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Assessing lymph node (LN) status during tumor resection is fundamental for the staging of
colorectal cancer. Current guidelines require a minimum of 12 LNs to be harvested during
resection and ultra-staging regional lymph nodes by sentinel lymph node (SLN) assessment is
being extensively investigated. The current study presents novel near-infrared (NIR)
fluorescent dyes for simultaneous pan lymph node (PanLN; regional) and SLN mapping.
PanLN-Forte was intravenously injected in mice and assessed for accumulation in regional
LNs. SLN800 was injected intradermally in mice, after which the collection and retention of
fluorescence in SLNs were measured using indocyanine green (ICG) and its precursor,
SLN700, as references. LNs in the cervical, inguinal, jejunal, iliac, and thoracic basins could
clearly be distinguished after a low dose intravenous injection of PanLN-Forte. Background
fluorescence was significantly lower compared to the parent compound ZW800-3A (p <
0.001). SLN700 and SLN800 specifically targeted SLNs with fluorescence being retained
over 40-fold longer than the current clinically used agent ICG. Using SLN700 and SLN800,
absolute fluorescence in SLN was at least 10 times higher than ICG in second-tier nodes,
even at 1 hour post-injection. Histologically, the fluorescent signal localized in the LN medulla
(PanLN-Forte) or sinus entry (SLN700/SLN800). PanLN-Forte and SLN800 appear to be
optimal for real-time NIR fluorescence imaging of regional and SLNs, respectively.
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INTRODUCTION

Adequate yield and correct assessment of lymph node (LN)
involvement in colorectal cancer (CRC) is of fundamental
importance for determining the prognosis of cancer patients and
guiding treatment decisions (1). Therefore, current guidelines of the
National Comprehensive Cancer Network and European Society for
Medical Oncology endorse a minimal harvest of 12 LNs as quality
indicator for CRC resections (1, 2). Obtaining an acceptable LN
yield remains an important issue, especially in left-sided and smaller
tumors, older patients and after neoadjuvant treatment where the
minimal harvest is reached less often (3). In addition to gross lymph
node examination, ultra-staging regional nodes by a sentinel lymph
node (SLN) procedure is being investigated for refining staging and
subsequent adjuvant therapy assignment (4). However, the
sensitivity, ranging from 0.33 to 1.00, remains an issue (4, 5).
Both regional LN (all lymph nodes; referred to as PanLN
henceforth) harvesting and SLN procedures could benefit from
improved detection techniques.

Ionizing as well as non-ionizing agents based on near-infrared
(NIR) light have been used to identified (S)LNs. The NIR I and II
windows are advantageous due to the favorable penetration depth
(up to 5–8 mm), low tissue absorption and scattering, and minimal
tissue autofluorescence (6). Consequently, the use of indocyanine
green (ICG, a 800 nm NIR I fluorescent dye) for SLN-detection has
been studied extensively in patients with malignancies of breast,
skin, vulva, bladder, prostate, cervix, endometrium, ovarium,
esophagus, stomach and colon (7–11). Unfortunately, ICG passes
rapidly through the SLN towards deeper LNs, leading to
unnecessary removal of these nodes (12). Another approach
utilizes quantum dots to target SLNs as they have a high
quantum yield (QY) and narrow bandwidth, permitting
simultaneous visualization of up to five separate SLN dyes (13).
However, their clinical translation is currently hampered due to
their semiconductor-containing cores (13–16). In contrast to SLN
tracers, research into panLN tracers is sparse. One approach using
Cy5.5 polymers suffered from a high non-specific background
signal after intravenous injection (17). By engineering novel small
molecule-based polymethine cyanine fluorophores we recently
visualized SLN as well as PanLNs at two distinct fluorescence
emissions: 700 nm for the SLN agent and 800 nm for the PanLN
agent, in small and large animal models (18). These dyes have
meanwhile been refined with respect to their optical properties
and pharmacokinetics.

The objective of the current study was to evaluate derivatized
SLN and PanLN fluorophores for the detection of regional and
sentinel LNs by in vivo NIR fluorescence imaging in mice.
PanLN and SLN targeting efficiencies were measured in real-
time using mice models, and post-mortem histological analyses
were used to verify lymphatic uptake.
MATERIALS AND METHODS

Syntheses of Contrast Agents
Polymethine contrast agents generally have similar synthetic
pathways that include a condensation reaction to combine two
Frontiers in Oncology | www.frontiersin.org 2
side groups with a central core. These side groups are usually
functionalized indoles, whereas the central core contains the
unsaturated hydrocarbon chain. In the case of the PanLN agents,
the central core of the first NIR intermediate contains a halogen
group that is used in a substitution reaction to add additional
chemical groups to the molecule.

The reference compound ZW800-3A (19) and the novel
compound PanLN-Forte (Figure 1A) syntheses start with the
alkylation of commercially available 2,3,3-trimethyl-3H-indole
with the salt (3-bromopropyl)trimethylammonium bromide.
This indole is then used in a 2:1 ratio during a condensation
reaction to produce the first NIR intermediate. The halogenated
NIR intermediate is then used in an SN1 reaction with SOPP to
form ZW800-3A, or used in a Suzuki-Miyaura coupling to form
PanLN-Forte.

The SLN contrast agent’s indoles are prepared with the
alkylation of the commercially available 1,1,2-trimethylbenz[e]
indole with iodoethane. The functionalized indole is then reacted
with either a 3-carbon or 5-carbon central core to produce the
reference compound SLN700 (18) and the novel compound
SLN800 (Figure 1B), respectively.

All polymethine contrast agents were synthesized from
chemicals and solvents that were of ACS grade or greater.
Starting materials were purchased from Sigma-Aldrich (Saint
Louis, MO) or Fisher Scientific Inc. (Pittsburgh, PA) and used
without purification.

Final products were either purified by a series of solvent
washes or by solid phase extraction using PoraPak Rxn sorbents
(Waters, Milford, MA). Chemical identification and analysis of
the contrast agents were completed on an Acquity UPLC-MS
(Waters, Milford, MA).
A B

FIGURE 1 | Chemical structure and optical properties of 800 nm lymph node
fluorophores in HEPES-buffered serum, pH 7.4. (A) PanLN-Forte and
(B) SLN800. abs, absorption; a.u., arbitrary units; Da, Dalton; emi, emission;
max, maximum; MW, molecular weight; nm, nanometer; QY, quantum yield.
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Optical Property Analysis
Optical properties were measured in fetal bovine serum (FBS)
supplemented with 100 mM HEPES, pH 7.4 or phosphate-
buffered saline (PBS), pH 7.4. Quantum yields (QY) were
determined in dimethyl sulfoxide with the comparative method
using ICG (QY 13%) as calibration standard. Optical
measurements were collected on a Cary 50 Bio UV-Visible
spectrophotometer, Cary Eclipse fluorescence spectrometer,
respectively (Varian/Agilent, Mattapoisett, MA).

Animal Models
Animal experiments were approved by the Dutch Central
Commission for Animal experimentation (Centrale Commissie
voor Dierproeven). Mouse experiments were performed at the
Central Animal Facility of the Leiden University Medical Center
(LUMC). All animals were SPF as commended by the FELASA
recommendation (20). Six-month-old female NMRI-mice
(Charles River laboratories, l’Arbresle, France) were used for
all experiments except for studies evaluating fluorescence
retention in the SLN, where 6–10 week-old Foxn1<nu> mice
(Charles River laboratories, l’Arbresle, France) were used. Each
test condition consisted of three to five mice.

NIR In Vivo Imaging Systems
The Pearl Trilogy Small Animal Imaging System (LI-COR
Biosciences, NE, USA) allows white-light and near-infrared
imaging at 700 and 800 nm in a black-box setting, minimizing
the interference from ambient light. It is used as a gold standard for
quantification and comparison of in vivo fluorescent signals. To
demonstrate the potential of the dyes for clinical translation the
mini-FLARE Imaging Systems Kit, FLARE Model R1 (both
Curadel, Natick, MA, USA) and Artemis (Quest Medical
Imaging, Netherlands) near-infrared camera systems were used.
Each of these systems is equipped with 700 nm and 800 nm
channels next to visual color, and is suitable for intraoperative
use. Using mini-FLARE, excitation wavelengths for 700 nm and 800
nm NIR fluorophores were 665 ± 1 nm and 760 ± 1 nm,
respectively, with typical fluence rates of 1–10 mW/cm2.

In Vivo LN Imaging
PanLN-Forte and ZW800-3A (Curadel, Natick, MA, USA) were
administered intravenously at the doses indicated in the tail vein
of NMRI-mice. Four hours after injection the sub-iliac, proper
axillary, accessory axillary, mandibular, accessory mandibular,
superficial parotid, jejunal, medial iliac, external iliac,
tracheobronchial and caudal mediastinal LNs were identified as
described by Van de Broeck et al., followed by imaging and
resection (21). Previous work demonstrated that 4 hrs post-
injection is the optimal imaging moment for PanLNs and 5 nmol
is the optimal dose for ZW800-3A, which served as reference
(18). Accordingly, concentrations of 1, 5, and 10 nmol PanLN-
Forte in 100 µl phosphate buffered saline (PBS) were tested.
Biodistribution of the PanLN agents was determined at 5
minutes (min) and 4 hrs post-injection.

Ten microliters of 30, 125, and 500 µM SLN700 and SLN800
dissolved in 50% ethanol:PBS were administered intradermally
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in the footpad of NMRI-mice. SLNs were dissected, imaged,
resected, and confirmed by histology (described below).
Fluorescence retention in the SLN was assessed by intradermal
injection of 10 µl dye at the left side of the base of the tail in Nu/
Nu mice. Lymph flow, first to the left sub-iliac LN (first tier node,
SLN) and subsequently to the left axillary LNs (second tier node,
distal LNs) was followed for a maximum of 15 min. Imaging was
repeated at 30 min and 60 min, respectively, and after 24 hrs. All
mice were kept under isoflurane anesthesia during injection and
imaging. Based on previous studies, 500 µM ICG was used as a
control (22).

Histological Analysis
Resected tissue specimens were fixed overnight in 4% formalin,
embedded in paraffin, sectioned (5 µm), and scanned with the
Odyssey Clx Infrared Imaging System for NIR-fluorescence (LI-
COR Biosciences, NE, USA). Sections were subsequently stained
with hematoxylin-eosin, digitalized with the Pannoramic Digital
Slide Scanner, and viewed with CaseViewer 2.3 (both 3D
Histech, Hungary). A European certified veterinary pathologist
(ECVP) confirmed the presence of lymphoid tissue. Merged
images were generated for ultrastructural evaluation of the
fluorescent location.

Quantification and Statistical Analysis
Pearl and Odyssey Clx images were analyzed with Image Studio
Ver5.2 (LI-COR Biosciences, NE, USA). FLARE images were
analyzed using FLARE-software (Curadel, Natick, MA, USA).
Artemis images were captured with Spectrum Capture Suite 1.4.3
(Quest Medical Imaging, Netherlands) and analyzed with Fiji
Image-J (23, 24). Signal-to-background ratios (SBRs) were
measured by drawing a region of interest (ROI) around the LN of
interest and a second ROI of similar size on the surrounding fat or
muscle when no fat was present, and subsequent division of both
mean fluorescent intensities (MFI). Results are reported as mean
with standard deviation (SD). Means were compared using t-tests
with IBM SPSS Statistics 23 (IBMNederland BV, The Netherlands).
Only p-values equal to or below 0.05 indicated significance.
RESULTS

Optical and Chemical Properties
PanLN-Forte has strong optical properties in serum with a
maximum absorbance wavelength of 756 nm and emission
wavelength of 774 nm (Figure 1A). The molar extension
coefficient at 756 nm is 158,300 M−1·cm−1 and the QY is
15.4%. SLN800 has a similar molar extinction coefficient at
156,300 M−1·cm−1, but with higher peak absorbance/emission
wavelengths, and a QY of 15.0%. The maximum absorbance and
emission wavelengths for SLN800 are 802 and 823 nm,
respectively. SLN700 has a molar extinction coefficient of
157,400 M−1·cm−1, a maximum absorbance at 692 nm, and a
maximum emission wavelength of 714 nm. Mass Spectrometry
show M+3 for PanLN-Forte and M+ for SLN800
(Supplementary Figure 1).
December 2020 | Volume 10 | Article 586112

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Baart et al. NIRF Mapping of Lymph Nodes
PanLN Imaging
PanLN-Forte specifically accumulated in clinically important
superficial, abdominal and thoracic LNs, and the MFI
increased with dose (Figures 2A, B, Supplementary Video 1).
With all three dose groups and NIR imaging systems SBRs were
> 2.0 except for the 1 nmol dose group (Supplementary Table 1).
While the MFI values of the LNs after PanLN-Forte injection
were similar to those of the parent compound ZW800-3A (p =
0.753, Figure 2B), the non-specific signal in the liver was
significantly reduced (p < 0.001, Figure 2C). Biodistribution
analysis revealed that PanLN-Forte was excreted into the bile
within 5 min after injection. Non-specific fluorescence had
cleared sufficiently after 4 hrs to allow jejunal LN visualization
as the MFI of the jejunal LNs was > 2 higher than all organs
except for the liver (Figure 2D).

SLN Imaging
SLNs could be visualized at a lower dose of SLN800 than the
clinically used ICG dose (125 µM vs 500 µM, Figure 3A). SBRs
for 500 µM and 125 µM SLN800 were similar and differed
significantly from 31 µM SLN800 (125 µM vs. 31 µM: p =
0.008, Figure 3B). The optimal dose of SLN800 was set at 125
µM, as it was the lowest dose that still resulted in the requisite
SBR of > 2 with all three fluorescent imaging systems. For
SLN700 the optimal dose was set at 500 µM, as this gave the
Frontiers in Oncology | www.frontiersin.org 4
highest SBRs (500 µM vs. 125 µM: p = 0.001; 500 µM vs. 31 µM:
p = 0.008, Figure 3B). While ICG rapidly passed to distal nodes
(non-SLN), SLNs retained SLN700 and SLN800 over 40 times
longer (14 ± 3 seconds vs. 17 ± 9 min vs. 10 ± 7 min, respectively,
Figure 3A). Using SLN700 and SLN800, absolute fluorescence in
the SLN was at least ten times higher than that in second-tier
nodes, even at 1 hr post-injection (Figure 3C). This allowed for
discrimination of SLNs from second-tier nodes using MFI long
after the fluorescence has passed the SLN with SLN700
and SLN800.

Ultrastructural Fluorescence of LN Dyes
Intravenous injection of PanLN-Forte identified 94 LNs in 13
mice. All LNs in the 5 nmol dose group were resected for
histology and contained lymphoid tissue. Histologically, the
fluorescence localized towards the medulla of the LN
(Figure 4A).

Twenty-nine of 31 SLNs identified with SLN800 were
histologically confirmed as lymph nodes. Although visually
confirmed during resection, 2 SLNs could not be histologically
verified due to loss or damage of tissue during surgical resection
and subsequent histological preparation. All 19 SLNs found with
SLN700 were histologically confirmed. Fluorescence
accumulating in the subcapsular sinus confirmed lymphatic
sinus entry of the dye (Figure 4B).
A B

D

C

FIGURE 2 | Regional lymph node imaging with PanLN-Forte at > 780 nm emission. (A) Important LNs located in superficial fat (inguinal LN), the abdomen (jejunal
and iliac LNs), and thorax could be distinguished from the background 4 hrs after injection of PanLN-Forte. Arrows indicate the respective LN while the arrowhead
points to the jejunal LNs. Images taken with the FLARE Model R1. (B) MFI of signal and background for ZW800-3a and PanLN-Forte. (C) Dose-dependent uptake
ZW800-3a vs. PanLN-Forte. (D) Biodistribution at 5 min and 4 hrs after injection of PanLN. a.u., arbitrary unit; Ca, caudal; Cr, cranial; LN, lymph node; MFI, mean
fluorescent intensity; NIR, near-infrared; nm, nanometer; nmol, nanomole; p.i., post injection.
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DISCUSSION

In CRC, resecting aminimal of 12 LNs has been related to prognosis
and survival outcomes and therefore been incorporated in various
international guidelines (1–3). Consequently, the proportion of
surgeries in which 12 or more LNs have been resected has risen
Frontiers in Oncology | www.frontiersin.org 5
from 13%–35% at the turn of the century to 59%–74% (25–28).
While the majority of LN metastasis in CRC are found in nodes
smaller than five millimeter, the current techniques of
visualization and palpation bias’s towards identifying larger LNs
(29). Current navigation techniques do not identify PanLNs.
Furthermore, SLN-biopsy investigations are hampered by the
currently available SLN-agents as they are neither real-time,
retained in the SLN, aesthetically pleasing due to tattooing, nor
conserving of the surgical field.

The current in vivo study describes improved PanLN and SLN
imaging agents ready for clinical translation. After intravenous
injection, PanLN-Forte exhibited reduced background signal in
key organs such as the liver, unlike the previously described Cy5.5
polymers and ZW800-3A, while maintaining PanLN homing ability
(17, 18). Despite finding uptake of PanLN-Forte in the liver and, to a
lesser extent, in cartilage, these structures can be shielded during a
surgical procedure, and are generally far away from the mesenteric
LNs that play a relevant role in CRC LN metastasis (30). The
optimal dose of 5 nmol translates to a human equivalent dose of
0.015 mg/kg, which is a low dose and similar to that of other
recently clinically tested fluorophores for anatomic enhancement
(31, 32). Histologically, PanLN-Forte accumulated in the medulla of
LNs suggesting direct uptake from the systemic circulation.
Although the exact mechanism of uptake is not currently known,
phagocytic cells, such as alveolar macrophages and dendritic cells,
preferentially engulf cationic structures (33).

SLN800 identified SLNs in real-time and with a substantially
lower dose than ICG (125 µM vs. 500 µM). Partially, this can be
attributed to the higher QY of SLN800 than ICG (15% vs. 9%) (34).
Furthermore, SLN800 and SLN700 were retained in the SLN over 40
A

B C

FIGURE 3 | Near-infrared sentinel lymph node imaging. (A) NIR fluorescent images illustrating over time (0–60 min) the fluorescence at the injection site, SLN and
second tier node (distal node) after intra-dermal ICG, SLN800, and SLN700 injection. Asterisks indicate injection sites, arrows the SLN and arrowheads the location of
second tier nodes. Images taken with the Artemis excited with a 785 laser for ICG and SLN800 and 680 nm laser for SLN700. (B) SBRs of various doses SLN700 and
SLN800. (C) SLN-to-distal node ratio (SDR) of SLN700, SLN800, and ICG over time (0–60 min). ICG, indocyanine green; SLN, sentinel lymph node; µM, micromolar;
min, minutes; NIR, near-infrared; nm, nanometer; SBR, signal-to-background ratio; SDR, SLN-to-distal node ratio; sec, seconds; T, times.
A

B

FIGURE 4 | Ultrastructural analysis of lymph node fluorescence. (A) PanLN-
Forte. 800 nm fluorescence (green pseudo-color) was seen throughout the
medulla. (B) SLN800 and SLN700. 800 nm fluorescence (green pseudo-
color) and 700 nm fluorescence (red pseudo-color) localized to the
subcapsular sinus after intra-dermal injection. An overview H&E staining and
10x magnification are shown, after which the 10x H&E was merged with the
fluorescence images. H&E, hematoxylin & eosin; NIR, near-infrared.
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times longer than ICG. The improved performance of the SLN dyes
versus ICG is not understood completely. Typically, an ideal agent for
SLN targeting is large (≥ 10–50 nm hydrodynamic diameter) and has
high charge, high hydrophobicity, or both (35, 36). Hence, the rapid
clearance of ICG out of the lymphatics can be attributed to its small
hydrodynamic diameter of 1.2 nm and amphiphilic structure.
Previously, ICG has been mixed with human serum albumin
(HSA) to increase its size to 7.3 nm, but in clinical trials, ICG:HSA
did not result in improved SLN detection over ICG alone (37). The
chemical structures of SLN700 and SLN800 offer clues as to why they
have such high retention compared to ICG. SLN800 and SLN700 are
both much more hydrophobic than ICG and have a cationic charge
from the indole nitrogen. This combination of charge and
hydrophobicity either increases effective hydrodynamic diameter by
binding to proteins in lymph, or is a trigger for uptake by phagocytic
lymphatic cells at the sinus entry point. Either way, the net effect is
higher retention in the SLN.

As the NIR fluorescence imaging field evolves, and as AI-
directed robotic surgery commences, dual-wavelength (i.e.,
multiplexed) navigation will become increasingly important. With
the introduction of two-channel NIR-camera systems operating
with excitations at 700 nm as well as 800 nm, surgeons and/or
robots can focus on two targets at the same time. The combined
optical properties of PanLN-Forte and SLN700 permit simultaneous
visualization of both the SLN and all other nodes in a tumor basin.
Furthermore, in colorectal cancer the combination of PanLN-Forte
with SGM-101, a 700 nm CEA-targeting tumor-specific agent
currently in phase III trials (NCT03659448), would facilitate the
identification of both the tumor and the LNs (38). This is especially
relevant in rectal cancer patients treated with neoadjuvant (chemo)
radiotherapy where extensive fibrosis and scar tissue make tumor
and LN identification difficult (39). SLN700 and SLN800 also
permit concurrent SLN and tumor imaging with the whole
arsenal of tracers in various study protocols, and future
development may permit the use of dual-wavelength NIR
fluorescence to both find the SLN and identify micro-metastases
in real-time (40). Finally, the potential of SLN700, SLN800 and
PanLN-Forte is not only limited to colorectal cancer but also
applicable to other tumor types like non-small cell lung cancer
where a minimum of 10 LNs need to be resected and vulvar, head-
and-neck and esophageal cancer where SLN-biopsies are being
studied extensively (7, 41).

A possible limitation of the current study is that animal
experiments were not performed in tumor-bearing mice, which
could have altered lymph drainage. However, previous studies
suggest no difference in tumor-bearing and non-tumor-bearing
animals with respect to SLN identification (42). Another
limitation might arise during clinical translation, where high BMI,
previous neoadjuvant therapy, or previous abdominal procedures
could hamper LN visualization. In fact, visual enhancement
methods are most needed in these clinical settings (43).

The novel 800 nm contrast agents PanLN-Forte and SLN800
appear to be optimal for real-time NIR fluorescence imaging of
regional and sentinel lymph nodes, respectively, may be used in
conjugation with 700 nm contrast agents for multi-wavelength
surgical guidance, and rapid clinical translation is expected.
Frontiers in Oncology | www.frontiersin.org 6
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