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Abstract

We present a discrete mechanical model to study plant development. The method is built up

of mass points, springs and hinges mimicking the plant cell wall’s microstructure. To model

plastic growth the resting lengths of springs are adjusted; when springs exceed a threshold

length, new mass points, springs and hinges, are added. We formulate a stiffness tensor for

the springs and hinges as a function of the fourth rank tensor of elasticity and the geometry

of the mesh. This allows us to approximate the material law as a generalized orthotropic

Hooke’s law, and control material properties during growth. The material properties of the

model are illustrated in numerical simulations for finite strain and plastic growth. To solve

the equations of motion of mass points we assume elastostatics and use Verlet integration.

The method is demonstrated in simulations when anisotropic growth causes emergent

residual strain fields in cell walls and a bending of tissue. The method can be used in multi-

level models to study plant development, for example by coupling it to models for cytoskele-

tal, hormonal and gene regulatory processes.

Introduction

Plant development is a complex process, it self-organizes using hormonal, gene regulatory and

mechanical processes that act on multiple length- and time-scales and are linked via feedback

loops. For instance, active and passive transport of hormones affects gene expression, but is

also controlled by it: e.g. the hormone auxin [1] affects the expression of its own transport pro-

teins [2], while also the expression of those transporters regulates the distribution of auxin [3].

Moreover, gene regulatory and hormonal processes govern the plant’s mechanical processes

[4, 5], such as the cell wall’s expansive growth, rupture, and cell division. However, also

mechanical determinants feed back on genetical and hormonal processes [6, 7]. For example,

auxin guides root growth [8, 9], while a bending of the root also causes changes in auxin pat-

terning [10, 11].

It is difficult to understand the consequences of such feedback loops from experiments

alone. This is because experimental measurements are typically limited in their spatial and

temporal scope, as well as in the number of processes that can be studied simultaneously.

Mathematical modeling has been shown to be a valuable tool to study complex biological sys-

tems compassed of processes happening on different time- and length- scales and involving
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feedback loops [12, 13]. As a consequence, joint experimental and modeling approaches have

led to important insights in plant development [8, 10, 14, 15].

It is important for mathematical models for plant growth to include elastic properties,

because plants are sensing mechanical clues and are responding to them [16]. For instance,

during cell division when a new cell wall is built, it is oriented such that it optimally resists ten-

sile stress [17]. Also plant cells reinforce their wall by adding new microfibrils in the orienta-

tion of the highest stress [18]. To develop such models for plant growth mechanics is

challenging, since plant tissue is a complex material that can be highly anisotropic and under-

goes both elastic and plastic deformations during development. Plant cells are typically under

a high turgor pressure, while being encased in stiff cell walls that resist this pressure [19].

Dynamical regulation (genetically and hormonally controlled) of the cell wall’s stiffness allows

plastic growth [20], as well as the more extensive cell wall remodelling that is for example nec-

essary for lateral root emergence [21].

The most established way to model the mechanics of plant development is in terms of

continuum mechanics [22–26]. The application of continuous mechanical models has

resulted in important insights, for example the demonstration that mechanical signals

together with auxin patterning synergystically regulate plant shoot morphogenesis [15, 27].

A main advantage of the continuum mechanics approach is that material properties of the

tissue are implicitly maintained during deformation, which is important since stress- and

strain fields are relevant for plant morphogenesis [17, 27]. However, continuous methods

have also theoretical and practical limitations. The plant’s cell wall is inherently discrete, con-

sisting of networks of crosslinked fibrils. Mechanical processes on this scale, such as stiffen-

ing, loosening or rupture of fibrils are important for plant development (e.g. during lateral

root formation), but are difficult to access locally with continuous models. Technically, it is a

challenging problem to implement a continuum mechanics approach in a computationally

efficient manner.

Discrete mechanical modeling offers an interesting alternative to continuum mechanics. A

discrete mechanical model can mimic the microstructure of the plant’s cell wall, while being

more easy to implement in a computationally efficient way. However, a main drawback of dis-

crete mechanical models is that material properties are often not well defined: typically rela-

tions between discrete mass points are described, yet the stress-strain relation is not explicitly

formulated [28]. Furthermore, deformations, e.g. due to growth, change the geometry of the

mesh, thus causing undesired changes in material properties. In this paper we develop a dis-

crete mechanical model to study plant development that is aimed at alleviating these limita-

tions. We formulate a stiffness tensor for the mass point’s springs and hinges in terms of a

generalized orthotropic Hooke’s law and the geometry of the mesh. Furthermore, we develop

a remeshing method to control the mass point density and material properties during growth.

Our model enables the incorporation of experimental data on elastic properties of plant cell

walls. Finally, given the discrete nature of the model we can locally affect the stiffness of the

model.

We demonstrate the model in simulations on anisotropic tissue growth. The model

allows us to study strain fields and tissue bending that emerge due to anisotropic growth.

The method can be coupled to existing models for hormone and gene regulatory networks

and thus provides a valuable building block for multilevel models of plant development.

The advantage of computational and numerical simplicity make our model an attractive

method for researchers studying development of tissues involving growth mechanics of tur-

goid cells.

Discrete mechanical growth model for plant tissue
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Methods

Main assumptions

First, we explain our main working assumptions: reduction of dimensionality, and usage of a

simplified material law, before we explain the setting up of the model.

Reduction of dimensionality: Plane stress assumption. Plant tissues are inherently

three-dimensional. However, for many important research questions it is often reasonable to

approximate plant tissue using simplified two-dimensional (2D) models. For instance, it has

been shown in a 2D model that root bending may cause maxima in local auxin production

[10]. Indeed, previous models for plant growth have used a 2D approximation, for instance the

vertex- and hybrid vertex-midline models of Fozard et al. [29, 30] and Merks et al. [31]. A 2D

approximation using the plane stress assumption is often made in shell models for plant tissue

[27, 32]. The rationale behind this simplification comes from the observation that the cell walls

of the outer cell layer (epidermis) of plant tissue is typically stiffer than its inner ones, and basi-

cally acts as a “tension-stressed skin” [33, 34]. Here we make use of the plane stress assumption

to build a mechanical growth model for plant tissue. Plane stress occurs in thin plates where

load forces act only parallel to them. We believe the plane stress assumption is most appropri-

ate for applications on the level of the cell wall, which can be seen as a thin plate. However, to

illustrate our method we will stretch the applicability of the assumption in two applications. In

one application we consider anisotropic unidirectional growth in a slab of tissue which we

connect to “root growth”. To model root growth the plane stress assumption is not well moti-

vated (not a thin plate); one can argue that a rotational symmetry of the root allows a 2D

approximation. We also illustrate the model in a setup in which asymmetric bidirectional

growth happens in a thin sheet of tissue, similar to “leaf growth”. In this setup the we assume

the leaf to be thin relative to the other two dimensions to justify the plane stress assumption.

Simplified material properties. Elastic properties of a material are formulated in terms of

constitutive relations, equations that connect stress and strain. Constitutive relations of plant

tissues are complex, as these tissues are typically anisotropic, and consist of distinct cell layers

with divergent mechanical properties [35]. Furthermore, these properties are changing

dynamically. For example, it has been shown that the stiffness of cell walls of Arabidopsis thali-
ana varies over one order of magnitude depending on the growth phase [36]. The material

properties of plant tissue has been measured in experiments to be nonlinear using for example

atomic force microscopy [37, 38]. However, we are not aiming on formulating a quantitative

material relation, but want to capture only the main features to develop a method for qualita-

tive applications. Therefore we use in our model a linear relationship between stress and strain

and neglect higher order terms.

Elastic model

Here we describe the setup of the discrete elastic model. We start with illustrating the mesh of

the model which is built up by mass points, springs and hinges. For the springs and hinges we

formulate a stiffness tensor in terms of the geometry of the mesh and the elasticity tensor.

Then we explain how we describe elastic anisotropy and turgor pressure. Next we formulate

an approximate material law. Finally we explain how we calculate the forces on mass points.

Mesh. We use a square lattice, where every mass point has four (if not at the border)

neighboring mass points connected by springs (Fig 1A). A unit cell in this crystal lattice is

shown in Fig 1B. In addition to springs to direct neighbors, there are hinges in each corner of a

unit cell. The rationale for choosing this layout of mass points, springs and hinges is as follows.

Plant tissues such as the root tip or hypocotyl are often anisotropic, and this anisotropy is

Discrete mechanical growth model for plant tissue
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caused by the presence of polarized cells. In these polarized cell types there are two principal

cellulose fiber directions, one along the growth direction, and one perpendicular to it [39]. In

contrast, some plant tissues are isotropic, containing apolar cells in which the cellulose fiber

mesh is disoriented. Since we are interested in modeling plant tissues consisting of polarized

cells, we choose a quadratic unit cell to mimic the two principal fiber directions of polar plant

cells.

Coupling to a continuous material law. The elastic properties of our model are deter-

mined by the geometry of the lattice unit cell and the stiffness of the springs and hinges. Here

we will formulate these microscopic properties in the continuum limit from the macroscopic

elastic properties of a linear elastic material.

The elastic energy density C of a linear elastic material [40] is given by

C ¼
1

2

X

ijkl

Cijklεijεkl; ð1Þ

where Cijkl are elements of the elasticity tensor, and εij are components of the small strain ten-

sor ϵ. For an isotropic material the above simplifies to

C ¼
1

2
l
X

k

εkk

 

Þ
2
þ 2m

X

ij

ε2

ij

 !

; ð2Þ

where λ and μ are the Lamé coefficients. The elements σij of Cauchy’s stress tensor σ can be

obtained (assuming constant temperature) by differentiating C with respect to components

from the strain tensor [41]

sij ¼
@C

@εij
: ð3Þ

Fig 1. (A) Mechanical mesh. Dots indicate mass points. Springs are indicated as lines. Dotted contour indicates inset for subfigure. (B) Unit

cell. Springs are indicated by zigzagging lines on straight lines. Zigzagging lines on curved lines connecting horizontal and vertical springs

indicate hinges.

https://doi.org/10.1371/journal.pone.0221059.g001

Discrete mechanical growth model for plant tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0221059 August 12, 2019 4 / 32

https://doi.org/10.1371/journal.pone.0221059.g001
https://doi.org/10.1371/journal.pone.0221059


Substituting C with Eq 2 we obtain the generalized Hooke’s law

sij ¼ l
X

k

εkk

 !

dij þ 2mεij; ð4Þ

where δij is the Kronecker delta.

To formulate a stiffness tensor for springs and hinges in terms of Lamé coefficients, we will

take the following approach. First a description of the elastic energy density for the discrete

model in terms of Lamé coefficients and the geometry of the mesh is found. Then we will do

the same as above, find the elements of the stress tensor by differentiating the elastic energy

density with respect to strain elements. Finally, we will compare the elastic energy density and

stress tensor descriptions of our model to Eqs 4 and 1.

For the elastic potential of a spring in the x-direction we use (1/2)k(y0/x0)Δx2, with spring

stiffness k, and Δx = x − x0 the change of length of a horizontal spring, where x is the actual

length, and x0 is its resting length (similar terminology for the y-direction). Note that the term

(y0/x0) takes the growth process into account: if the resting lengths in x- and y- direction are

different while the relative deformation is identical in both directions, then the elastic poten-

tials energy of both springs is identical in the unit cell. We use the potential kΔxΔy to account

for the Poisson effect (similar to term λεxxεyy in Eq 2). Shear is described by means of four

hinges per unit cell in terms of the potential (1/8)κΔD2 for each hinge, with κ the hinge stiff-

ness, and ΔD the change of length of a diagonal in the unit cell. Fig 2 depicts a parallelogram

which is used to formulate shear in terms of diagonals in a unit cell. Similarly to Eq 2 we write

the elastic energy density ~C of the discrete mechanical model as

~C ¼
E
A
¼

1

2A
k hDx2 þ h� 1Dy2 þ 2DxDyð Þ þ k hDx2 þ h� 1Dy2 þ 2DD2ð Þ½ �; with : h≔ y0=x0; ð5Þ

where E is the elastic energy of a unit cell, and A is its surface area. One horizontal spring is

shared between two unit cells, whereas each unit cell contains two horizontal springs. There-

fore, the net longitudinal strain of a single unit cell can be described as the deformation of a

single spring εxx = Δx/x0. Total shear of a unit cell is defined [40] as τ≔ tanφ (compare Fig 2),

and the components of the shear strain tensor (without growth) are εxy = εyx≔ (1/2)τ. With

growth (x0 6¼ y0) we find with same arguments as in [40]

2DD2 ¼ 2~s2D2
0
t2 ¼ 4~s2D2

0
ðε2
xy þ ε

2
yxÞ; with : ~s≔

s
1þ s2

; and : s≔
maxðx0; y0Þ

minðx0; y0Þ
; ð6Þ

where D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0
þ y2

0

p
is the length of a diagonal of an undeformed unit cell. We rewrite ~C in

terms of strain

~C ¼
1

2A

h
kðhx2

0
ε2

xx þ h
� 1y2

0
ε2

yy þ 2x0εxxy0εyyÞþ

k hx2
0
ε2
xx þ h

� 1y2
0
ε2
yy þ 4~s2ðx2

0
þ y2

0
Þ ε2

xy þ ε
2
yx

� �� �i ð7Þ

To get the elements of the stress tensor we differentiate ~C with respect to strain. We approxi-

mate

sij ¼
@ ~C

@εij
¼
E0

A
�
A0E
A2
�
E0

A
for small strain � see Appendix Að Þ; ð8Þ
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and compare the resulting expressions with Eqs 4 and 1 to get expressions for k and κ

Cxxxx ¼ lþ 2m ¼̂ ðkþ kÞhx2

0
=A ¼) ðkþ kÞ ¼̂ ðlþ 2mÞh� 1A=x2

0
ð9aÞ

Cyyyy ¼ lþ 2m ¼̂ ðkþ kÞh� 1y2

0
=A ¼) ðkþ kÞ ¼̂ ðlþ 2mÞhA=y2

0
ð9bÞ

Cxxyy ¼ Cyyxx ¼ l ¼̂ kx0y0=A ¼) k ¼̂ ðlÞA=x0y0 ð9cÞ

Cxyxy ¼ Cyxyx ¼ 2m ¼̂ k4~s2ðx2
0
þ y2

0
Þ=A ¼) k ¼̂ ð2mÞA=ððx2

0
þ y2

0
Þ4~s2Þ: ð9dÞ

The stiffness tensor of the discrete mechanical model ~Cijkl can now be written in terms of Lamé

coefficients and geometric properties of an unit cell (we replace the terms with k and κ)

~Cxxxx≔ ðlþ 2mÞh� 1A=x2

0
ð10aÞ

~Cyyyy≔ ðlþ 2mÞhA=y2

0
ð10bÞ

~Cxxyy ¼ ~Cyyxx≔ ðlÞA=x0y0 ð10cÞ

~Cxyxy ¼ ~Cyxyx≔ ð2mÞA=ððx2

0
þ y2

0
Þ4~s2Þ ð10dÞ

other components≔ 0: ð10eÞ

Fig 2. Illustration of parallelogram used to describe shear. A Construction of parallelogram. To calculate forces on

point i, which results from one horizontal and vertical spring and one hinge, the positions of three mass points (i, 1, 2)

are used. We construct a parallelogram from these points (note thick dotted lines) to compute shear. B Shear affects

the length of the diagonals. One diagonal of the parallelogram shortens, while the other lengthens by ΔD.

https://doi.org/10.1371/journal.pone.0221059.g002
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Finally, ~C can be expressed similarly to Eq 1 as

~C ¼
1

2

X

ijkl

~Cijklεijεkl; ð11Þ

Anisotropy. In many plant tissues, cells are mechanically anisotropic. This is partly

because of tissue specific polarized orientation of cellulose microfibrils in their cell walls [35].

The plant’s control of elastic cell wall properties plays a crucial part in plant morphogenesis.

To model it generic and detailed bio-mechanical and chemical models have been developed

[42, 43]. However, in this paper we do not model these physiologically important feedback

loops, but account for anisotropy by defining two Young’s moduli, one for the x-direction Yx,
and one for the y-direction Yy. Under plane stress Lamé coefficients are connected to Young’s

moduli and Poisson’s ratio ν [44] via

lx ¼
Yxn

1 � n2
; mx ¼

Yx
2ð1þ nÞ

ð12aÞ

ly ¼
Yyn

1 � n2
; my ¼

Yy
2ð1þ nÞ

: ð12bÞ

We define the shear modulus μ as the mean of the shear moduli of the isotropic materials

characterized by either Young’s modulus (Yx, ν) and (Yy, ν)

2m≔ mx þ my≔
Yx þ Yy
2ð1þ nÞ

: ð13Þ

We rewrite the stiffness tensor ~Cijkl (Eq 10) for the anisotropic model

~Cxxxx ¼ ðlx þ 2mxÞh
� 1A=x2

0
ð14aÞ

~Cyyyy ¼ ðly þ 2myÞhA=y
2

0
ð14bÞ

~Cxxyy ¼ ðlxÞA=x0y0 ð14cÞ

~Cyyxx ¼ ðlyÞA=x0y0 ð14dÞ

~Cxyxy ¼ ~Cyxyx ¼ ðmx þ myÞA=ððx
2

0
þ y2

0
Þ4~s2Þ: ð14eÞ

Constitutive relations. In the derivations presented above the small strain tensor � was

used to derive the properties of the springs and hinges. However, the small strain tensor is not

suitable for finite deformations, because it is invariant to rigid body rotations [45]. Note, that

the small strain tensor is related to the commonly used finite strain tensor [46]; in continuum

mechanics we would get it by applying a polar decomposition on the small strain, to cancel out

rigid body rotations. However, in our case, we do this implicitly, because we define strain in

terms of relative length changes of springs, and angles between them. Thus, we can approxi-

mate the constitutive relations of our model in terms of the Biot strain tensor e [47].

Discrete mechanical growth model for plant tissue
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With this we can approximate the elastic constitutive material relations for our anisotropic

model as a generalized orthotropic Hooke’s law

sxx

syy

sxy

syx

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

2mx þ lx lx 0 0

ly 2my þ ly 0 0

0 0 mx þ my 0

0 0 0 mx þ my

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

exx

eyy

exy

eyx

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð15Þ

Turgor pressure. Assuming that turgor pressure pt is constant across the tissue, i.e. all

cells are equally turgid, the hydrostatic potential Ehp caused by pt is

Ehp ¼ � Atpt; ð16Þ

with At being the surface area of the tissue.

Calculation of forces

In the following sections the calculation of the forces acting on the mass points will be

explained. The forces will be used to compute the motion of the mass points.

Elastic forces. Elastic force on a mass point i (compare Fig 2) f ei is the negative gradient of

the elastic energy E with respect to i (note: i is an index, i is position vector of mass point i)

f ei ¼ � riEðeklðiÞÞ ¼
X

kl

�
@ðA ~CÞ

@ekl
@ekl
@i
� � A

X

kl

X

no

~Cklnoeno
@ekl
@i

see Appendix Bð Þ: ð17Þ

We expand it to (note that exy = eyx = (1/2)τ)

f ei ¼ � ~Cxxxxexx þ ~Cxxyyeyy
� �

A
@exx
@i

ð18aÞ

� ~Cyyyyeyy þ ~Cyyxxexx
� �

A
@eyy
@i

ð18bÞ

� ~Cxyxyt
� �

A
@exy
@i
: ð18cÞ

To solve Eq 18 we need to specify A and eij with respect to an individual mass point i, and

get the derivatives @eij/@i. Let us start with terms 18a and 18b.

As can be seen from Fig 1A, a mass point inside the mesh is connected to four neighboring

mass points and thus part of four unit cells (compare Fig 1B). A mass point at the boundary is

part of two unit cells, and a point in the corner of only one unit cell. Therefore the mean sur-

face area of the unit squares connected to the mass point i is used as variable A in terms 18a

and 18b. These terms are calculated for all springs connected to mass point i. Thereby exx is the

strain of one respective spring (similar in the y-direction). To calculate the force due to the

Poisson effect, we use the strain in the “other direction”, e.g. eyy for a spring in x direction (see

term ~Cxxyyeyy), the mean eyy strain of the adjacent springs in y-direction. Accordingly, we use

the mean resting lengths of the adjacent springs in the y-direction to compute y0 in ~Cxxyy. The

Discrete mechanical growth model for plant tissue
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derivatives of the direct strain elements with respect to coordinates of i are

@exx
@i
¼ �

x
x0kxk

ð19aÞ

@eyy
@i
¼ �

y
y0kyk

: ð19bÞ

The term 18c is computed as follows:

The total shear force at a single mass point is described by its N adjacent hinges (N = 4 for a

mass point in the medium, N = 2 for a mass point at the boundary of the mesh, and N = 1 for a

point in the corner of the mesh). We define total shear strain at a single mass point τ as the

mean of it’s N adjacent “hinge shear strains”

t≔
1

N

XN

n¼1

tn: ð20Þ

We use Fig 2 to illustrate how we calculate hinge shear strain τn for a hinge n. We use the

springs in the x- and y-direction (see Fig 2) to define vectors: xn≔ 1 − i, yn≔ 2 − i, and use

them to define τn

tn≔ tanφ ¼ tanðarcsinðanÞÞ ¼
anffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � a2
n

p ;with : an≔
xn � yn
kxnkkynk

: ð21Þ

To calculate forces due to hinge shear strains in term 18c, we use the properties of the

respective hinges: for the surface area of a unit cell we use An≔ kxn × ynk (compare surface

area of parallelogram in Fig 2). We also use respective springs in x- and y-direction of each

hinge, to replace ðx2
0
þ y2

0
Þ and ~s in Eq 10d with the corresponding hinge properties ðx2

0ðnÞ þ

y2
0ðnÞÞ and ~sn. With this we write (see Appendix C) the shear force acting at a mass point i (term

18c) as a sum over the adjacent hinges

� ð~CxyxytÞA
@exy
@i

¼
� m

N

XN

n¼1

A2
n

x2
0ðnÞ þ y2

0ðnÞ

� �
4~s2n

tnð1þ t
2
nÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � a2
n

p an
yn
kynk

2
þ

xn
kxnk

2

 !

�
ðxn þ ynÞ
kxnkkynk

 !2

4

3

5: ð22Þ

Forces due to turgor pressure. At in Eq 16 is a planar non-self-intersecting polygon with

vertices described by the position of mass points at the border of the tissue (x1, y1), . . ., (xn, yn)
(vertices listed counterclockwise), thus At is given [48] by

At ¼
1

2

x0 x1

y0 y1

�
�
�
�
�
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þ
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�
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 !

: ð23Þ

The “turgor force” f ti acting at a mass point i (if at the border of the medium), due to pt is the
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negative gradient of the hydrostatic potential Ehp with respect to i

f ti ¼ � riEhpðiÞ ¼
ð16;23Þ pt

2

yiþ1 � yi� 1

� xiþ1 þ xi� 1

" #

: ð24Þ

Viscous forces. We use a viscous force acting on every mass point to find the equilibrium

configuration of the mesh

f di ¼ � Z
d
dg

i; ð25Þ

where η is the damping constant, and γ is the dimensionless integration time of the elasticity

part of the model (see following section “Elastostatics” and “Numerical Methods”).

Elastostatics

The motion of the mass points is described by Newton’s law of motion

f i ¼ f ei þ f di þ f ti ¼ m
d2

dg2
i; ð26Þ

where parameterm is the mass of a mass point.

We make the common assumption [27, 32] that deformations happen at mechanical equi-

librium. This can be understood from the fact that the plant’s growth processes are much

slower than its elastic response to external forces. By solving Eq 26 until mechanical equilib-

rium (fi = 0) we find the steady state configuration of the lattice. Note that the mass of a mass

pointm and the viscosity η have no physical relevance, because they do not affect the equilib-

rium configuration of the mesh. These parameters only fulfill numerical roles (convergence

rate and precision).

Plastic growth

Irreversible plant growth arises through the elongation of cell-walls of individual cells. This

process involves cell wall loosening, expansion of the cell, and addition of new cell wall mate-

rial restoring original cell wall stiffness [49]. During growth parts of the tissue are stretched or

compressed to ensure a continuous tissue. Therefore, if an anisotropy in growth rates of cells is

present in the medium residual stress and strain is build up in the tissue [50].

In the present paper we will apply our model to study basic effects of anisotropic growth

such as emergence of residual strains and tissue bending. To model growth the resting length

of springs is adjusted

d
dt

x0

y0

" #

t; positionð Þ ¼

kratex

kratey

2

4

3

5 t; positionð Þ
x0

y0

" #

t; positionð Þ; ð27Þ

where t is the simulation time, and kratex ðtÞ is the growth rate of a spring in the x-direction (sim-

ilar terminology for the y-direction). This approach is similar to an evolving metric in the

material manifold [51], and has been used before continuous mechanical growth models for

plant tissue [32]. Note that the rate of change of the resting configuration is a complex func-

tion, Boudon et al. for instance formulated a strain-driven growth rate tensor [52]. Here we

simply impose such growth functions to illustrate the elastic properties of our model during
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asymmetric growth. Note that this approach allows growth in two principal directions; how-

ever, can not describe a plastic shear growth.

Remeshing. The mass point density is affected by the growth process. Therefore, when

springs exceed a threshold length of
ffiffiffi
2
p
� ðinitial spring lengthÞ, we add new mass points,

springs and hinges to mimic the deposition of new cell wall material accompanying the later

stages of cell expansion. We do this via the algorithm depicted in Fig 3. This figure shows that

“loose mass points” can emerge in the medium during growth, points that have only three

instead of four neighbors. We will see later in the results section that such loose points emerge

when anisotropic growth causes local remeshing. However, we still calculate four hinge strains

(see Eq 21) for such a loose point. For this an auxiliary point (see Fig 4) is assumed (on which

no forces act). We calculate vector y using the loose mass point’s coordinates and the coordi-

nates of the auxiliary point (similar for x when a loose end is pointing sideways). As resting

distance y0 the resting distance of the left neighbor is used (similar, when a loose end is point-

ing sideways x0 of the upper neighbor is used).

Numerical methods

We solved the equations of our model by combining explicit Euler integration for the growth

equation (Eq 27), and Verlet integration [53] to solve the equations for the motion of the mass

points (Eq 26).

The position of a mass point i at integration time γ + hγ is computed with

iðgþ hgÞ ¼ 2iðgÞ � iðg � hgÞ þ
d2

dg2
iðgÞ � ðhgÞ2;

where hγ = 0.01 is the dimensionless Verlet integration time step and γ is the integration time.

For the initial time step

ið0þ hgÞ ¼ ið0Þ þ
1

2

d2

dg2
ið0Þ � ðhgÞ2

is used. The acceleration of a mass point i is found for each time step with

d2

dg2
iðgÞ ¼

f iðgÞ
m

;

wherem = 1μg is the mass of a mass point. The velocity of a mass point (to calculate the viscous

force) in Eq 25 is computed with

d
dg

iðgÞ ¼
iðgÞ � iðg � hgÞ

hg
:

For Euler integration of the growth equation (Eq 27) we used an integration time step of

ht = 1min. The resting distances of springs connected to a mass point after a growth step are

computed with

x0

y0

" #

t þ htð Þ ¼ 1þ ht
kratex

kratey

2

4

3

5 tð Þ

0

@

1

A
x0

y0

" #

ðtÞ;

where t is the simulation time in minutes.

We solve the model as follows: from each time integration step of the growth model (Eq 27)

a new set of resting distances of springs is obtained, which is passed on to the elasticity part of

the model, where forces are computed (Eqs 18, 24 and 25), and the equations for the motion of
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Fig 3. Illustration of remeshing algorithm. Dots: mass points, lines: springs.

https://doi.org/10.1371/journal.pone.0221059.g003
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the mass points (Eq 26) are solved, until the sum of forces on every mass point is below the

convergence threshold thr = 0.05μN.

In this study we used model setups of initially rectangular meshes of various lengths. As ini-

tial resting lengths of springs 1μm was used. To compute viscous forces (Eq 25) η = 1N × hγ/

μm was used as a damping constant. Several boundary conditions were used. For simulations

shown in the results section a free floating medium (no degree of freedom is restrained, all

mass points move freely) is used. In this setup a rigid body translation and rotation can occur;

however, we perform a linear transformation to cancel these out rigid body motions (model is

Fig 4. Illustration of usage of auxiliary point to calculate hinge strain for a loose mass point. The auxiliary point (white dot) is located in the

middle of a spring between next-next neighbors Filled dots: mass points, black lines: springs.

https://doi.org/10.1371/journal.pone.0221059.g004
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in moving frame of reference). In addition, in simulations to characterize the material proper-

ties of the model we either fix all boundaries of the model, or restrain points on specific bound-

aries to move on a line.

We set the parameter values of the model to connect it to experimental data on the model

plant Arabidopsis thaliana. In experiments on roots, in which a rapid local growth was

induced, a maximal relative elemental growth rate of one third per hour has been measured

[54]. This corresponds to a maximal growth rate kratemax ¼ lnð4=3Þ=60 min� 1 � 0:0048 min� 1,

which we use as an upper boundary. In addition, we used as material properties Young’s

moduli in the range of [20;80]MPa �m, similar to reported experimental data on cell walls

[55] and previous modeling work [27]. We varied turgor pressure in a range of [0;1]MPa �m,

corresponding to values measured on the root [56]. There are to our knowledge no precise

measurements of the Poisson ratio ν of the primary cell wall. However, it is established that

the primary plant cell wall is a partially compressible material (ν< 0.5) [57]. Previous model-

ing work [27] assumed ν = 0.2. We vary ν in a range of [0.1;0.5] for simulations characteriz-

ing the model’s material properties, and use ν = 0.2 for the illustration of the full model in

section: Anisotropic elongation: “root bending”, and section: Anisotropic growth in two

dimensions “leaf growth”.

Model parameter validation

The numerical coupling and integration of the Euler and the Verlet scheme require the choice

of several parameters. In this section we explain our parameter choices to assure efficient and

stable computations.

Integration parameters. For the integration of the growth model (Eq 27) we use an Euler

integration step ht = 1min. We performed test simulations in which we used halfed and quar-

tered values for our choice of ht. We found that our choice yields consistent results (see Fig 5).

For solving the motion of the mass points Eq 26 we use a Verlet integration time step of hγ =

0.01 (as in [58, 59]). Thus, this setting allows efficient and stable computations of new configu-

rations of the mechanical mesh.

Damping constant. The equations for the motion of the mass points (Eqs 18–26) are a

system of coupled, damped, mechanical oscillators. We performed test simulations in which

we used half and quartered values for the damping constant η to compute the viscous forces

(Eq 25). We found that these stricter settings do not affect the results, but only cause a slower

convergence of the model. Thus, our parameter choice results in fast convergence of Eq 26,

with no numerical instabilities and convergent results.

Coupling parameters. To validate the settings for the parameters that couple the growth

and mechanical models we performed the illustration experiment “anisotropic elongation”

(setup is explained in detail in section: Anisotropic elongation: “root bending”), and recorded

a reference trajectory of a mass point located at the middle of the left side (“root tip”) of the

model (see red point in left subfigure of Fig 5B) using strict parameter settings (ht = 0.5s,
springlength = 0.5 μm, thr = 0.005 μN). Then we repeated the simulation with less strict

parameter settings and computed the mean deviation of the trajectories relative to the refer-

ence trajectory. We computed the mean deviation (MD) for a parameter setting using

MD ¼
1

T

XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxt � x
ref
t Þ

2
þ ðyt � y

ref
t Þ

2

q

; ð28Þ

where ðxt � x
ref
t Þ and ðyt � y

ref
t Þ are the differences between the mass points positions on the x-

and y-coordinate and the reference positions at time t. The trajectories were recorded for a

simulation time of 141min. Fig 5A shows that trajectories are converging against the reference
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trajectory for increasingly strict parameter settings. We also see that our parameter choice

leads to small mean deviations of the mass point trajectory (< 1 μm). The length of the refer-

ence trajectory is 123 μm.

How does the parameter setting affect the emergent strain fields during growth? To answer

this question we illustrate these observables in Fig 5B for the reference simulation (upper subfi-

gure), our parameter choice (middle subfigure), and the parameter setting which caused the

largest MD of� 6 μm (bottom subfigure). We see that the reference simulation and the simu-

lation with our parameter choice result in very similar results. The simulation with the least

strict parameter setting results in a lower curvature of the tissue and lower residual strain; how-

ever, the qualitative results are identical. In conclusion we see that our parameter choice results

in convergent results.

Fig 5. Validation of coupling parameters. (A) Parameter setting causes convergent results. Mean deviation (MD)

of mass point trajectory as a function of coupling parameters. Reference trajectory was computed using strict

parameter settings (ht = 0.5s, springlength = 0.5 μm, thr = 0.005 μN). (B) Emergent tissue bending and strain as a

function of ht. Mass point used for computing trajectories is illustrated by a violet point in left subfigure.

https://doi.org/10.1371/journal.pone.0221059.g005
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Results

Effect of finite strain on material properties

Here we characterize how finite strain and plastic growth affects the material properties of

our model in numerical simulations. We start with illustrating the effect of finite strain on

material properties in an isotropic setup without turgor pressure. We set elastic parameters

in the model to Yx = Yy = 20MPa �m; ν = 0.1. Note that we use for efficient elastic properties

(what we measure) a super- or sub-script “eff”, for instance Yeff for the efficient Young’s

modulus. We show the results in Fig 6. In Fig 6A, top we illustrate the setup of the direct

stress experiment. We applied uniform, direct stress to the upper boundary of the model,

while the bottom of the model was kept fixed on a horizontal line. Fig 6A, middle shows a

stress-strain plot of the direct-stress experiment (black line) and as a comparison the theoret-

ical behavior of a material which follows Hooke’s law (red line). We see that for small stress

the model’s behavior converges to the theoretical value. For increasing stress however, the

model stiffens, and a higher direct stress is required to stretch the model. Fig 6A, bottom

shows the effective Young’s modulus and Poisson ratio against the strain (�yy). We see that

the effective Young’s modulus (solid line) increases linearly with increasing strain (with

slope� 2MPa �m/10%), while the Poisson ratio maintains its theoretical value (dotted line).

Note that with the highest direct strain value of 5% applied in the result section of this paper

(compare section: Anisotropic elongation: “root bending”, and section: Anisotropic growth

in two dimensions “leaf growth”), the effective Young’s modulus is� 10% larger than that

for a theoretical isotropic Hooke’s material (without turgor). The linear increase in the stiff-

ness of our simulated plant tissue is likely a result of our approximation to disregard the

derivative of surface area A against strain (in Eq 8), which results in an error scaling linearly

with direct strain (see: Appendix A).

Next, we tested the shear properties of the model. In Fig 6B, top we illustrate the setup of

this experiment. We applied shear stress Sxy and Syx of same strength. Fig 6B, middle shows a

stress-strain plot of the shear-stress experiment (black line) and as a comparison the theoreti-

cal behavior of a material which follows Hooke’s law (red line). We see that for smaller stress

the model’s behavior converges to the theoretical value. For increasing stress however, again

the model stiffens. Fig 6B, bottom shows the effective shear modulus μmodel against the strain

(�yy). We see that the effective shear modulus increases non-linearly with increasing strain.

For a substantial total shear strain of τ = 10% the effective shear modulus stiffens 1% com-

pared to the theoretical value. Note that for the highest total shear strain of 5% which we

chose as largest strain value in this paper, the model’s effective shear modulus is� 0.3%

larger than that following from the theoretical isotropic Hooke’s material (without turgor).

This non-linear increase in the shear stiffness is likely also a result from our approximation

to disregard the derivative of A with respect to strain. We show in section: Appendix A that

with respect to shear this approximation causes an error which scales quadratically with

shear strain.

We also tested the isotropy of our model. We illustrate the experiment illustrated in Fig 6C.

The rotating force, whose amplitude increases every rotation, was applied at the center point

of a simulated tissue whose boundaries are fixed. To rule out boundary effects, we compared

results of a medium of double the side length, and found qualitatively similar results. Fig 6C,

middle depicts the displacement of the center point against the strength and the angle of the

applied force. It reveals that that for forces smaller than 10N the relative error of the mass

point’s trajectory are smaller than 2%. However, it also shows that larger forces on the center

mass point cause a substantial artificial anisotropy (error larger than 4%) in the model. A max-

imal strength of 14N was applied in this study to the center point, which results in a substantial
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deformation gradient in the model. Note that this strength of force, if applied at all the bound-

ary points, would correspond to a hydrostatic pressure of 14MPa �m, which is one magnitude

larger as the turgor pressure typically measured in Arabidopsis thaliana [56]. From Fig 6C, bot-

tom we show the deviation from isotropic behavior against the strength and the angle of the

applied force. We see that for forces smaller than 12N the error is smaller than 4%, and that for

stronger forces the error substantially increases. In the simulations in the results section of this

paper such localized strong forces do not occur, and thus we think that the model approxi-

mates the generalized Hooke’s law well.

Effect of turgor pressure on material properties

We also studied the effect of finite strain on material properties in presence of turgor pressure.

Before we present the simulation results, let us analyze what we expect to measure.

Analytical predictions. Shear modulus is defined (compare Eq 2) as

2meff ≔
@

2 ~C

@t2
; ð29Þ

with μeff being the effective shear modulus (note difference to μ, the parameter). Taking into

account the hydrostatic potential of a unit surface element in the elastic energy density (adding

Fig 6. Illustration of material properties (isotropic, without turgor pressure). Top: Setups. Contours indicate

undeformed (dotted) and deformed medium. Big arrows in (A) and (B) indicate applied stress. (A) Direct stress

experiment. Top: Setup. Medium is fixed at the bottom (black block), such that points at lower border can only move

horizontally. Middle: stress-strain plot. Bottom: ratio between the effective and theoretical values (Yeff/Y, νeff/ν) as a

function of �yy. (B) Pure shear stress experiment. Top: Setup. Black blocks indicate walls through which shear stress is

applied. Middle: stress-strain plot. Bottom: ratio between effective shear modulus μeff and theoretical μ as a function of

τ. (C) Isotropy experiment. Top: Setup. Contour indicates fixed boundary of medium. Arrow symbolizes rotating

force. Middle: displacement of center point for different strengths of force vs angle of force vector α. Length of

undeformed squared medium 100 μm.

https://doi.org/10.1371/journal.pone.0221059.g006
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Eq 16 for a unit cell to the energy density), we get

meff ¼
ð16Þm � pt

@
2A

2@t2
¼
ð35bÞ

mþ pt2x0y0 ¼ mþ 2pt: ð30Þ

Note that x0 and y0 are unit lengths (x0 = y0 = 1). Thus, we expect to measure in simulations

that the effective shear modulus is increased by twice the turgor pressure. Let us make a predic-

tion based on the easiest example. If we disable the hinges in the model (set μ = 0), then we

expect to measure as the model’s effective shear modulus μeff = 2 × pt.
Let’s now try to make predictions on how turgor pressure affects the effective Young’s mod-

ulus (Yeff) of the model (again: note the difference to the parameter Y). The effective Young’s

modulus is defined as

Yeff ≔
@

2 ~C

@ε2
yy

; ð31Þ

Yeff ¼
ðEq 4Þ ð2meff þ leffÞ � leffneff ¼

ðEq 30Þ
2mþ leffð1 � neffÞ þ 4pt;

where λeff and νeff are the effective Lame’ coefficients. Let’s assume that νeff� ν and λeff� λ
(we will see later in simulations that this is reasonable). With this we get

Yeff � Y þ 4pt ð32Þ

Thus we expect that the effective Young’s modulus of the model is approximately 4 × pt stiffer

than without the added turgor pressure.

Numerical simulations. Now, let’s look at the simulation results, and compare it to our

predictions. As described above, we first simplified the system, and performed shear experi-

ments on the model without the hinges, thus setting parameter μ = 0, and making turgor pres-

sure pt solely responsible for resisting shearing forces. We measure in simulations for effective

shear modulus due to turgor pressure: μeff = 2 × pt, for instance: (pt = 1MPa �m, (Sxy + Syx) =

0.1MPa �m) resulted in τ = 5.00%, and thus μeff = (0.1/0.05)MPa �m = 2.00MPa �m. This pre-

cisely fits our analytical arguments in Eq 30. Next, we performed the shear experiment in pres-

ence of turgor pressure (see Fig 7A). We see that, as expected from the above arguments, the

model’s effective apparent shear modulus increases approximately linearly with increasing tur-

gor pressure. However, we observe a larger stiffening effect than expected: for pt = 0.25MPa �
m we see an increase of� 0.6MPa �m (instead of 0.5MPa �m), and for pt = 1MPa �m we see

an increase of� 2.73MPa �m (instead of 2.0MPa �m). This stiffening is probably due to the

prestrain caused by turgor.

In Fig 7B we show the results of the direct stress experiments in the presence of turgor pres-

sure. We see that turgor pressure causes an increase in the model’s effective Young’s modulus.

The effective Young’s modulus increases linearly with increasing turgor pressure, by� 4 × pt (see

Fig 7A, bottom). For example we measure for a turgor pressure of 0.25MPa �m and total strain

of 1% an increase of the effective Young’s modulus 0.9MPa �m. For a turgor pressure of 1.00MPa
�m and total strain of 4% we measure an increase of the effective Young’s modulus 3.5MPa �m.

Here we see a smaller stiffening effect than expected from our theoretical arguments. We see

from Fig 7A, bottom that the effective Poisson’s ratio νeff is affected very little by turgor pressure.

Finally, we studied how turgor pressure affects the model’s isotropy. The results are illus-

trated in Fig 7C. We added the turgor pressure to the medium first, fixed the boundaries of the

medium, and then performed a similar experiment as in Fig 6C (but with different pt). Here

we varied the strength of the turgor pressure, and kept the strength of the rotating force
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constant. Notably, we applied a strong rotating force of 14N for which without turgor a sub-

stantial deviation from isotropy was observed. We can see from Fig 7C, middle that the dis-

placement of the central mass point substantially decreases for higher turgor pressure. We can

understand this from the results above, which demonstrated that the stiffness of the model

increases with larger turgor pressure. In a stiffer medium we expect a smaller strain, and thus

also a smaller deformation gradient.

Effect of anisotropy on material properties

Here we show how anisotropy affects the material properties of our model. For this we per-

formed simulations in a model with: Yx = 20MPa �m;ν = 0.2;pt = 0.5MPa �m, and different Yy
= c � Yx, where we used c to control the fiber anisotropy. Results of these experiments are

shown in Fig 8. In Fig 8A we show results of a direct stress experiment (similar to Fig 7A), in

which we stretched the model in y-direction for different levels of anisotropy c. Fig 8A, middle

shows that for smaller strain the model (black lines) converges to the theoretical value of a

material which follows an orthotropic Hooke’s law (red lines). Whereas Fig 8, right reveals

that the stiffening effect of the turgor pressure (compare Fig 7A, bottom) is decreased for larger

c. This can partly be explained by the decreased prestrain (for higher Yy) due to the turgor

Fig 7. Material properties as function of turgor pressure. Top: Setups. Contours indicate undeformed (dotted) and

deformed medium. Big arrows in (A) and (B) indicate applied stress. Blue arrows indicate turgor pressure. (A) Shear

stress experiment. Top: Setup. Contours indicate undeformed (dotted) and deformed medium. Black blocks indicate

walls through which shear stress is applied (all identical). Middle: stress-strain plots for different strengths of turgor

pressure. Bottom: ratio between effective and theoretical shear modulus μeff/μ as a function of τ. (B) Direct stress

experiment. Top: Setup. Medium is fixed at the bottom (black block), such that points at lower border can move

horizontally, but not vertically. Middle: stress-strain plots for different strengths of turgor pressure. ratio between

effective and theoretical Young’s modulus and Poisson ratio (Yeff/Y, νeff/ν) as a function of εyy. (C) Isotropy

experiment. Top: Setup. Arrow in the center symbolizes rotating force. Middle: displacement of center point for

different turgor pressure and same strength of force (14 μN) vs angle of force vector α. Length of undeformed squared

medium 100 μm.

https://doi.org/10.1371/journal.pone.0221059.g007
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pressure: for c = 1 prestrain is eyy = 2%, for c = 2 prestrain is eyy = 1%, and for c = 4 prestrain is

eyy = 0.4%. In Fig 8A we found that this causes an increase of the effective Young’s modulus in

y-direction Yeff
y : for c = 4 of 1%, for c = 2 of 2%, and for c = 1 of 4% Moreover, it is also shown

that higher anisotropy c decreases the turgor pressure caused dependency on the effective Pois-

son ratio eeffyy . This may also be caused by the reduced stiffening due to prestrain in anisotropic

conditions. So far, direct stress experiments were performed in only a single direction, as for

isotropic tissues similar results would result from applying stress in the perpendicular direc-

tion. In contrast, for an anisotropic tissue model we need to apply stress experiments in x- and

y-direction. In Fig 8B we show results of a direct stress experiment where stretch was applied

in x-direction (compare Fig 8B, left). We see that the stress-strain plots coincide for different

Fig 8. Material properties as a function of elastic anisotropy. Left: Fine lines indicate fiber direction, where Yy = c ×
Yx. See Fig 7 for further explanation of setup illustrations. (A) Direct stress experiment—stress in vertical direction.

Left: Setup. Middle: stress-strain plots for different anisotropy ratios c. Right: ratio between effective and theoretical

Young’s modulus and Poisson ratio (Yeff
y =Y, neffy =n) as a function of εyy. (B) Direct stress experiment—stress in

horizontal direction. similar to subfigure (A). (C) Pure shear stress experiment. Left: Setup. Middle: stress-strain

plots for different anisotropy ratios c. Bottom: ratio between effective and theoretical shear modulus μeff/μ as a function

of τ. (D) Isotropy experiment. Top: Setup. Arrow symbolizes rotating force. Middle: displacement of center point for

anisotropy ratios c and same strength of force (14 μN) vs angle of force vector α. Length of undeformed squared

medium 100 μm. pt = 0.5MPa �m.

https://doi.org/10.1371/journal.pone.0221059.g008
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anisotropy ratios c (Fig 8B, middle). Consequently the plots Yeff
x against exx (Fig 8B, right) are

also very similar and again converge to the theoretical orthotropic Hooke’s law for small

strains. We see also from (Fig 8B, right) that the effective Poisson ratio neffx decreases with

higher s. We can again explain this with the decrease in prestrain eyy due to a higher stiffness of

Yeff
y caused by anisotropy.

Next we performed the shear stress experiment on the model with different anisotropy s
(Fig 8C). We see from the stress-strain plots in Fig 8C, middle that for small strain the effective

shear modulus for different c (black lines) converges to the theoretical value of a orthotropic

Hooke’s law (red lines). Additionally, we see for the shear modulus (Fig 8C, right) that a higher

anisotropy c reduces the turgor pressure caused stiffening (compare to Fig 7B, bottom).

Finally we studied how well the anisotropy is described in the model by repeating the

“rotating-force” experiment for a constant force strength of 14N (compare Fig 7C) in models

with different anisotropy ratios c. We plot the recorded trajectories (black lines) of the center

point against theoretically expected ellipses (red lines). We constructed the ellipses using the

initial position of the center point as the origin of the coordinate system, maximal displace-

ment of the center point in x- and in y-direction (xp,max, yp,max) as vertices, and plotted for

each s the ellipse:

x2
p=x

2
p;max þ y

2
p=y

2
p;max ¼ 1;

where xp and yp are the x- and y-coordinate of the center mass point. We see that the recorded

trajectories match the assumed theoretical elliptic trajectories well.

Effect of plastic growth on material properties

Above we demonstrated how the model’s material properties are affected by finite strain. Here

we illustrate how plastic growth affects the material properties of the model. First similar

experiments as shown above were performed, applying direct or shear stress while letting the

medium grow uniformly. We show the results in Fig 9A–9C. It can be seen from Fig 9A and

9B that the effective Young’s modulus Yeff and Poisson ratio νeff are affected little by plastic

growth, for an increase from h = 1 (or h−1 = 1) to the maximal value of
ffiffiffi
2
p

(when remeshing

happens) changes in these material properties are less than 0.01%. However, from Fig 9C we

can see that the effective shear modulus is affected substantially by plastic growth, it changes�

6%, when s is increased from 1 to the maximal value of
ffiffiffi
2
p

. Moreover, the isotropy experiment

(compare to Fig 6C) was repeated in a medium which we first let grow in horizontal direction.

We show the relative error of trajectories of the center mass point (to which the rotating force

is applied) for different values of h, and a strong local force of 10N (compare Fig 6C). We find

that the maximal change in metric of the unit cells due to growth causes a maximal relative

error of� 7% (compared to ideal circular trajectory).

We can conclude that growth causes a change in the metric of unit cells in our model, and

that these changes affect the material properties mainly in its shear modulus. This artifact also

manifests as a deviation from the ideal isotropic behavior. As a first application of our model

we studied emergent residual strain fields and tissue deformation that arise due to anisotropic

growth in rectangular model setups. We show data where a maximal residual strain of 5%

emerges in the tissue, similar to previous modeling work [27].

Anisotropic elongation: “root bending”

An important phenomenon in plant development is the bending of the root, for instance to

grow towards nutrients, or to follow the gravitational field. Such directional growth responses
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are called tropisms, and they arise from a directional environmental signal becoming trans-

lated into a tissue level asymmetry of the plant hormone auxin. Since auxin levels dictate cellu-

lar expansion rates, this auxin asymmetry subsequently induces a growth rate asymmetry that

results in bending. To illustrate the application of our method to the study of tropisms we

superimposed a growth rate asymmetry.

To model root tropism, we use a slab of tissue with initial size 76 μm × 32 μm, with

Young’s moduli Yx = 40MPa �m and Yy = 80MPa �m, Poisson’s ratio ν = 0.2 and turgor pres-

sure pt = 0.2MPa �m. We show the results of the simulation in Fig 10 and in video: S1 Video.

Growth happens in this setup only in x-direction (elongation along the “root axis”), and an

asymmetric growth field is used (see Fig 10, second column) such that the upper part of the

“root” grows faster than the lower part. We see that the asymmetric growth causes a bending

of the tissue, where the inner side of the arc is the side with the slower growth rate. At 42min
the onset of bending can be seen. For time points 85 and 107min a slight negative strain

(compression) in the x-direction emerges (third column), which is weaker at the ends of the

medium. In these snapshots we also see that remeshing is happening (left column) due to the

growth process, starting from the outside arc, the location of highest growth rate and “propa-

gating as a wave” towards the inner side of the arc. This remeshing does not cause a visible

disruption of the direct strain in the x-direction (third column); however, for the absolute

shear (right column) we see that the remeshing causes a slight local distortion of the shear

strain field (see thin red line). These effects of the remeshing on the strain fields can be

explained by our findings shown in Fig 9, where we showed that plastic growth affects the

shear modulus, but hardly affects the Young’s modulus. Later the simulation (129, and

141min) shows that the negative strain in the x-direction increases at the inner side of the arc

(where the growth rate is smaller) to a maximum of −5%, whereas the strain on the fast grow-

ing side (outer side of the arc) is minimal. Furthermore we can see the emergence of a

Fig 9. Material properties during growth. Fine lines indicate different system sizes (for different metric terms h and s). (A) Direct stress

experiment—growth in y-direction. Top: Setup. Medium is fixed at the bottom (black block), such that points at lower border can move only

horizontally. Black arrows indicate direct stress. Bottom: relative error of effective Young’s modulus and Poisson’s ratio as a function of h−1. (B)

Direct stress experiment—growth in x-direction. similar to subfigure (A). (C) Pure shear stress experiment. Top: Setup. Black blocks indicate

walls through which shear stress is applied. White arrows indicate shear stress (all same strength). Bottom: error of effective shear modulus as a

function of s. (D) Isotropy experiment. Top: Setup. Contour indicates fixed boundary of medium (for h = 1.4). Arrow symbolizes rotating

force. Bottom: error of trajectories for different h relative to displacement for α = 0, and h = 1.0. Length of initial (h = 1.0) squared medium

100μm.

https://doi.org/10.1371/journal.pone.0221059.g009
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substantial shear strain field (see two “red eyes” in the right column). Note that throughout

the simulation strain in the y-direction was very small, which is why we choose to not show

it in Fig 10 (it is included in the video: S1 Video).

Anisotropic growth in two dimensions “leaf growth”

In many plant tissues, plastic growth is not restricted to a single direction. For example in leaf

blades, tissue growth happens in two principal directions. Additionally, in case of bidirectional

growth, tissue expansion is often anisotropic. Here we demonstrate such differential bidirec-

tional growth in our model. For this we consider an initially quadratic slab of tissue with initial

size 76 μm × 67 μm, with Young’s moduli Yx = 40MPa �m and Yy = 80MPa �m, Poisson’s ratio

ν = 0.2 and turgor pressure pt = 0.2MPa �m. We show the results of this simulation in Fig 11

and in the video: S2 Video. We apply growth in x-, and y-direction, and use an asymmetric

growth field (see Fig 11, second column). We see that residual strain fields emerge in the grow-

ing tissue. From Fig 11, third column we see that during growth positive strain in x-direction

(stretch) gradually increases at the upper and lower border of the tissue, whereas a negative

Fig 10. Application “root bending”. Anisotropic elongation (growth along root axis) causes emergence of residual strain and bending of the

tissue.

https://doi.org/10.1371/journal.pone.0221059.g010
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strain in the x-direction emerges in the center of the medium. In contrast to strain in the x-

direction, in the y-direction weaker positive strain at the left and right borders gradually

increases during growth, and no compression strain in the center happens. This can partly be

explained by the elastic anisotropy of the tissue, where the stiffness in y-direction is twice

larger compared to the x-direction (compare Fig 11, fourth column) causing that the tissue is

easier deformed in x-direction than y-direction. We see that a substantial shear strain field (see

four “red eyes” in right column) emerges in the medium.

Discussion

We introduced a discrete mechanical growth model to study plant growth and development.

The model contains an orthogonally organized mesh of mass points and connecting springs,

providing an intuitive resemblance to the typical orthogonal microfibril architecture of

Fig 11. Application differential growth in 2D “leaf growth”. Anisotropic growth causes emergence of residual strain in the tissue.

https://doi.org/10.1371/journal.pone.0221059.g011
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anisotropic, polarized plant cells. We approximate the model’s material properties as an ortho-

tropic Hookean material. The discrete nature of the method enables the incorporation of

experimental data on material properties on the subcellular level. Compared to continuous

mechanics approaches our method is relatively easy to implement in a computationally effi-

cient manner, and allows usage of simpler integration schemes. We propose the method as a

building block for multi-process models enabling researchers to link gene regulation, hor-

monal signaling, water transport and cellular behavior to the mechanics of tissue growth and

deformation.

The model was used to study the consequences of growth. We found that anisotropic

growth causes emergent strain fields in the medium, and that an asymmetric elongation (simi-

lar to root growth) causes a bending of the tissue. As a next step it is important to compare our

predictions regarding tissue bending and emergence of strain fields to continuum mechanics

models, and test them experimentally. Thusfar, the role of strain fields in root tropisms has not

been investigated. Potentially the feedback of strain on growth mechanics could play a role in

regulating growth asymmetry.

The model’s material properties were characterized in a series of simulations, and we dis-

cussed deviations from the approximated material law that arise from finite strain and plastic

growth. A further limitation regarding material properties emerges from our choice of the

coordinate system (fiber directions) to couple the discrete method to a continuous material. In

presence of shear the underlying coordinate system is not ideally orthogonal but skewed. If

under such conditions direct stress is applied, the “Poisson effect” in the model will artificially

cause a force which is not perfectly orthogonal to the stress, but skewed. Importantly, for

multi-scale biological models, the aim is to uncover how interactions between different pro-

cesses shape tissue growth, development and adaptation rather than making precise predic-

tions. In addition, typically, such research requires large numbers of exploratory simulations

that probe different possible interactions between processes, initial conditions and parameter

regimes, as opposed to computing a few distinct scenarios. Thus, we argue that the computa-

tional and numerical simplicity of our model outweighs its limitations in terms of accuracy for

the aims it was developed for.

The model can be extended in various directions. For example, because of the discrete

nature of the method breakage of cell wall material can be modeled with a removal of mass

points, springs and hinges. This can be useful to model lateral root emergence when the

forming tissue breaks through upper cell layers. In this paper we used simple growth func-

tions to illustrate the model. However, as a next step growth should be formulated in terms

of physiological processes. For instance, local growth can be formulated in terms of local

auxin concentrations, strain fields and cytoskeletal processes. Moreover, the method may be

applied not only to study plant tissue, but also to study other turgoid cell types of bacteria or

fungi.

Appendix

A

In this section we demonstrate that for small strain, the following approximation used in Eq 8

is valid

@ ~C

@εij
¼
E0

A
�
A0E
A2
�
E0

A
¼)j

A0E
A2
j � j

E0

A
j¼)j

A0E
A
j � jE0j¼)jA0 ~Cj � jE0j: ð33Þ
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First, we write A in terms of strain

A ¼ xycosðφÞ ¼ x0y0ð1þ εxxÞð1þ εyyÞcosðφÞ ð34aÞ

¼ x0y0ð1þ εxxÞð1þ εyyÞcosðarctanðtÞÞ ð34bÞ

¼ x0y0ð1þ εxxÞð1þ εyyÞð1þ t
2Þ
� 1=2

ð34cÞ

¼ x0y0ð1þ εxxÞð1þ εyyÞ 1 �
1

2
t2 þOðt4Þ

� �

Taylor expansion around 0ð Þ ð34dÞ

� x0y0ð1þ εxxÞð1þ εyyÞð1 � 2ε2

xyÞ: ð34eÞ

Taking the derivatives with respect to strain, and approximating these by keeping only terms

that are of the lowest order in ε we obtain

@A
@εxx

¼
@A
@εyy
� x0y0 ð35aÞ

@A
@εxy

¼
@A
@εxy
� � 4x0y0εxy; ð35bÞ

from this it follows that
@A
@εxx

~C is of Oðε2Þ, and
@A
@εxy

~C is of Oðε3Þ, while E0 is linear with respect

to strain components (compare Eq 18). Therefore our approximation is valid for small strain.

Note that we can predict a scaling behavior of the errors for material properties for increas-

ing strain. For the shear modulus μ we can expect an error to increase quadratically with

increasing shear strain. Whereas we expect a linearly increasing error of the Young’s modulus

Y for increasing direct strain.

B

Here we explain the following approximation which was used in Eq 17

@E
@ekl
� A

X

no

~Cklnoeno: ð36Þ

We use Eq 11 to write the left side of Eq 36 in terms of the stiffness tensor

@E
@ekl

¼
@ðA ~CÞ

@ekl
¼
@Að

X

nopr
~CnoprenoeprÞ

2@ekl
: ð37Þ

Because the elements of the stiffness tensor Cnopr are proportional to A (see Eq 10),

We defineHnopr≔ Cnopr/A, to rewrite the expression to

@ðA2
X

nopr
HnoprenoeprÞ

2@ekl
¼
@A2

2@ekl

X

nopr

Hnoprenoepr þ
A2

2

X

nopr

Hnopr
@enoepr
@ekl

ð38aÞ

¼ 2
@A
@ekl

~C þ A
X

no

~Cklnoeno: ð38bÞ

Discrete mechanical growth model for plant tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0221059 August 12, 2019 26 / 32

https://doi.org/10.1371/journal.pone.0221059


Thus our approximation (Eq 36) implies

2
@A
@ekl

~C � A
X

no

~Cklnoeno: ð39Þ

We again concentrate on terms with lowest order in ε (see Eq 35) to rewrite

@A
@exx

~C � x0y0
~C ð40aÞ

@A
@exy

~C � � 4x0y0exy ~C ð40bÞ

By taking the derivative with respect to direct strain components (exx, eyy), we obtained expres-

sions of Oðe2Þ, while by taking the derivative with respect to shear strain components (exy, eyx)
we obtained expressions of Oðe3Þ. Finally we note that the right hand term in Eq 39 is linear

with respect to strain components, and thus our approximation is valid for small strain.

C

Here we derive Eq 22, the term which we use to compute the elastic shear force acting at a

mass point

� ð~CxyxytÞA
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We start with the derivative
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For the derivative 42b:

o0 ¼
@an
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¼
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kxnkkynk
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ð43aÞ

¼
v0

w
�
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Considering the derivative 42d:
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We rewrite Eq 41 into
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Finalizing the expression
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Supporting information

S1 File. Source code. The model was implemented using the C++ programming language.

The software uses the Intel threading building blocks (TBB) runtime library as a parallelization

environment (available in open source from http://www.intel.com/software/products/tbb/),

and for visualization the CASH library from Rob J. de Boer and Alex D. Staritsky (available in

open source from http://theory.bio.uu.nl/rdb/software.html).

(ZIP)

S1 Video. Application “root bending”. Anisotropic elongation (growth along root axis)

causes emergence of residual strain and bending of the tissue.

(MP4)

S2 Video. Application “leaf growth”. Anisotropic growth in x- and y-direction causes emer-

gence of residual strain in the tissue.

(MP4)
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