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The ability to build upon previous knowledge—cumulative cultural
evolution—is a hallmark of human societies. While cumulative cultural evol-
ution depends on the interaction between social systems, cognition and the
environment, there is increasing evidence that cumulative cultural evolution
is facilitated by larger and more structured societies. However, such effects
may be interlinked with patterns of social wiring, thus the relative impor-
tance of social network architecture as an additional factor shaping
cumulative cultural evolution remains unclear. By simulating innovation
and diffusion of cultural traits in populations with stereotyped social struc-
tures, we disentangle the relative contributions of network architecture from
those of population size and connectivity. We demonstrate that while more
structured networks, such as those found in multilevel societies, can pro-
mote the recombination of cultural traits into high-value products, they
also hinder spread and make products more likely to go extinct. We find
that transmission mechanisms are therefore critical in determining the
outcomes of cumulative cultural evolution. Our results highlight the com-
plex interaction between population size, structure and transmission
mechanisms, with important implications for future research.
1. Background
Cumulative cultural evolution (CCE)—where iterative innovations and social
transmission generate cultural accumulation over time [1–3]—is key to
humans’ ecological success and worldwide distribution [4,5]. While CCE fun-
damentally depends on the interplay between cognition and social learning
mechanisms [1], it is increasingly clear that demography can modulate the
rate of cultural evolution [6–9]. Large population sizes [10,11], greater popu-
lation turnover and more densely connected societies [3,12] can all provide
greater innovative potential, more learning models, faster diffusion and
reduced extinction risk of useful innovations [7,13–15]. For example, increasing
population density as well as the migration of hunter–gatherers during the
upper Palaeolithic transition led to the explosion of culture that forms the
basis of modern human societies [8,15]. Yet it remains unclear how variation
in the wiring of these social connections shape the tempo of cumulative cultural
evolution.
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Network architecture—here defined as a social structure
with a characteristic set of properties—can shape trans-
mission of behaviours, thus setting the tempo of CCE—here
defined as the rate of cultural recombination events. For
example, architectures with low network connectivity (i.e.
density; the proportion of realized connections), high cluster-
ing (tendency of connected individuals to share the same
social neighbours) and high modularity (tendency of the net-
work to contain sets of individuals more connected to each
other than with others) slow down the spread of information
across populations [16–18]. The slower spread can then
potentially favour greater cultural diversity by allowing mul-
tiple cultural lineages to arise in populations before any one
lineage dominates [19,20]. While previous work has largely
focused on how new behaviours spread through a social net-
work [16,17] to establish cultures [20,21], and how cultural
traits can generate a feedback shaping network structure
[18,22], more recently it has been argued that emergent net-
work properties could affect CCE [12,14,19] by shaping
how new traits are produced, recombined and maintained
[14]. For example, partial connectivity facilitates the emer-
gence of multiple cultural lineages in parallel [20], which is
required for achieving cultural accumulation, but partially
connected networks suffer from cultural loss if connectivity
is too low for new innovations to spread [14]. By contrast,
full connectivity facilitates the rapid spread of new inno-
vations, but can prevent the accumulation of alternative
cultural traits [12,14]. However, within a given level of con-
nectivity, how connections are structured—the social
network architecture—could also impact CCE by influencing
how fast and widely information can spread.

Because network architecture can shape the effect of con-
nectivity on diffusion dynamics [23], those architectures that
balance the ability for cultural accumulation together with
the recombination of different cultural traits should have a
selective advantage in facilitating CCE [19]. Multilevel
societies, such as those in modern hunter–gatherers, feature
high clustering and nested modularity. These network proper-
ties are expected to favour CCE by allowing coexistence of
multiple cultural traits in different parts of the network, and
for different cultural lineages to come into contact to allow
combinations from lineages to produce new traits [19]. Multi-
level societies have been demonstrated to accelerate CCE
when compared to fully connected networks [19]. However,
when considering their potential for facilitating CCE, multile-
vel and fully connected networks represent possible
endpoints along a continuum of possible architectures. Here,
we ask how a range of social network architectures can
affect the tempo of CCE within a given population size and
number, or density, of social connections within that popu-
lation. Our approach allows us to explicitly disentangle the
relative contribution of network architecture from those of
connectivity and population size.
2. Material and methods
(a) Overview
We first generated social networks with six different architectures—
random, small-world, lattice, modular, modular lattice and multi-
level—capturing different levels and combinations of clustering
and modularity (figure 1a). We expressed these network architec-
tures in populations with different sizes and densities of
connections (average degree), where all individuals in the network
had the same degree. We then built two agent-based models to
explore how network architecture affects cumulative culture evol-
ution. Briefly, our models allow innovations of cultural products to
take place along two cultural lineages, with the knowledge of new
products being spread through social connections via two trans-
mission mechanics: either one-to-many or one-to-one diffusion.
Once a high level of product diversity has been reached in both
lineages, agents can recombine each lineage’s products into one
with a final higher-payoff product (hereafter ‘recombination’).
Finally, we compared the performance of agents arranged in the
different network architecture in terms of time to cultural recombi-
nation (i.e. tempo), time to diffusion and the diversity of
cultural traits.

(b) Social network architectures
We generated networks in which nodes representing individuals
were linked by binary social relationships to represent the follow-
ing six stereotypical social structures. We generated: (i) small-
world networks, using the Watts–Strogatz model [23] with
node degree K links; (ii) random networks, by randomly connect-
ing nodes ensuring all nodes had the same degree K; (iii) lattices,
by placing nodes on a grid and connecting each to its K nearest
neighbours; (iv) modular networks, by assigning nodes into nine
modules, randomly connecting each to K− 1 nodes from the
same module and one node from another module; (v) modular
lattices, as per modular networks, but where the connections
within modules were lattices; and (vi) multilevel networks, as
per modular lattices, but assigning nodes into three sets of
three modules, and connecting each to K− 2 nodes within their
module, one node from each module from within its set and
one node from a module outside of it.

Each network architecture differs in clustering and modular-
ity, but we standardize their connectivity (degree) and
population size. For each architecture, we generated an ensemble
of networks with different sizes (N ∈ {64,144,324} nodes), and
densities of connections (in which K∈ {8,12,18,24,30} average
links). We used these population sizes because they allowed us
to partition the network into equally sized clusters composed
of equally sized groups in which all individuals had the same
degree, and in which connectivity was greater within groups
and within clusters than between groups and between clusters.
Although all networks had comparable sizes and densities (i.e.
the proportion links), the six architectures varied in levels and
combinations of clustering coefficient and modularity. Cluster-
ing, C, informs the tendency of connected nodes to share the
same connections with other nodes, while modularity, Q,
informs the tendency of the nodes to be organized into cohesive
subsets that are more connected to each other than to the rest of
the network [24].

(c) Cultural evolution simulations
We constructed two agent-based models to simulate cultural
evolution on the different types of network architectures. The
two models differed in the mechanics of information trans-
mission: one-to-many versus one-to-one diffusion pathways.
Our first agent-based model (model 1) followed Migliano et al.
[19]. All agents were initialized with an inventory of three
items from each of two lineages. In each simulation round
(epoch), each focal agent was selected once, at random, and a
partner randomly chosen from its social network connections.
These agents combined one or two items from their inventory
in proportion to their value into a triad of items. If this triad
was a valid product, knowledge of that product was learned,
spread immediately to all their network connections (one-
to-many diffusion), and subsequently became available as an
ingredient for making new products. Simulations finished once
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Figure 1. Social network architectures, and the time to recombination for each architecture across population sizes and levels of connectivity using model
1. (a) Network architectures vary in clustering and modularity: Random (unclustered C = 0.03, non-modular Q = 0.24), small-world (clustered C = 0.52,
medium-modular Q = 0.63), lattice (clustered C = 0.45, medium-modular Q = 0.54), modular (unclustered C = 0.23, modular Q = 0.82), modular lattices (clustered
C = 0.41, modular Q = 0.81), multilevel (clustered C = 0.42, modular Q = 0.83). Each binary network depicts populations with the same number of individuals
(here, N = 324 nodes) that have the same number of social connections (here, degree K = 12 links per node; density D = 0.037) but are wired differently. (b)
Cumulative incidence of recombination events ( y-axis) as a stepwise function over time (x-axis, log epochs) for small (N = 64), medium (N = 144) and large
population sizes (N = 324). The line shading represents the amount of network connectivity (node degree K, where the lighter the shade, the smaller the
degree (K∈ {8,12} for N = 64; K∈ {8,12,18,24} for N = 144; K∈ {8,12,18,24,30} for N = 324). Vertical dashed lines indicate the median of time to recombination
(S(t)≤ 0.5) per network connectivity, across architectures. The time to reach recombination was truncated to 100 epochs for better visualization. Curves were
calculated based on 5000 simulations. (Online version in colour.)
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a recombination product (a triad that recombines specific pro-
ducts from both lineages) was first innovated. We ran 5000
simulations for each of the network architecture types, sizes
and densities of connections, recording time to achieve the
recombination product (in epochs) and tracking the diversity of
cultural innovations over time. An epoch was one simulation
round in which each agent was selected once as a focal agent
in random order.

Our second agent-based model (model 2) extended the first
by changing the transmission mechanic and altering the set of
valid combinations such that the model can run past the first
innovation of either recombination product. Transmission of
valid products now occurred between dyads of agents (one-to-
one diffusion) prior to choosing items from their inventory, in
contrast to the broadcast style of diffusion in model 1. Secondly,
if a triad contained either recombination products, the final pro-
duct was that recombination product. In the case where both
recombination products were present in the triad, one was
chosen as the final product at random. This allowed us to track
the diffusion of recombination products beyond their innovation.
We also ran 5000 simulations for the same parameter space of
model 1, recording time (in epochs) to cultural lineage
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recombination, as well as time to diffusion to the majority of the
network (i.e. the latency to more than (N/2) + 1 nodes having a
high-value product).

(d) Data analyses
We compared the performance of agents organized in the differ-
ent social network architectures in terms of the time to
recombination, time to diffusion and the diversity of cultural
lineages over time. To compare time to recombination, we used
time-to-event (survival) analyses [25] where time to recombina-
tion was a function of network architecture and connectivity.
Our simulations yielded time-to-event data, so we used the fol-
lowing methods from survival analysis, which are suitable for
such data. For each population size, we used the cumulative inci-
dence function to estimate the proportion of simulations in
which agents reached the recombination of each cultural
lineage’s products into a final high-payoff product (the ‘event’).
We used the non-parametric Kaplan–Meier product limit estima-
tor to estimate the ‘survival function’ from this time-to-event
data; since we represented the time intervals based on observed
recombination events from 5000 simulations from model 1, we
also calculated the 95% confidence intervals (using the Green-
wood estimator). To measure variance in time to recombination
across population sizes, we measured the quartile coefficient of
dispersion (QCD = (Q3 −Q1)/(Q3 +Q1)), as this variable is not
normally distributed and QCD offers a more robust measure.

While statistics are not typically performed on data from
agent-based models since the posterior is directly sampled, we
wanted to quantify the relative contributions of architecture,
size and connectivity without the cumbersome descriptions of
the entire distribution (distributions can be readily seen in
figure 2). For both models 1 and 2, we created three sets of gen-
eralized linear models (GLMs) that predicted logged time to
recombination (in epochs). Time to recombination was logged
to account for non-normality of residuals, and to make compari-
sons more fair by bringing the mean closer to the median of the
distribution. All models used log link function, as the data was
nonlinear conditional on predictors, even after the log transform-
ation. Also, the log link function allowed the presentation of
exponentiated coefficients, which simplify the comparison to
the reference (here, the random networks at the GLM intercept).
The first set of GLMs used a full interaction structure to partition
the relative contributions of architecture, size and connectivity to
the average time to recombination (electronic supplementary
material, table S1), excluding fully connected networks. To
then compare fully connected networks to all other networks,
we built a GLM using architecture and population size as predic-
tors in a full interaction structure (electronic supplementary
material, table S2). Connectivity was excluded as a predictor, as
all fully connected networks only have 1 possible degree (K =
N− 1). Finally, to compare differences between architectures
more precisely, we subset data by connectivity and population
size and performed a GLM with only architecture as a predictor
for each subset, again excluding fully connected networks. We
performed all data analyses in R [26], using ‘survival’ [27] and
‘survminer’ [28] packages.
3. Results
When comparing the time to cultural recombination across
population sizes and levels of connectivity, partially connected
networks consistently outperform fully connected networks
[12,14,19]. A GLM indicated that fully connected networks
were, on average, 65% slower (GLM, exp(β) = 1.652, t = 59.208,
p < 0.001; electronic supplementary material, table S1) com-
pared to the least structured network architecture of the
same size (random, N = 64 taken as the intercept), with similar
decreases in performance independent of size. Further, we also
confirm [7] that larger populations take less time (about
40% less) to reach recombination (GLM, exp(β) = 0.618, t =−
68.481, p < 0.001) compared to networks of the same architec-
ture and connectivity (figures 1b and 2; electronic
supplementary material, table S2). Larger partially connected
network architectures were less variable in their time to recom-
bination (quartile coefficient of dispersion: QCD = 0.688 for
N = 64; QCD = 0.444 for N = 144; QCD = 0.273 for N = 324;
figure 2a). We also found that time to recombination was opti-
mized at intermediate densities of connections, confirming
that intermediate levels of connectivity can favour CCE [14],
and revealing that the optimal level of connectivity varied
with population size (figure 1b). In the smallest population
(N = 64), sparse networks outperformed the others, but this
was reversed in the largest population (N = 328) (figure 1b).
However, differences in time to recombination were generally
small (figures 1b and 2a).
(a) Architectures favouring cumulative cultural
evolution under some conditions disfavour it under
other conditions

Under the one-to-many diffusion mechanism (model 1), multi-
level, modular and modular lattice architectures had relatively
shorter times to recombination in smaller populations with
greater connectivity and in larger populations with less con-
nectivity (figure 3a). However, such network architectures
performed worse than lattice, small world and random archi-
tectures in smaller populations with less connectivity and in
larger populations with greater connectivity (figure 3a). Multi-
level, modular and modular lattice architectures were optimal
at lower and higher levels of connectivity in medium-sized
populations (N = 144, figure 3a), although connectivity gener-
ally had a lesser impact for these architectures relative to
random, small-world and lattice architectures (figure 1b). Sur-
prisingly, multilevel performed the worst in seven out of the 11
size and connectivity combinations (figure 3a) despite having
the highest clustering and modularity—properties that have
been predicted to favour CCE [19]. The modular lattice archi-
tecture (which had similar modularity and clustering to
multilevel architecture) performed best in the other four com-
binations (figure 3a). Thus, no one network architecture
proved optimal, with those favoured under some conditions
being disfavoured under other conditions.

The large variation in the time to recombination (figure 2)
within a given combination of network architecture, popu-
lation size and density of connections suggests that the
outcomes of a simulation were predominantly driven by sto-
chastic events. The impact of such stochasticity is best
revealed by the bimodal outcome for partially connected net-
works, which arises most often in smaller populations
(figure 2a). This bimodality occurs because there are fewer
independent innovation events when there are fewer individ-
uals, which increases the chance that cultural products all
emerge from the same lineage and, therefore, that this single
lineage spreads to the whole population before the other line-
age is innovated. Tracking the diversity of products over time
(figure 4; electronic supplementary material, figure S1) high-
lights how the stochasticity in early events can affect cultural
diversity, and therefore the outcomes of CCE, even within
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the same network architecture. Overall, measuring the tempo
of CCE under one-to-many diffusion (model 1) revealed differ-
ences in the best performing architecture across population
sizes and levels of connectivity (figures 2a and 3a); however,
these between-architecture differences were small (range =
0.886–1.145; figure 3a), compared to the large variance in the
time to recombination within architecture (figure 2a).

(b) The same architectures that promote diversity also
restrict transmissions of novel products

To identify the relative contribution of diffusion mechanisms
to CCE, we extended model 1 by implementing a one-to-one
diffusion mechanism (model 2). Whereas model 1 represents
an extreme scenario where information spreads instan-
taneously to all the contacts of a focal agent, model 2 tests
another extreme in which information about discoveries
spread only to a single contact at a time. Interestingly,
when employing such one-to-one diffusion dynamics, fully
connected networks were only estimated to be 3% slower to
recombination compared to networks of the same population
size (GLM, exp(β) = 1.033, t = 6.808, p < 0.001; electronic sup-
plementary material, table S1). Again, larger populations
had a significantly shorter average time to recombination
compared to smaller networks of the same architecture and
degree (GLM, exp(β) = 0.595, t =−109.094, p < 0.001; figure 2b,
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electronic supplementary material, table S2). However, under
one-to-one diffusion, the relative times to recombination of
different architectures was generally more consistent than
under one-to-many diffusion, both in their median times to
recombination (figure 2b) and in their relative performance
under a given population size and level of connectivity
(figure 3b). Within a given population size, multilevel architec-
ture typically had the shortest times to recombination when
networks had greater connectivity, but there was almost no
difference in performance among architectures when connec-
tivity was low (figure 3b). Thus, in contrast to one-to-many,
one-to-one diffusion increased the tempo for architectures
with greater modularity and clustering (modular, modular
lattice, multilevel) relative to the other architectures.

Model 2 also tracked the time for the recombination pro-
duct to diffuse to the majority of the population, something
which model 1 was not designed to track. The time from
recombination to diffusion was shortest in fully connected
networks, and increased with population size (figure 2c).
When evaluating performance from the start of the simu-
lations until the time to diffusion, population size caused
the most variation in outcomes, compared to network archi-
tecture or connectivity (electronic supplementary material,
table S2). In small populations, the contribution of the final
diffusion was relatively small compared to the time to recom-
bination, meaning that the best performing networks in
achieving recombination also performed best overall
(figure 3c). By contrast, in larger populations, the perform-
ance of modular and clustered network architectures
(modular, modular lattice and multilevel) all performed
worse: they were the slowest at reaching final diffusion
(figure 3c) despite typically reaching recombination the fast-
est (figure 3b). These differences, however, remain minor
relative to the variance in outcomes within each set of
conditions (architecture, population size and connectivity).
4. Discussion
We revisited recent empirical and in silico experiments in
humans to tease apart the contributions of different candidate
social structures to the tempo of cumulative cultural
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evolution. Our results suggest that it is unlikely that one
specific social network architecture consistently promotes
cumulative cultural evolution across all population sizes,
densities of social connections or diffusion mechanisms.
Rather, the relationship is nuanced; the broad distribution
of outcomes from our two models indicate that the best per-
forming architecture under some conditions can be the worst
performing architecture under others. Further, the outcome of
any diffusion mechanism is as likely to be affected by stochas-
tic processes as by the architecture of the networks itself.
While not at odds with previous work showing that multile-
vel societies can accelerate cumulative cultural evolution [19],
our results suggest that a range of other partially connected
architectures could equally increase the tempo of cumulative
cultural evolution.

The fact that alternative architectures can have similar
outcomes in terms of CCE has important consequences for
how the social structure of societies and CCE are framed in
future discussions, and where future research is directed.
Current thinking is that complex, highly structured societies,
such as multilevel societies, might precede recombinatory
CCE in the timeline of human evolution, or that the benefits
accrued from cultural evolution [22] or CCE [19] might co-
evolve with clustered and modular network structures. How-
ever, our results suggest that simple patterns of spatial
distribution (e.g. a lattice social network caused by distribu-
ted resources) could lead to largely equivalent effects on
CCE. It follows that we might expect to find recombinatory
CCE even before the evolution of complex societies. Indeed,
evidence that simple, lattice-like social structures [29] can
provide a substrate for recombinatorial culture might be pro-
vided by the combinatorial, spatially variable song structure
of territorial passerine birds [30–34], which several authors
have proposed to be a simple form of CCE [35,36].

Population size has been suggested as another major
demographic factor affecting rates of CCE [3,7–9]. Our find-
ings align with this previous research, with our simulations
showing that larger populations always have a higher rate
of cultural accumulation. Population size also interacted
with connectivity (which we modelled as a fixed network
degree, i.e. the number of individuals’ social connections
[22]), with changes in connectivity having a more pro-
nounced effect in smaller populations. This outcome is
likely to arise because an increase in one unit of mean
degree corresponds to a greater increase in network connec-
tivity in smaller populations (more rapidly pushing the
network towards becoming fully connected). However, in
our simulations, we did not vary the distribution in connec-
tivity among individuals, which has previously been shown
to impact the properties of information cascades [37] and
differences among groups in behaviours such as cooperation
[38]. Skewed degree distributions, where some nodes are
much more connected than others, could allow independent
lineages to arise in peripheral nodes and for highly connected
‘hubs’ to combine the products from these lineages, thereby
facilitating CCE. Thus, variation in how much or how little
individuals are connected, independently of other factors
(mean connectivity, population size and network properties),
is an important dimension for future studies on CCE to
consider.

Fully connected networks have been commonly used to
evaluate the performance of a transmission network with a
given set of characteristics [3,19]. However, a fully connected
social network representing a human population of any
reasonable size would represent an unrealistically high level
of connectivity [39], even in the fractal-like human social net-
works [40]. In addition, our simulations demonstrate that the
contribution of large differences in connectivity to the rates of
CCE outweighs any effects of network architecture, at least
when information is broadcast (i.e. a one-to-many diffusion
mechanism). Thus, we suggest that fully connected networks
are uninformative null models for testing the influence of
social structure on the tempo of CCE. Instead, random net-
works of similar sizes and densities of connections as the
network of interest would provide a more robust benchmark
(see also [41]). Our results suggest, however, that any effect of
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network architecture on increased rate of CCE inferred from
noisy field data would probably be indistinguishable from
the null expectancy, as variation within architecture greatly
exceeded that of between architectures.

One major remaining question is how the diversity of cul-
tural lineages might affect CCE across different network
architectures. Our simulations were built on previous empiri-
cal and theoretical work that considered two cultural lineages
[12,19]. Increasing the number of lineages could potentially
reduce or increase the time to recombination, depending on
how the recombinations have to be made and on their pay-
offs. For example, recombinations from any two of three or
more lineages would probably emerge faster, as the prob-
ability that any two lineages survive is higher. By contrast,
recombinations requiring products from three lineages could
take substantially longer, especially in more connected net-
works (or with one-to-many diffusion dynamics), since all
three would have to become established. However, adding
more lineages would be unlikely to reduce the influence of sto-
chasticity in any given diffusion. This is especially the case in
highly connected networks or one-to-many diffusion
dynamics, because it would not stop one lineage from initially
dominating (when a single invention spreads throughout the
population, before another lineage is invented; see figure 4).
Rather, the tendency for one lineage to dominate would be
more heavily impacted by the payoff structure associated
with incremental improvements to products. While we do
not believe that increasing the number of lineages would sub-
stantially change the primary findings of this study, a
promising avenue for further research would be a more in-
depth exploration of how exposure to multiple cultural lineages
may shape the tempo and mode of CCE.

The evolutionary benefits of CCE not only rely on cultural
accumulation, but also on the ability for new cultural traits to
spread through populations. When we extended simulations
to examine the time from recombination to the diffusion of
the final higher-payoff product, our results suggested that the
network architecture hypothesized to improve time to recom-
bination (multilevel) paradoxically inhibited diffusion most.
These findings complement and extend previous studies
demonstrating that populations with partially connected net-
work structures can suffer from cultural loss when
connectivity becomes too low for new innovations to spread
[12], and that cultural evolution is more profoundly impacted
by the rates of information loss and transmission than differ-
ences in social network architecture [41]. Further, we show that
the relative performance of network architectures can change
dramatically when considering performance in terms of acqui-
sition of behaviour by the majority of individuals in a
population, as opposed to the time when a single individual
has reached cultural recombination, especially in larger popu-
lations. For example, while populations in a multilevel social
network architecture consistently reached recombination faster
than those organized as randomnetworksunderone-to-one dif-
fusion, themultilevel architecture then restricted the final spread
of higher-value cultural traits. These results therefore suggest
that multiple dimensions of performance—including every
step from innovations to the final acquisition of higher-valued
traits—may need to be considered when studying the role of
social structure in shaping CCE and vice versa.

Ourwork reinforces the need for studies of CCE to explicitly
consider how network structure interacts with transmission
mechanisms to form a realized transmission network. We
show that a very restrictive transmission dynamic (one-to-one)
mitigates the effect of network connectivity on CCE by generat-
ing a partially connected transmission network within an
otherwise fully connected social network. The consequences
of transmission dynamics on CCE were demonstrated, for
instance, by Migliano et al. [19] who found that CCE was
faster in simulations where transmission was limited to kin-
based connections (i.e. reduced connectivity). Under one-to-
one diffusion, independent lineages can develop in fully con-
nected networks because new information is not immediately
accessible to all, leading to more comparable performance
between fully and partially connected networks. Thus, when
simulating CCE, it is important to match the transmission
dynamics with the time scale of the model. One-to-many diffu-
sion can be realistic when each epoch represents one generation
(e.g. the innovation of a new medicine [19] could take tens or
hundreds of epochs to reach high recombinatory levels), while
the one-to-one diffusion might be more realistic when cultural
traits are simpler to recombine. The production and innovation
frequency, as well as transmission biases, may further vary
between species, populations, tasks and contexts. Together
with network structure, innovation frequency and transmission
biasesmay fundamentallyalter the transmissiondynamics—for
example, conformity overrides payoff biases [21,42] and homo-
phily reduces social connectivity [18,43]—fuelling evolutionary
feedbacks between network structure and cultural evolution
[22]. Both factors will therefore alter the resulting transmission
networks, potentially restricting the spread of new cultural
traits and slowing recombinatory CCE. More than highlighting
the intricate, yet nuanced, interplay between demography and
cultural transmission, our work strengthens our emerging
understanding that realized connectivity, rather than network
architecture, is important forcumulative cultural evolution [2,3].
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