi-dimensional information analysis.

In stereo video, the information of each dimension interweaves. Separately pro-
cessing information in different dimensions cannot reflect the characteristics of stereo
video precisely. In this work, to deeply explore the characteristics of stereo video, we
attempt to implement multi-dimensional joint analysis, and propose an SVQM based on
multi-dimensional analysis (MDA-SVQM). Specifically, firstly, by comparing the correla-
tion in each dimension, the optimal decomposition direction is selected to construct the
temporal-view joint decomposition (TVJD) model for stereo group of frames (sGoF). Then,
based on decomposition, the feature extraction of TVJD subband information is completed
and the quality of sGoF is obtained by regression. Finally, the quality weight of each
sGoF is obtained by calculating the spatial-temporal joint energy using spatial temporal
energy weighting (STEW) function, and the final stereo video quality can be acquired
by weighted summation of sGoF qualities. Experiments on two stereo video databases
demonstrated that the MDA-SVQM proposed in this work can accurately evaluate the
quality of stereo video.

To sum up, the innovation of this work mainly lies in:

(1) To solve the problem that stereo video contains both inter-view and temporal infor-
mation, which leads to the difficulty in quality evaluation, this work designs a TVJD
model based on correlation analysis, which can describe the characteristics of stereo
video more accurately;

(2) To solve the problem that TVJD subbands are substantial and complex, this work
classifies the subbands by their own characteristics and generation mechanism. On
this basis, the features of different subbands are extracted separately, which makes
the features more sensitive to distortions;

(3) To solve the problem that it is difficult to model the influence of temporal fluctuation
on stereo video quality, in this work, STEW function is designed by simulating the
stimulation of spatial-temporal alteration on the visual system.

The rest of this paper is organized as follows. Section 2 reviews the current research
status of SVQM. The proposed MDA-SVQM is introduced in detail in Section 3. In Section 4,
the performance of MDA-SVQM is tested and compared with the existing metrics in stereo
video database, and experimental results are further analyzed and discussed. Finally,
Section 5 summarizes this work and points out the future research direction.

2. Related Works

In this section, we will make a brief review of SVQM and related fields.
As the terminal receiver of visual information, viewer’s subjective rating is obviously

of better accuracy. Because of this, subjective quality evaluation plays an important role in
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exploring the characteristics of stereo video. In order to ensure the standardization and
reasonability of subjective evaluation, video quality expert group (VQEG) in International
Telecommunication Union (ITU) has released a series of standards for subjective evaluation
implementation, such as ITU-R BT.500, ITU-R P.910 and ITU-R BT.1788. In these standards,
subjective evaluation methods such as ACR-HR, DSCQS and SAMVIQ and watching
environment requirements are recommended in detail. In the early stage of research,
researchers mainly analyzed the impact of different acquisition and display devices on
stereo visual quality. In these researches, Saad et al. [12] studied the effects of resolution
and display mode on the subjective quality of stereo video. Ijsselstein et al. [13] studied the
influence of different camera parameter settings on stereo video quality. At the same time,
explorations on the relationship between equipment performance and subjective quality
haveare also been carried out by subjective evaluation [14]. However, with the continuous
development of stereo video processing, the subjective evaluation is no longer limited
on the impact of hardware devices on stereo video quality, and subjective evaluations
begin to pay more attention on the relationship between video content and video quality.
Seuntiens et al. [15] studied the quality influence of different compression ratio and spatial
resolution of two view. In addition to understanding the characteristics of stereo video,
another important role of subjective evaluation is to establish a subjective quality database.
Due to the limitation of acquisition and display devices, the study of stereo video database
is far behind the traditional quality database. Among the few publicly available stereo video
databases, Uroy et al. [16] established NAMA3D-COSPAD 1 stereo video database, which
provides distorted videos with H.264 encoding compression, JPEG2000 (JP2K) encoding
compression, image sharpening, resolution reduction and down sampling. In establishing
of the database, the researchers concluded that the distortion such as down sampling and
image sharpening will not significantly affect the quality of stereo video, which sheds light
on objective metric designing.

Based on the databases established by subjective evaluation, the objective metrics for
stereo video haves been proposed gradually. As mentioned in Introduction, VQM is the
foundation of designing SVQM. Starting from simply combining the spatial quality of each
frame in a video, state-of-the-art VQMs employ deep learning and other signal processing
methods [17], which show outstanding quality evaluation performance. However, the
ignorance of stereo information aroused the attention of researchers. Gradually, with the
exploration of visual psychology, SVQMs start to focus on simulation of visual perception,
especially by modelling the binocular perception of disparity information in human visual
system (HVS). Specifically, Battisti et al. [18] proposed an HVS perception-based SVQM.
According to depth information and binocular rivalry, they generated cyclopean frames
for both reference and distorted stereo videos, then traditional video quality metric was
performed to yield the quality score. Galkandage et al. [19] calculated the energy scores to
measure the spatial quality by perception model, and then pooled these spatial qualities by
empirical methods to obtain the overall quality of a stereo video. Yu et al. [20] proposed
an SVQM considering temporal characteristics of video by motion intensity and binocular
perception in HVS. In [21], a novel SVQM was proposed by modelling visual attention
and just-noticeable difference for distortions. In addition, with the machine learning
and neural network widely applied in image and video processing, SVQMs based on
machine learning had achieved significant development. Jiang et al. [22] utilized random
forest to establish the mapping from motion feature in tensor domain to stereo video
quality. In [23], Narwaria et al. extracted structural information features by singularly
valuable decomposition, and then proposed a Support Vector Regression (SVR)-based
metric. Furthermore, Yang et al. [24] introduced a 3D convolutional neural networks-based
framework for stereo video quality evaluation. To sum up, the above metrics integrated
machine learning techniques in the traditional feature extraction and perception model.
This strategy not only ensures the consistency of quality metric and visual perception, but
also effectively improves the performance of SVQMs.
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3. Proposed MDA-SVQM

Figure 1 illustrates the framework of MDA-SVQM, which consists of four modules:
sGoF decomposition, Subband feature extraction, sGoF quality prediction and stereo video
quality pooling. In sGoF decomposition, by interleaved analyzing temporal and inter-view
correlation of each sGoF, TVJD is adopted to decompose sGoF into different subbands
with the optimal decomposition structure. Then, according to the characteristics of each
TVJD subband, statistical-based and the local organization of image direction (LOID)-based
feature extraction are implemented to construct the feature vector. Furthermore, an SVR-
based sGoF quality prediction model is applied to obtain sGoF qualities. Finally, the STEW
function is designed for sGoF quality pooling, and stereo video quality can be acquired. In
this section, we will describe each module of MDA-SVQM in detail.
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To improve the readability, the summary of some important notations and abbrevia-
tions in this paper are given in Tables 1 and 2.

Table 1. Important abbreviations and corresponding full names.

Abbrev. Full Name Roles in MDA-SVQM

TVJD Temporal-view Joint Decomposition sGoF decomposition
SFJI Static-Fusion Joint Information

Subbands generated by TVJDMFJI Motion-Fusion Joint Information
SRJI Static-Rivalry Joint Information
MRJI Motion-Rivalry Joint Information
SWM Steerable Wavelet Machine LOID extraction algorithm
LOID Local organization of image direction Feature map of SFJI and SRJI
STEW Spatial-temporal Energy Weighting sGoF weight calculation

3.1. TVJD for sGoF Decomposition

Essentially, stereo video can be characterized as high-dimensional (usually four-
dimension). To be specific, one dimension along view direction, one dimension along
temporal direction, and two dimensions in spatial domain. Obviously, different dimen-
sional information will cause different visual perception in HVS. Meanwhile, different
frequency components will also percept differently. As a result, each frequency component
decomposed from different dimensions should be processed separately to complete the
precise description of stereo video. Based on above analysis, considering the computational
complexity, in this subsection, temporal and inter-view lifting-based wavelet transform has
been jointly implemented as sGoF decomposition.

In standard lifting-based wavelet transform, the pixels in the same location of two
adjacent frames are decomposed into high and low frequency components. However,
when viewing a video, the viewer will track the moving objects. Hence, to make the
decomposition more consistent with visual perception, compensation is integrated, so as to
realize the object-based frequency decomposition.
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Table 2. Important notations and definitions.

Notation Definition

SVdis = [VL,dis, VR,dis] Distorted video, consists of VL,dis and VR,dis
sGdis(i) = [GL,dis(i), GR,dis(i)] i-th distorted sGoF, consists of GL,dis(i) and GR,dis(i).

ϕMF, ϕSF, ϕMR, ϕSR Subbands of MFJI, SFJI, MRJI and SRJI

KMF, KMR
Kurtosis of MFJI and MRJI distribution, used as features of MFJI and MRJI, feature

length: 1 × 1

EMF, EMR
Entropy of MFJI and MRJI coefficients, used as feature of MFJI and MRJI, feature

length: 1 × 1
Θφ,ψ steermax operation denoted with angle maps used in SWM

ti,SF, ti,SR LOID Feature maps of SFJI and SRJI generated by SWM

ηSF,t, ηSR,t
Scale parameter of Weibull distribution used as feature of SFJI and SRJI, feature

length: 1 × 1

βSF,t, βSR,t
Shape parameter of Weibull distribution used as feature of SFJI and SRJI, feature

length: 1 × 1
VS Feature vector of high frequency subband, vector length: 1 × 4

−−−−→
VsGoF = [VM, VS]

Feature vector of an sGoF, vector length: 1 × 12

qsG(i) Quality of i-th sGoF sG(i)
wS(i, j) Spatial energy weights of pixels in location (i, j)
wT(i) Temporal energy weight of i-th sGoF

WS−T(i) Spatial-temporal joint energy weights of i-th sGoF
QsV Quality of distorted stereo video

Let Il1 and Il2 denote two adjacent frames in a video, and Ml1→l2 be the mapping for
two frames. Then, the object-based decomposition can be implemented to decompose Il1
and Il2 into high frequency subband Hl1,l2 and low frequency subband Ll1,l2, which can be
expressed as{

Hl1,l2[x, y] = Il2(x, y)− {Ml1→l2(Im)[x, y] + Ml1→l2(Il2)[x, y]}/2
Ll1,l2[x, y] = Il1(x, y) + {Ml1→l2(Hl1)[x, y] + Ml1→l2(Hl1)[x, y]}/4

, (1)

where (x, y) represents the pixel location, and Hm and Lm are the high and low frequency
component decomposed from Il1 and Il2.

From the perspective of construction, stereo video can be regarded as the ordered ar-
rangement of frames in both temporal and inter-view directions. Resultingly, the frequency
decomposition of stereo video should also be implemented in two directions, which are
defined as temporal filter (TF) and view filter (VF). Meanwhile, as Equation (1) illustrated,
the key problem in decomposition is how to establish the mapping relationship between
adjacent frames. Considering the characteristics of stereo video, motion vector can be used
as the mapping in temporal direction, and disparity vector can be adopted for inter-view
direction. Hence, the compensation can be optimized by motion compensation (MC) and
disparity compensation (DC). To sum up, MCTF and DCVF can be used to decompose
stereo video in temporal and inter-view directions.

Obviously, a stereo video contains two views, so only one inter-view decomposition
is needed. As for temporal decomposition, the number is determined by the temporal
length of the sGoF (usually 16 frames, i.e., four times that of decompositions). Hence, for
efficiency and accuracy, it is necessary to determine the decomposition order between two
directions reasonably. Generally speaking, in multi-view video, temporal correlation is
usually stronger than inter-view correlation. Therefore, a conventional decomposition
structure is to implement DCVF after multi-level MCTF. Specifically, let V represent inter-
view decomposition and T represent temporal decomposition. For an sGoF with 16 frames,
the traditional structure can be expressed as 4T + V. However, due to the variety of scene
depth and motion intensity, the conclusion that inter-view correlation is stronger is not
always true. Meanwhile, in multi-level decomposition, the correlation changes after each
decomposition. That is, the decomposition in one direction can reduce the correlation in
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that direction to 1/2, without affecting the correlation of the other directions. Therefore, to
decompose sGoF more efficiently, it is highly necessary to design an adaptive interleaving
decomposition structure for temporal and inter-view decomposition. Aiming at this, a
correlation analysis-based TVJD model is designed in this work.

In detail implementation, the key problem is how to determine the optimal direction
in each time of decomposition. According to the calculation of object-based decomposition
given in Equation (1), it can be deduced that, for ideal mapping of two adjacent frames Im
and Im+1, the amplitudes of high frequency subband coefficients are close to 0. That is to
say, the smaller the amplitude of high frequency subband coefficients, the stronger the cor-
relation between two frames to be decomposed. Furthermore, because the decomposition
scheme adopted in this work integrated motion and disparity compensation, the amplitude
of motion vector and disparity vector can also be utilized to reflect the correlation in tem-
poral and inter-view directions. According to the above two conclusions, a decomposition
cost function can be constructed from two aspects to determine the correlation of each
direction, that is the amplitude of high frequency subband and motion or disparity vectors,
which are denoted by H and Vd, respectively. Let Dcost represent the decomposition cost,
the calculation can be expressed as

Dcost(d) =
1

m× n
[

m

∑
x=1

n

∑
y=1

H(x, y) + ω ·
m

∑
x=1

n

∑
y=1

Vd(x, y)], (2)

where d denotes the decomposition direction, that is T or V. (x, y) denotes the pixel location
and m and n is the spatial height and width of the stereo video.

Then, the decomposition costs of both directions can be calculated before each level of
decomposition, respectively, to adaptively select the optimal direction. Let Soptimal denote
the optimal direction, the selection can be expressed as

Soptimal = argminDcost(d), (3)

It should be pointed out that only two views are included in stereo video. Conse-
quently, inter-view decomposition only needs to be implemented once. Therefore, for
low-computational complexity in TVJD, once the inter-view decomposition is selected as
the optimal, the decomposition cost will not be calculated in the subsequent decomposition,
and the temporal decomposition will be selected directly.

To conclude, by the calculation and comparison of decomposition costs in differ-
ent directions, TVJD constructs the adaptive interleaving decomposition structure for
sGoF, thus improving the decomposition efficiency and describing the multi-dimensional
characteristics of stereo video more accurately.

3.2. TVJD Subband Feature Extraction

Referring to scalable image processing, in TVJD, it is only necessary to further decom-
pose the low frequency subband. Accordingly, in MDA-SVQM, a 16-frame sGoF can be
decomposed into six subbands by TVJD. After that, further exploration for subband charac-
teristics is needed, so that feature extraction can be more consistent with visual perception.

As a basis, several stereo videos with different scenes are selected for analyzing.
Because TVJD adopts joint decomposition in temporal and inter-view directions, we employ
temporal index (TI) and disparity index (DI) to represent the characteristics of the test
video. To be specific, the larger the TI is, the greater the temporal difference is, that is,
the motion in the scene is more intensity. Meanwhile, the larger the DI is, the greater the
difference in the inter-view direction is, that is, the stereo of the scene is more.

In Table 3, the relationship between video characteristics and TVJD subband is an-
alyzed by using TI and DI. Obviously, it can be seen that with the decrease in motion
intensity, represented by the decrease in TI, the intensity of subbands containing temporal
high frequency information decreases, while the intensity of low frequency subbands
increases. Similarly, with the decrease in stereo sense, represented by the decrease in DI,
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the intensity of subbands containing view high frequency information decreases, while the
intensity of subbands containing view low frequency information increases. According to
the above analysis, the TVJD subbands can be divided into four categories, namely MFJI,
MRJI, SFJI and SRJI. In the next, we will extract the corresponding features according to
subbands characteristics and visual perception to reflect the impact of distortion on them.

Table 3. Relationship between TVJD subband and scene characteristics of several test video. All test
videos are selected from NAMA3D database.

Test Video TI DI
Inter-View

Low
Frequency

Inter-View
High

Frequency

Temporal
Low

Frequency

Temporal
High

Frequency

Boxers [16] 129.28 9.66 182.36 33.25 155.63 20.68
Hall [16] 73.64 12.86 165.65 40.26 170.22 10.65

News Report [16] 54.57 8.06 188.39 28.48 180.65 5.65

3.2.1. High Frequency Subband Feature Extraction

In sGoF, the high frequency subbands generated by TVJD, that is MFJI and MRJI,
usually represent the detail information of moving objects. Meanwhile, for natural scene
image, the distribution of high frequency components usually follows a pattern of high
peak and heavy tail. Based on the above analysis, by analyzing the relationship between
distribution and distortion, features of the MFJI and MRJI can be extracted.

Figure 2 shows the distribution of several high frequency subbands from stereo videos
encoded with different QPs. Specifically, (a), (b) and (c) represent high frequency subbands
generated from encoded video with QP of 32, 38 and 44. Obviously, with the increase in
QP, the coding distortion will be aggravated, which will lead to the quality degradation.
Meanwhile, for a certain encoded video, TVJD generated high frequency subbands in
different levels, which are denoted by different colors. By observing Figure 2, firstly, all
high frequency subbands follow a similar distribution, which means that the same feature
extraction can be adopted for all high frequency subband. Then, with the gradual increase
in video compression, the distribution of high frequency subband changes regularly, that
is, peak raised and tail suppressed. For analysis, due to the increase in compression, detail
information in the video scene will be lost, resulting in more 0 values of the coefficients
in the motion information subband, which is expressed as the peak rise in histogram.
Consequently, to reflect the distortion degree, we can quantify the loss of scene information
by calculating its histogram kurtosis. Let KMF (m) and KMR (m) denote the kurtosis feature
of MFJI and MRJI in m-th sGoF. Detail calculation can be expressed as

KMF(m) = ∑N
i=1 (ϕMF(m)−ϕMF)/N

δMF(m)4

KMR(m) = ∑N
i=1 (ϕMR(m)−ϕMR)/N

δMR(m)4

, (4)

where ϕMF(m) and ϕMF(m) are coefficients of MFJI and MRJI, respectively, ϕMF and ϕMR
denote the coefficients mean value of the two subbands.

On the other hand, the compression can also reduce the richness of texture information
in video, which leads to the amplitude diversity decrease in motion information coefficients.
In histogram, it can be reflected by the reduction in the tail. Meanwhile, the greater
the amplitude diversity of the subband coefficients, the greater the overall information
entropy. Therefore, in MDA-SVQM, information entropy is applied to represent the richness
of motion information subbands. Let EMF and EMR denote the information entropy of
subbands MFJI and MRJI. Detail calculation can be expressed as{

EMF = −∑N
i=1 p[ϕMF(i)] logp[ϕMF(i)]

EMR = −∑N
i=1 p[ϕMR(i)] logp[ϕMR(i)]

, (5)
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where p[ϕMF(i)] is the probability of coefficients ϕMF(i).
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To sum up, by exploring the relationship between coefficient distribution and distor-
tion degree, the kurtosis and entropy of each motion information subband are extracted as
the distortion features. Then, the distortion feature vectors of motion information subband
of are constructed. Let VM denotes the distortion feature vector of motion information
subband, the construction can be expressed as

VM = [KMF,1, KMR,1, EMF,1, EMR,1, KMF,1, KMR,1, EMF,1, EMR,1], (6)

where the subscripts 1 and 2 indicate the two high frequency subbands generated by TVJD.

3.2.2. Low Frequency Subband Feature Extraction

Different from high frequency subband, low frequency subband mainly represents
structure information in stereo video scene. To further prove the high correlation between
low frequency subband and video scene, Figure 3 analyzes the correlation from both
subjective and objective aspects. Subjectively, the low frequency information basically
contains most of the scene information in the original video. On the other hand, from the
perspective of information entropy, the correlation between the low frequency subband
and the original scene can also be seen quantitatively.
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In order to more accurately measure the distortion, feature extraction should be
consistent with the visual perception for low frequency information. As the key of visual
understanding, LOID features can joint-capture the position and direction information of
the object in the scene, and have the advantages of rotation invariance. Therefore, the low
dimensional representation of low frequency subband based on LOID features is obviously
a method that conforms to HVS perception for low frequency information.

In this work, a steerable wavelet machine (SWM) [25] is adopted to obtain the LOID
feature for low frequency subband. In general, the input frame is convolved with a family
of Circular harmonic wavelets (CHWs), and then processed by two levels of non-linear
steermax operations to obtain the LOID feature. Let fi denote the i-th frame in low frequency
subband, the feature map of fi can be acquired through SWM layers, which is denoted as ti.
For detail implementation, fi is first convolved with CHWs, φ(n). Then, the convolution
coefficients are mapped to an initial gradient-based moving frame (MF) representation,
and processed by the first level of non-linear steermax operation, which can be expressed as

θ(1) = argmax
θ∈[0,2π)

(
Re
(〈

F, φ
(1)
s,0 (R−θ(−x))

〉))
, (7)

where R−θ is used for rotation, which can be expressed as
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. Mean-

while, s denotes the wavelet scale, and F is defined as local geometry.
Then, the combination of CHWs is learned and the class-wise templates can be con-

structed, which is denoted as ψ (c). Meanwhile, the final level of steermax operation can be
implemented as

θ(2) = argmax
θ∈[0,2π)

(〈
F, ψ

(c)
s,0 (R−θ(−x))

〉)
, (8)

Eventually, the final feature representation ti can be constructed by the combination of
the results of the above-mentioned two levels of steermax operation as

ti =
[
steers,x( fi , θ(1), θ(2))

]
, (9)

where steer ( ) represents the steermax operation.
However, the LOID in Equation (9) is still a low-dimensional representation of low

frequency subband. To precisely reflect the influence of distortion on stereo video, it is
necessary to further explore the characteristics of LOID. From the above implementa-
tion of LOID feature extraction, it can be found that MF-based LOID performs a lot of
gradient-based calculation. Therefore, low frequency subband representation can thus be
considered as gradient-based. Since the gradient contrast plays an important role for image
recognition in HVS, when the distortion occurred, it will inevitably affect the gradient
contrast. Meanwhile, the image gradient histogram follows the Weibull distribution, which
also has a high correlation with the visual perception. To sum up, in this part, Weibull
distribution-based statistical feature is extracted for low frequency subband.

Previous studies on visual physiology have pointed out that the shape and scale
parameters in Weibull distribution’s probability density function (PDF) can accurately
describe the spatial consistency and complexity of images [26]. Hence, in this work, the
shape and scale parameters of LOID representation are employed to reflect the distortion
of low frequency subband. The Weibull distribution PDF of LOID can be expressed as

p(GMLOID; β, γ) =
β

η
(

GMLOID
η

)
β−1

exp(−(GMLOID
η

)
β

), (10)

where η and β denote the scale and shape parameters respectively, and GMLOID is the
gradient amplitude of the LOID feature map. Let px and py denote the Prewitt filter
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operators in the directions of horizon and vertical, the calculation of GMLOID can be
expressed as

GMLOID =
√
(ti ∗ px)

2 + (ti ∗ py)
2, (11)

where * is used to convolve LOID feature with Prewitt filter operators in two directions.
Specifically, the scale parameter η represents the width of the distribution and can

reflect the local contrast. The change of local contrast will affect the perception of human
eyes on quality. At the same time, the shape parameter β refers to the kurtosis of the
distribution, which is sensitive to the local edge. In order to further explain the relationship
between the parameters and distortion, we encoded the same image with JPEG and
JP2K in different compression degrees, and extracted the corresponding parameters of
each compressed image. Figure 4a,b illustrate the tendency of parameters with different
distortion degrees. In detail, Dis1 to Dis6 in horizontal axis represent six compressed
images with different distortion degrees, and the vertical axes denote the value of scale or
shape parameter of each distorted image, respectively. As can be seen from the Figure 4,
with the increase in distortion degree, the edge weakens and the contrast decreases. As a
result, the parameters gradually decrease. It can also be concluded from the results that
the parameters of the same image change regularly with the increase in distortion. In
conclusion, the scale and shape parameters of Weibull distribution can be used to describe
and measure distortion.
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Based on the above conclusion, for the low frequency subband, firstly, the LOID
feature map reflecting its essential information is extracted by SWM. Then, considering the
perceptual characteristics of Weibull distribution, the PDF parameters of the LOID feature
map are taken as distortion features. Let Vs represent the distortion feature vector, the
construction of the vector can be expressed as

Vs = [ηSF,t, ηSR,t, βSF,t, βSR,t], (12)

where ηSF, ηSR, βSF and βSR are the scale and shape parameters of each low frequency
subband, respectively.

3.2.3. sGoF Quality Prediction

By obtaining the distortion features of each TVJD subband, the final feature vectors

can be constructed, which is denoted by
−−−→
VsGoF ,

−−−→
VsGoF = [VM, Vs]. Then, sGoF quality

prediction can be implemented by establishing the mapping between the feature vector and
subjective quality of sGoF. In this subsection, SVR is employed to train for the sGoF quality
prediction model, denoted as PsGoF ( ). In SVR training, a radial basis function is adopted.
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Specifically, we used a publicly available LIBSVM package for SVR implementation. Then,
PsGoF ( ) can be used to predict the quality of sGoF qsG. The calculation can be expressed as

qsG = PsGoF(
−−−→
VsGoF ), (13)

It should be noted that a traditional subjective quality database only provides the
overall subjective quality of each distorted stereo video, but not the subjective quality
of each sGoF. Therefore, to obtain the sGoF subjective quality, we build a new stereo
video subjective quality database, and consider the overall quality of each stereo video
as the sGoF’s subjective quality. Meanwhile, we make two assumptions to guarantee the
rationality of the above scheme. Firstly, because of its short temporal duration, the sGoF
with small length can be considered as stable in temporal quality. Secondly, because the
quality of each sGoF in our database changes periodically, and the period is set as the same
length of sGoF in this work. To conclude, it can be considered that the overall subjective
quality can be used to represent the sGoF’s subjective quality.

3.3. sGoF Quality Pooling

In Section 3.2.3, the quality of each sGoF is obtained by sGoF quality prediction model.
Then, sGoF quality pooling should be implemented to get the final stereo video quality. To
solve this problem, purposely-designed STEW is adopted in MDA-SVQM.

Early studies on binocular visual psychology pointed out that for simple ideal stimuli,
with the increase in contrast on a certain view, the dominance of the view will gradually
increase [27]. For watching stereo videos, the stimuli fluctuation not only occurs between
left and right views, but also in temporal domain. Furthermore, the enhancement of
contrast represents that the intensity of the stimuli is increasing, and image energy can be
used to reflect the signal intensity. Hence, this work generalizes the above conclusion in
temporal domain and proposes an STEW function. Specifically, in STEW, the video can be
considered as a two-dimensional arrangement of single stimuli, while the stimuli in spatial
domain can be regarded as the weight of the temporal stimuli. That is, the spatial weight is
used as the weighting basis of the temporal weight, so the spatial and temporal weights
are combined to form the joint weights.

Next, to calculate the STEW of each frame, we need to obtain the spatial and temporal
weights of each pixel. In detail implementation, firstly, the local energy of pixel in location
(i, j) is calculated by Gaussian weight function, which can be expressed as

ed(i, j) = [ωij(x(i, j)− µ)2]
1/2

, (14)

where the subscript d represents the direction, and it can be expressed as the temporal
energy and spatial energy, which are denoted by eT and eS, respectively. µ is local average
value, µ = ∑ ωij x(i, j). ωij is the local energy weight calculated by Gaussian weighting
function. Specifically, the spatial weight is calculated by 11× 11 two-dimensional Gaussian
weight, while the temporal weight is calculated by 1 × 11 weight function.

By obtaining the temporal and spatial local energy of each pixel, the temporal and
spatial weight of a pixel in the location of (i, j) of frame n can be calculated as

WT(n) = eT(n)
2/(

N
∑

n=1
eT(n)

2)

WS(i, j) = eS(i, j)2/(∑
i,j

eS(i, j)2)
, (15)

Since the STEW is used to weight video quality in temporal domain, the spatial weight
is employed as the basis of temporal weighting. Thus, spatial weight and temporal weight
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are combined to form the spatial-temporal joint weight. Therefore, the spatial-temporal
weights can be calculated. Let WS−T denote the STEW weights, it can be calculated as

WS−T =

H,W
∑

i=1,j=1
WS(i, j) · [WT(i, j)]α

H,W
∑

i=1,j=1
WS(i, j)

, (16)

In MDA-SVQM, the temporal information within an sGoF have been considered
in TVJD. Here, we only need to consider the temporal information between sGoFs. As
analyzed previously, most of the scene information in stereo video is contained in low
frequency subbands. Therefore, when calculating the quality weight of each sGoF, the low
frequency subbands of each sGoF can be reorganized as a three-dimensional information,
and the weight of each frame can be calculated by STEW.

Finally, the weight of each frame in the three-dimensional information is considered as
the weight of each sGoF. The final stereo video quality can be obtained by STEW weighting
of the sGoF quality. Let QsV denote stereo video quality, it can be expressed as

QsV =

N
∑

i=1
WS−T(i) · qsG(i)

N
∑

i=1
WS−T(i)

, (17)

4. Experimental Results and Analysis

In this section, we will first introduce the stereo video database and performance indi-
cators used in this work for performance evaluation. Then, the performance of each module
in MDA-SVQM is verified to prove the effectiveness of the proposed framework. Finally,
the overall performance of MDA-SVQM will be further illustrated by the performance com-
parison with other existing SVQMs. It should be noted that the quality metrics are realized
in MATLAB® R2014a, and a computer with Intel(R) Core (TM) i7-3770 CPU @3.40 GHz,
8G RAM, Windows 7 64-bit is used for the verification of metrics in two databases.

4.1. Stereo Video Database and Perforamnce Indicators

In our work, a stereo video database is set up by subjective experiment, which is named
as NBU-3DV database. Here, the NBU-3DV database is utilized to train for sGoF quality
prediction model. Then, the validation experiment and performance comparison are carried
out in the internationally acknowledged NAMA3D-COSPAD1 database (abbreviated as
NAMA3D database) [16]. At the same time, a series of performance indicators are employed
to evaluate the performance of objective metrics. Here, we will briefly introduce the
corresponding database construction and performance indicators.

4.1.1. NAMA3D-COSPAD1 Stereo Video Database

The NAMA3D database contains 10 undistorted stereo videos with a resolution of
1080 × 1920 at 25 fps as reference. Meanwhile, the database also contains 100 symmetric
distorted stereo videos generated from reference videos. Specifically, five types of distortion
are considered in the NAMA3D database, including H.264 compression, JP2K compression,
reduction in resolution, image sharpening and down-sampling with sharpening. The mean
opinion score (MOS) with a range of 1 to 5 is used to represent the subjective quality of
distorted video. The higher the MOS value is, the better the quality of distorted video is.

4.1.2. NBU-3DV Stereo Video Database

As previously mentioned, in this work, an sGoF quality prediction model should be
constructed by SVR. Generally speaking, it is not reliable to share the same dataset for
training and prediction in regression. Based on the above considerations, we establish an
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NBU-3DV database by subjective experiment. In this section, we will briefly introduce the
subjective experiment and NBU-3DV database construction.

In construction of the database, firstly, we select six pairs of undistorted stereo video
as reference videos, which are all publicly available standard stereo video for encoding
test. The reference videos have HD or full HD resolution with a YUV 420 format in .avi
containers of a 10-s time duration. In Figure 5, first frames in left view of reference stereo
videos in NBU-3DV database are illustrated. In order to comprehensively and accurately
test SVQMs’ performance for all types of videos, we fully considered the intensity of video
motion and the complexity of scene information in sequence selection. In Figure 6, the SI
and TI scatter plots of all reference videos in NBU-3DV are given, which are calculated
by averaging the SI and TI of left and right view, respectively. Obviously, the points’
distribution in Figure 6 is scattered, which proves the rationality of reference video selection
in NBU-3DV database.
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Figure 5. First frames in left view of reference stereo videos in NBU-3DV database: (a) Break dancer; (b) Kendo; (c) Balloons;
(d) Newspaper; (e) Ballet; (f) Lovebird1.
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As for distorted video generation, we use HEVC [28,29] to encode the reference
stereo videos. This distorted stereo video generation method is mainly based on two
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considerations. Firstly, with the increase in resolution, the efficient compression of stereo
video is highly demanded. Meanwhile, HEVC is the most commonly used encoding
standard for stereo video. In detail implementation, by changing the reference direction
(intra coding/random access) and QP (QP = 26/32/38/44), a total number of 48 pairs of
stereo videos with different distortion degrees can be obtained (6 reference videos × 2
reference direction × 4 QPs = 48 distorted videos). In the subjective experiment, 20 subjects
were selected to watch the distorted stereo video and scored. Specifically, 20 subjects were
asked to watch the test stereo videos. For stereo video display, Samsung 3DTV (model
number: UA65F9000) was chosen for stereo display. In detail, we played the test video
in 3D mode of the TV, and the viewer watched through electronic 3D glasses with a TV
adapter. Meanwhile, the Absolute Category Rating with Hidden Reference (ACR-HR) on
five discrete scores has been performed as the subjective scoring method. Similar with
NAMA3D database, a MOS value with a range of 1 to 5 is used to represent the quality
of distorted stereo video. For better illustration, the distorted stereo video in NBU-3DV
database, Figure 7 provides the frames in distorted stereo videos encoded with different
QPs and corresponding MOS scores obtained from subjective evaluation. Meanwhile, we
have enlarged the region where the balloon is located in the image, so that distortion degree
of different videos can be easily seen.
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Figure 7. Distorted stereo video frames in NBU-3DV database with corresponding subjective qualities: (a) QP = 26,
MOS = 4.64; (b) QP = 32, MOS = 3.71; (c) QP = 38, MOS = 2.92; (d) QP = 44, MOS = 2.05.

4.1.3. Performance Indicators

Three commonly used measures are applied to quantitatively evaluate the perfor-
mance of the quality metric, that is Pearson linear correlation coefficient (PLCC), Spearman
rank correlation coefficient (SROCC) and Root mean squared error (RMSE). The illustration
and detail calculation of the performance indicators are as follows.

(a) PLCC

PLCC reflects the linearity between subjective quality and quality evaluated by an
objective quality metric. The value range of PLCC is −1 to 1. The closer the absolute value
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of PLCC is to 1, the better the evaluation performance of the objective metric. Otherwise,
the worse. The calculation of PLCC can be expressed as

PLCC =

n
∑

i=1
(oqi − oq)(sqi − sq)√

n
∑

i=1
(oqi − oq)

n
∑

i=1
(sqi − sq)

, (18)

where n represents the total number of distorted stereo video. oqi and sqi denote the
objective and subjective quality of i-th distorted video, and oq and sq are the average
objectived and subjective quality of all distorted video.

(b) SROCC

SROCC is employed to measure the monocity between subjective quality and objective
quality. The value range of SROCC is [−1, 1]. When subjective and objective qualities are
strictly monotonic, the absolute value of SROCC is 1. The SROCC can be calculated as

SROCC = 1−
6 ·

n
∑

i=1
(Roqi − Rsqi)

2

n · (n2 − 1)
, (19)

where Roqi and Soqi denote the rank of i-th objective and subjective quality in all objective
and subjective qualities, respectively.

(c) RMSE

RMSE quantitatively reflect the numerical distance between subjective and objective
quality. RMSE values from 0 to infinity. Obviously, the smaller the RMSE, the better the
performance of objective metric. Detail calculation can be expressed as

RMSE =

√
1
n

n

∑
i=1

(oqi − sqi)
2, (20)

In summary, for a perfect objective quality metric, PLCC and SROCC should be close
to 1, and RMSE should approximate to 0.

4.2. Verification of Each Module in MDA-SVQM

MDA-SVQM mainly consists of four modules, including stereo video decomposition,
feature extraction, GoF quality prediction and stereo video quality pooling. Among them,
the innovation of this work mainly lies in TVJD, as well as the new STEW weighting
function. Therefore, the effectiveness of TVJD and STEW is verified in this subsection.

4.2.1. Verification of TVJD

In MDA-SVQM, TVJD is used for sGoF decomposition. To achieve the purpose of
efficient decomposition, TVJD adaptively selects the optimal decomposition direction
according to the scene characteristics. To prove the scene adaptability of TVJD, we choose
stereo video Boxer from NAMA3D database for testing in this part. Figure 8 shows the
order of inter-view decomposition in optimal decomposition structure selected by TVJD
for each sGoF in video Boxer.

As previous mentioned, temporal correlation is stronger than intra-view correlation
for most stereo video. Hence, it can be seen from Figure 8 that intra-view decomposition is
usually performed after temporal decomposition in some of the earlier sGoFs. However,
from sGoF 14 to sGoF 19, the priority of intra-view decomposition is continuously improved.
In order to better illustrate and analyze such changes, the first frames in the left view of
sGoF 1 and sGoF 14 are shown in Figure 8. It can be found that only one person moves in
sGoF 1, and the motion intensity is not severe. Hence, the temporal correlation is stronger
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than intra-view correlation. Consequently, the structure of 4T + V is selected by TVJD,
that is, the inter-view decomposition is implemented after all temporal decomposition.
However, from sGoF 14, a second person appears, and the moving intensity has been
greatly increased compared with that before. Therefore, from this sGoF, the temporal
correlation gradually decreases, and the intra-view correlation gradually exceeds the
temporal correlation. As for the optimal decomposition structure, the order of inter-view
decomposition gradually advanced, and the structure of 2T + V + 2T or 3T + V + T are
chosen. Through the above experimental results and analysis, it can be concluded that
TVJD can adaptively construct the optimal decomposition structure according to correlation
in two directions and lay a good foundation for feature extraction and quality evaluation.
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4.2.2. Verification of STEW

In MDA-SVQM, STEW is employed to weight the sGoF quality and yield the final
stereo video quality. Obviously, since the inter-view-temporal information in stereo video
has been processed in TVJD, STEW only considers the spatial-temporal information in
sGoF weighting. Based on the above premise, in this part, we adopt LIVE video quality
database for validation of STEW. To reflect the performance of STEW in temporal weighting
more accurately, we design several different evaluation schemes for comparison. In detail
implementation, the SSIM is applied to calculate the image quality of each frame in a
video. Then, different weighting strategies are adopted for temporal quality pooling. To
be specific, temporal average pooling, temporal asymmetric pooling [18] and temporal
fluctuation pooling [30] are chosen. Finally, for quantitative comparison, we tested all the
temporal pooling strategies on the LIVE video database. The performance indicators are
listed in Table 4. The experimental results demonstrate that when the same metric is used
for each frame’s quality evaluation, the temporal weighting of STEW can significantly
affect the performance of the quality metric. Obviously, the experimental results also
show that compared with other temporal pooling strategies, the proposed STEW is more
consistent with the human eye’s perception of spatial-temporal information, to improve
the evaluation performance of video quality metric.
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Table 4. Performance indicators of quality metrics with different temporal pooling strategies in LIVE
video database.

Temporal Pooling Strategy PLCC SROCC RMSE

Average Pooling 0.7065 0.6947 0.7769
Asymmetric Pooling [20] 0.7181 0.7077 0.7698
Fluctuation Pooling [30] 0.7115 0.7054 0.7709

STEW based Pooling 0.7216 0.7092 0.7510

4.3. Overall Performance Evaluation

In this subsection, we evaluate the performance of the proposed MDA-SVQM in
NAMA3D database and NBU-3DV databases, and performance comparison with other
existing well-performed SVQM is also conducted. In MDA-SVQM, the sGoF quality
prediction model is established by SVR. In order to ensure the reliability of the performance
evaluation, we repeat the train-test procedure for 100 times and select the median value of
performance indicators as the final performance indicators. At the same time, two different
methods are used in training datasets selection:

(1) Randomly select the distorted stereo videos in NAMA3D database to construct the
test dataset, that is, 80% of the distorted video is used as the training data, and the
remaining 20% is the training dataset, and no overlap between two sets;

(2) Adopt NBU-3DV database as the training dataset and test on NAMA3D database.

By the above implementation, it can be ensured that the indicators obtained in the per-
formance verification experiment are accurate and reliable to fully reflect the performance
of the quality metric. In comparative methods selection, we first select the traditional IQM
(PSNR and SSIM), and then a series of existing well-performed SVQM is also contained.
With regards to 2D metrics, we apply them on each view and frame, then take the average
value as the approximate quality of stereo video.

Firstly, Table 5 shows the performance comparison between the MDA-SVQM and
existing quality metric in NBU-3DV database. In addition, the metric noted with cross-
database represents that the performance indicators are obtained by cross database training.
Theoretically, for the listed metrics, the performance of PSNR should be worse than SSIM,
and MNSVQM should report the highest indicators. Obviously, the results in NBU-3DV
database are consistent with the theoretical analysis, which proves that the construction
of the database is reliable. Consequently, the sGoF quality prediction model trained by
the database can accurately evaluate the quality of each sGoF. Meanwhile, MDA-SVQM
jointly considers multi-dimensional information. Hence, compared with the traditional
metrics, MDA-SVQM has a significant improvement in evaluation performance. In all, the
experimental results in this part not only prove the accuracy and reliability of the NBU-3DV
database, but also verify the performance of proposed MDA-SVQM.

Table 5. Performance Indicators of Different Metrics on NBU-3DV Database.

Metric PLCC SROCC RMSE

PSNR 0.7663 0.7419 0.7254
SSIM [7] 0.8006 0.7934 0.5217

MNSVQM [22] 0.8998 0.8846 0.4608
MDA-SVQM 0.9328 0.9226 0.3562
MDA-SVQM

(cross-database) 0.9004 0.8892 0.4627

On the other hand, Table 6 shows the performance comparison of MDA-SVQM and a
series of existing well-performed metrics on the internationally acknowledged NAMA3D
database. For better visualization, the two indicators with the best performance are marked
in bold. It should be noted that MDA-SVQM-1 represents that sGoF quality prediction
model uses the distorted stereo video in NAMA3D database for both training and testing.



Entropy 2021, 23, 1129 18 of 21

While MDA-SVQM-2 uses the distorted stereo videos in NBU-3DVdatabase as the training
dataset and uses the distorted videos in NAMA3D database as the test dataset. It can be
seen from this table that the proposed method performs better than other methods when
cross database strategy is not used for training and test. Of course, to improve the reliability
of performance evaluation, even if the cross-dataset method is used for training and test, the
performance indicators of proposed method is better than most SVQA methods. That is, it
can still maintain high evaluation performance. The comparison of the above experiments
proves that proposed method has good stability and universality.

Table 6. Performance Indicators of Different Metrics on NAMA3D Database.

Metrics PLCC SROCC RMSE

PSNR 0.6699 0.6470 0.8433
SSIM [7] 0.7664 0.7492 0.7296
VQM [9] 0.6340 0.6006 0.8784

PHVS-3D [10] 0.5480 0.5146 0.9501
3D-STS [11] 0.6417 0.6214 0.9067
BSVQE [19] 0.8124 0.8009 0.4952

Metric in [21] 0.6503 0.6229 0.8629
MNSVQM [22] 0.8545 0.8349 0.4538
MDA-SVQM-1 0.8884 0.8765 0.4451
MDA-SVQM-2 0.8765 0.8698 0.4489

Meanwhile, in order to further prove the extensibility of MDA-SVQM, the performance
indicators for different types of distorted video in NAMA3D database are given in Table 7,
and the boxplots of different performance indicators are also provided in Figure 9. It should
be pointed out that there are only 10 pairs of distorted stereo videos in the distortion type
of reduction in resolution, sharpening, down-sampling and sharpening. To ensure the
stability of the test results, we combine these three types of distortion and those denoted as
D&S distortions. The experimental results demonstrate that MDA-SVQA is well-performed
on different type of distortion in NAMA3D database, which confirms that MDA-SVQA
works well for different types of distortion.

Table 7. Performance indicators of different types of distortion in NAMA3D database.

Distortion PLCC SROCC RMSE

H.264 0.9042 0.9071 0.4264
JP2K 0.8828 0.8796 0.4773
D&S 0.8765 0.8711 0.4902
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4.4. Discussion

In the above experiments and analyses, we verify the accuracy and validity of the
proposed MDA-SVQM. To prove the positive role of each module in MDA-SVQM, we de-
signed different experimental schemes. First, by analyzing the decomposition direction of
TVJD for a specific test video, we prove that TVJD can adaptively select the decomposition
direction according to the scene characteristics, to achieve the purpose of efficient decom-
position. On the other hand, for sGoF quality weighting, we prove the validity of STEW by
comparing with the traditional temporal pooling strategies on video quality. Finally, by
comparing the performance with the existing well-performed SVQM on NAMA3D and
NBU-3DV databases, it is shown that the MDA-SVQM has excellent stereo video quality
evaluation performance.

Based on this work, there is still plenty room for further analysis and research. Firstly,
in decomposition for sGoF, although the purposely designed TVJD decomposes the corre-
sponding pixels in inter-view or temporal direction by matching and compensation, which
improves the decomposition efficiency. However, the correlation between pixels and pixels
in the spatial domain is ignored. That is, decomposition is not implemented for objects
in the scene. Hence, in subsequent research, we can attempt to integrate semantically
related decomposition strategies, which can achieve object-based decomposition, thereby
further enhancing the performance of decomposition. Meanwhile, in MDA-SVQM, for the
subbands generated by TVJD, the corresponding feature extraction strategies are selected
by analyzing the composition and generation mechanism of the subbands. Although the
proposed method considers the validity of subband information and feature extraction to
some extent, there is room for further improvement. On the one hand, it is not comprehen-
sive to analyze the nature of subband coefficients only from the perspective of generation
mechanism. Obviously, even in the subbands of the same frequency component, there will
be differences in the properties because of the different content they contained. Therefore,
further studies will attempt to do a more detailed and comprehensive subband analysis
from the perspective of the scene objects and the motion in the video. On the other hand,
MDA-SVQM extracts features from the perspective of statistical characteristics. Although
SWT features can be used to reflect the intrinsic characteristics of coefficients, they are
essentially a gradient-based feature extraction strategy. Therefore, in the future research,
we can attempt to analyze the high-dimensional information in the TVJD subband from
the perspective of deep learning and data mining, so that feature extraction can more
accurately reflect the distortion of stereo video.

5. Conclusions

Stereo video contains both stereo information generated by left and right views and
spatial-temporal information generated by video, which makes it difficult to describe in
the design of quality metric. Aiming at this problem, in this work, we propose a new qual-
ity metric based on multi-dimensional analysis (MDA-SVQM). Specifically, by analyzing
temporal and inter-view correlation, the optimal decomposition structure is adaptively
constructed to complete the decomposition of sGoF by TVJD. Then, according to the char-
acteristics of different subbands, the subbands are classified and the corresponding quality
features are extracted. At the same time, sGoF quality is obtained by regression. Finally,
an STEW function is designed to weight the sGoF quality, so as to obtain the stereo video
quality. Experimental results on NAMA3D database and NBU-3DV databases show that
MDA-SVQM is reasonable and effective in structure, better in performance than the exist-
ing SVQM, and can accurately measure the distortion of stereo video. In the future work,
TVJD can be further analyzed and improved. Firstly, an object-based decomposition can be
attempt to design for better consistency with visual perception. Secondly, the characteristics
of TVJD subbands should also be further explored, so as to extract the corresponding sub-
band feature more accurately. Another, future study will focus on integrating MDA-SVQM
in stereo video coding, especially for coding parameter optimization. Thus, the proposed
metric can eventually contribute to the watching experience improvement.
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