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Abstract

Background: Age and disease prevalence are the 2 biggest risk factors for Coronavirus disease 2019 (COVID-19) symptom severity and 
death. We therefore hypothesized that increased biological age, beyond chronological age, may be driving disease-related trends in COVID-19 
severity.
Methods: Using the UK Biobank England data, we tested whether a biological age estimate (PhenoAge) measured more than a decade prior 
to the COVID-19 pandemic was predictive of 2 COVID-19 severity outcomes (inpatient test positivity and COVID-19-related mortality with 
inpatient test-confirmed COVID-19). Logistic regression models were used with adjustment for age at the pandemic, sex, ethnicity, baseline 
assessment centers, and preexisting diseases/conditions.
Results: Six hundred and thirteen participants tested positive at inpatient settings between March 16 and April 27, 2020, 154 of whom 
succumbed to COVID-19. PhenoAge was associated with increased risks of inpatient test positivity and COVID-19-related mortality 
(ORMortality  =  1.63 per 5  years, 95% CI: 1.43–1.86, p  =  4.7  × 10−13) adjusting for demographics including age at the pandemic. Further 
adjustment for preexisting diseases/conditions at baseline (ORM = 1.50, 95% CI: 1.30–1.73 per 5 years, p = 3.1 × 10−8) and at the early 
pandemic (ORM = 1.21, 95% CI: 1.04–1.40 per 5 years, p = .011) decreased the association.
Conclusions: PhenoAge measured in 2006–2010 was associated with COVID-19 severity outcomes more than 10  years later. These 
associations were partly accounted for by prevalent chronic diseases proximate to COVID-19 infection. Overall, our results suggest that 
aging biomarkers, like PhenoAge may capture long-term vulnerability to diseases like COVID-19, even before the accumulation of age-related 
comorbid conditions.
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Coronavirus disease 2019 (COVID-19) represents one of the big-
gest threats to public health in nearly 100  years. While efforts 
are being undertaken to distribute vaccines and antibody tests for 
COVID-19, in the interim, there is a critical need for assessing 
risk stratification and to explore the use of geroscience-guided 
interventions seeking to improve outcomes by targeting biological 

aging. Accurately identifying those most at risk of severe com-
plications or death will facilitate treatment decisions and inform 
guidelines regarding shelter-in-place and social distancing pol-
icies. As such, a major priority is in developing biomarkers that 
prognostically inform on severity of COVID-19 disease progres-
sion (1).
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The risk of fatality and/or severe complications due to COVID-
19 infection is strongly age-dependent. On March 27, 2020, the 
U.S. Center of Disease Control projected that persons aged 85 and 
older have predicted mortality rates of 10.4%–27.3%, compared 
to 4.3%–10.5% for individuals aged 75–84  years, 2.7%–4.9% 
for individuals 65–74 years, 1.4%–2.6% for those 55–64 years, 
and <1% for those 20–54 years of age (2). All-in-all, those aged 
85 and older have a mortality risk that is 100-fold higher than for 
those under the age of 50, and currently 8 out of 10 COVID-19 
deaths in the United States are among adults aged 65 or older (3). 
In addition to age, the U.S. Center of Disease Control reports that 
morbidity prevalence—particularly cardiovascular disease, dia-
betes mellitus, chronic kidney disease, and chronic lung disease 
(4)—exacerbate risk of death or symptomatic complications. 
Similar COVID-19 comorbidity associations were reported in 
other countries, for example, United Kingdom (5), China (6), and 
Italy (7).

Previous studies have predicted COVID-19 outcomes (pneu-
monia and mortality) using hospital inpatient data including 
demographics, signs and symptoms, clinical biomarkers, and 
imaging features. The performance in terms of C-statistic/
index or area under the receiver operating characteristic (ROC) 
curve (AUC) was generally over 90% but subject to bias and 
overfitting (8). One study predicted hospital admission related 
to upper respiratory infections (pneumonia, influenza, acute 
bronchitis, etc.), proxy events of COVID-19, using over 500 
diagnostic features from thousands of general population sam-
ples (9). The resulting AUCs were 70%–80% but may not be 
generalizable to COVID-19 (10). A  recent study used 98 vari-
ables (demographics, recent vital signs, COVID-19 testing status 
and symptoms, as well as preexisting medical diagnoses) and 
12 502 patients (9931 training and 2531 testing samples) with 
COVID-19-related visits to Massachusetts General Hospital 
emergency department and/or respiratory illness clinics (initi-
ated for the pandemic) from March 7 to May 2, 2020, to predict 
an ordinal severity outcome within 7 days: (i) no event, (ii) hos-
pitalized, (iii) ICU care and/or mechanical ventilation, or (iv) 
death, where the training results (AUC 0.76 for hospitalization, 
0.79 for critical illness: ii, iii, or iv, and 0.93 for death vs others 
for each) were used to derive an acuity score for outpatient 
screening (11).

In recent years, we have developed and widely validated 
several biomarkers of aging (12–14) that strongly predict 
morbidity and mortality risk, in both short-term (1 year) and 
long-term (25+ years) follow-ups (12,14,15). Based on these 
observed trends, we hypothesize that biological aging, above 
and beyond chronological age, is a robust determinant of 
symptom severity following COVID-19 infection. We aimed to 
assess the risk and predictive performance of accelerated aging 
for COVID-19 severe infection using a biological age measure, 
named phenotypic age (PhenoAge). PhenoAge was previ-
ously trained using 42 biomarkers as inputs into a supervised 
machine learning model to predict all-cause mortality (12,15). 
We applied this measure to biomarker data from 2006 to 2010 
of participants from a large community cohort, UK Biobank 
(UKB) (16,17). Combined with information on disease diag-
noses updated to March 2020, we tested whether accelerated 
aging was predictive of COVID-19 severity based on mortality 
data and COVID-19 test results linked from the UK National 
Health Service (18).

Method

UK Biobank Data
UKB (16,17) is a volunteer community cohort, recruiting over 
500 000 participants between the ages of 40 and 70 during 2006–
2010. We restricted analyses to participants attending baseline as-
sessment centers in England, excluding those who died before March 
16, 2020 (first test date in the UKB COVID-19 test results). At re-
cruitment (baseline), biological samples of participants were col-
lected for biomarker assays. The disease status was confirmed based 
on self-reported doctor diagnoses at baseline or hospital admission 
records updated to March 2020. Also, the mortality data were used 
based on death certificates to October 2020. These phenotypic data 
are linked to the UK national COVID-19 test results, currently from 
March 16 to December 21, covering the first peak of COVID-19 
incidence.

COVID-19 Severity Outcomes
Early testing in the United Kingdom was largely restricted to hospital 
inpatients with clinical signs of infection (18). We used 2 COVID-19 
severity outcomes: inpatient test positivity between March 16 and 
April 27, 2020, and COVID-19-related mortality (death certificate 
ICD code: U071 or U072) with inpatient test-confirmed COVID-
19 between March 16 and April 27, 2020. To ensure that test posi-
tivity is a proxy for COVID-19 severity, we restricted positives to 
inpatient positives between March 16 and April 27, 2020, when only 
symptomatic individuals were tested (19). As of April 27, 2020, hos-
pitals under the UK National Health Service direction have tested 
all nonelective patients admitted overnight, including asymptomatic 
patients (19). The death data including causes up to October 2020, 
were used to determine death status for inpatient positives between 
March 16 and April 27, 2020. For the test positivity outcome, we 
compared inpatient test positives between March 16 and April 27 
to untested samples and samples tested negative, excluding posi-
tive cases at noninpatient settings between March 16 and April 27, 
and positive cases regardless of origins from April 27 to December 
21, 2020, as the severity of these people are uncertain. We included 
untested samples as they were enriched for milder or asymptom-
atic COVID-19 responses. For the mortality outcome, we compared 
COVID-19-related deaths with inpatient test-confirmed COVID-19 
between March 16 and April 27, 2020 to untested samples, sam-
ples tested negative, and inpatient positives (March 16 to April 27, 
2020) who survived, excluding those as for inpatient test positivity 
and deaths unrelated to COVID-19, based on ICD codes on death 
certificates.

PhenoAge
PhenoAge was developed based on mortality scores from the 
Gompertz proportional hazard model on chronological age and 9 
biomarkers, which were selected from 42 biomarkers by Cox pen-
alized regression model for best predicting all-cause mortality as a 
surrogate of biological aging in the National Health and Nutrition 
Examination Survey III (NHANES III) (12). Other methods can be 
used to derive biological age estimates from the set of biomarkers 
applied here. PhenoAge is more interpretable than the biomarkers 
given that it is expressed in units of years, on the same scale as 
chronological age. Therefore, it can be directly contrasted against 
chronological age to access accelerated aging. PhenoAge is propor-
tional to 10-year mortality risk (12), assuming generalizability of the 
NHANES III training results to the UKB.
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Biomarkers in UKB were measured at baseline (2006–2010) for 
all participants (measurement details in the UK Biobank Biomarker 
Panel (20) and UK Biobank Haematology Data Companion 
Document (21)). To correct distribution skewness, we set the top and 
bottom 1% of values to the 99th and 1st percentiles. The formula of 
PhenoAge is given by

PhenoAge = 141.50+
ln
¶
(−0.00553)× (−1.51714)×exp(xb)

0.0076927

©

0.09165

where

xb = −19.907− 0.0336× albumin+ 0.0095
× creatinine + 0.1953× glucose+ 0.0954

× ln(CRP)− 0.0120× lymphocyte
percentage+ 0.0268×mean corpuscular volume

+ 0.3306× red blood cell distribution width (RDW)

+ 0.00188× alkaline phosphatase+ 0.0554
× white blood cell count+ 0.0804× age

and age denotes the chronological age.

Statistical Methods
We tested associations of (i) age at the pandemic (set as March 16, 
2020, the first COVID-19 test date in the data, a shift of age at base-
line), (ii) PhenoAge at baseline (10+ years prior), and (iii) preexisting 
diseases or conditions with the 2 COVID-19 severity outcomes, 
using the logistic models below.

 M1: age at the pandemic
 M2:  age at the pandemic + PhenoAge acceleration (PhenoAgeAccel) 

at baseline
 M3:  age at the pandemic + preexisting diseases or conditions at 

baseline
 M4:  age at the pandemic + preexisting diseases or conditions at 

baseline + PhenoAgeAccel at baseline

We also modeled age at the pandemic and preexisting dis-
eases/conditions to March 2020 (M5) and PhenoAgeAccel 
additionally (M6),

 M5:  age at the pandemic + preexisting diseases or conditions to 
March 2020

 M6:  age at the pandemic + preexisting diseases or conditions to 
March 2020 + PhenoAgeAccel at baseline

where PhenoAgeAccel was estimated by the residual of PhenoAge ad-
justed for chronological age at baseline in a linear regression model. 
As such, PhenoAgeAccel represents how much older (or younger) an 
individual’s PhenoAge is relative to what is expected based on his/
her chronological age. A value of 5 suggests a participant is 5 years 
older than expected (faster ager), while a value of −5 suggests he/she 
is 5 years younger than expected (slow ager). Thus, we hypothesize 
that higher PhenoAgeAccel (faster biological aging) will be positively 
associated with COVID-19 severity.

There is no implication that PhenoAge is a better predictor than 
the biomarkers in PhenoAge especially when the outcome is not all-
cause mortality. For sensitivity analysis, we replaced PhenoAgeAccel 
in M6 with the biomarkers in PhenoAge to determine relative 

contributions of the biomarkers to associations with the 2 COVID-
19 severity outcomes.

M7 : age at the pandemic
+ preexisting diseases or conditions to March 2020
+ albumin+ creatinine+ glucose+ ln(CRP)
+ lymphocyte percentage
+ mean corpuscular volume+ RDW
+ alkaline phosphatase
+ white blood cell count

where each biomarker was z-transformed to be in the same scale for 
the effect comparison with other biomarkers. We acknowledge that 
this model may be biased to overfitting in comparison to M6 since 
unlike PhenoAge for which the weighting of biomarkers was derived 
from an independent sample, these weights will be derived within the 
UKB sample for the outcome of interest.

The above models (M1–M7) were also adjusted for sex, self-
reported ethnicity, and baseline UKB assessment centers in England 
to account for geographic differences in the prevalence of COVID-
19. The preexisting diseases/conditions were mostly selected as those 
included in Atkins et al (5) (ICD-10 codes in Supplementary Table 
S1): dementia, type 2 diabetes, history of pneumonia, depression, 
atrial fibrillation, hypertension, chronic obstructive pulmonary 
disease (COPD), chronic kidney disease, rheumatoid arthritis, cor-
onary artery disease, history of delirium, stroke, asthma, previous 
falls/fragile fractures, osteoarthritis, and liver disease.

We estimated the proportions of mediated effects of included 
diseases (to March 2020)  and comorbidities (number of diag-
nosed diseases) for the association between accelerated aging (1 if 
PhenoAgeAccel > 0 and 0 if PhenoAge ≤ 0) and inpatient test posi-
tivity or COVID-19-related mortality, using participants free of 
the considered diseases at baseline, a logistic regression model for 
a binary-dependent variable, and a Poisson regression model for a 
count-dependent variable (comorbidities), adjusting for age at the 
pandemic, sex, ethnicity, and assessment centers.

We also evaluated M1–M7 for predictive power by AUC using 
10-fold cross-validation. Specificity, positive and negative predictive 
values were reported when the sensitivity was controlled at a desired 
level by manipulating the predicted probability threshold to predict 
who will be severely infected. All the statistical analyses were per-
formed in R version 3.4.1. The mediation analysis was conducted 
using the “mediation” R package (22).

Results

445  875 participants attended baseline assessment centers in 
England, United Kingdom. Participants who died before the pan-
demic (set as March 16, 2020, n = 25 321) were excluded. 47 572 
in England were tested between March 16 and December 21, 2020, 
including 30 887 inpatient and 16 685 noninpatient samples. 6254 
noninpatient positives (236 between March 16 and April 27; 6018 
from April 27 to December 21, 2020) and 1504 inpatient positives 
from April 27 to December 21, 2020 were further excluded as well as 
participants with any missing data of demographics, comorbidities, 
or PhenoAge, leaving a total of 339 285 samples.

Among the included samples, 186  125 (54.6%) were female. 
94.3% of participants self-identified as White (n = 319 786), 1.7% 
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identified as Black (n = 5905), and 4.0% identified as Other, which 
included Mixed, Asian, and Chinese (n = 13 594). The mean attained 
age on March 16, 2020 (age at the pandemic) was 67.9 (SD = 8.1), 
where 217 313 (64.1%) were 65 years and older. The mean chrono-
logical age (56.3 ± 8.1) was 2.5 years older than the mean PhenoAge 
(53.9  ± 9.4), both at baseline/recruitment of UKB. PhenoAge and 
chronological age at baseline were highly correlated with Pearson 
correlation coefficient r = 0.857 (95% CI: 0.856–0.858). A summary 
of the PhenoAge biomarkers at baseline is provided in Table 1.

Six hundred and thirteen participants tested positive at inpatient 
settings between March 16 and April 27. Of these, 154 (25.1%) died 
from COVID-19. Three individuals were excluded for the COVID-
19-related mortality outcome, with the specimen sample taken date 
slightly later than the date of death (≤3 days). For the rest of COVID-
19-related deaths, the median duration from the first inpatient posi-
tive result to death was 7 days (first quartile: 4, third quartile: 11.75, 
range: 0–113 days). In the same testing period (March 16 to April 
27, 2020), 436 inpatient positives survived to October 2020, and 23 
died from causes unrelated to COVID-19.

The mean duration between baseline blood draw and the onset 
of the pandemic, set as March 16, 2020, was 11.5 years with the 
SD 0.8 years. Boxplots and violin plots for PhenoAge acceleration 
by status of demographic, COVID-19 severity, or disease status at 
the pandemic (Supplementary Figures S1–S4) showed upward trends 
for severe cases of COVID-19 and those with preexisting diseases/
conditions particularly type 2 diabetes and chronic kidney disease, 
compared to their counterparts.

Based on logistic regression model results, men were more likely 
to test positive at an inpatient setting for COVID-19 and die with 
test-confirmed COVID-19 than women. Similarly, participants with 

self-reported Black ethnicity were more likely to test positive at 
an inpatient setting than those with self-reported White ethnicity, 
regardless of models (Tables 2–4). Increased age at the pandemic 
was associated with increased risks of inpatient test positivity and 
COVID-19-related mortality but age at the pandemic was not as-
sociated with inpatient test positivity (p > .05) after adjusting for 
concurrent disease prevalence (M5 and M6).

Independent of age at the pandemic and other demographics, 
increased PhenoAge was associated with an increased risk of in-
patient test positivity (odds ratio [OR]  =  1.37 per 5  years, 95% 
CI: 1.27–1.47, p  =  1.1  × 10−17) and COVID-19-related mortality 
(OR = 1.63 per 5 years, 95% CI: 1.43–1.86, p = 4.7 × 10−13) (Table 
2 M2). The associations above were modestly reduced with add-
itional adjustment for prevalent diseases at baseline (inpatient test 
positivity: OR = 1.25 per 5 years, 95% CI: 1.16–1.35, p = 6.1 × 10−9 
and COVID-19-related mortality: OR = 1.50 per 5 years, 95% CI: 
1.30–1.73, p = 3.1 × 10−8) (Table 3 M4). At baseline, there were no 
participants diagnosed with dementia or having history of delirium. 
The association with type 2 diabetes was significantly reduced for 
inpatient test positivity (M3: OR = 2.0 to M4: OR = 1.59) but re-
mained statistically significant (p < .05) when adjusting for differ-
ences in PhenoAgeAccel (Table 3 M3–M4). We investigated if the 
association attenuation with type 2 diabetes can be explained by spe-
cific PhenoAge biomarkers, known to be associated with type 2 dia-
betes, particularly glucose, creatinine, and C-reactive protein (CRP) 
(log-transformed). PhenoAgeAccel in M4 was adjusted for chrono-
logical age and one of the biomarkers additionally and the change 
in OR associated with type 2 diabetes from M3 to M4 was com-
pared to that with PhenoAgeAccel adjusted for chronological age 
only. The association attenuation with type 2 diabetes is attributed 
to a biomarker if the association attenuation with type 2 diabetes 
was significantly reduced when PhenoAgeAccel is further adjusted 
for that biomarker before entering M4. We expected the biomarkers 
contributed to the attenuation differently depending on the shared 
association between type 2 diabetes and PhenoAge determined by 
the biomarker. We found that the association attenuation with type 
2 diabetes was more attributed to glucose (M3: OR = 2.0 to M4 
with PhenoAgeAccel further adjusted for glucose: OR = 1.93), fol-
lowed by log(CRP) (M3: OR = 2.0 to M4 with PhenoAgeAccel fur-
ther adjusted for log(CRP): OR = 1.69), and then creatinine (M3: 
OR  =  2.0 to M4 with PhenoAgeAccel further adjusted for cre-
atinine: OR = 1.59), compared to the change from M3 to M4 (M3: 
OR = 2.0 to M4: OR = 1.59). Overall, the findings above suggest 
that PhenoAgeAccel as a function of multiple biomarkers cannot be 
replaced by any single biomarker in PhenoAge for associations with 
COVID-19 severity. Of note, the disease associations from M3 and 
M4 could be biased by those who developed diseases after baseline, 
so the results are not as reliable as those from M5 and M6, for ex-
ample, negative associations between asthma and COVID-19-related 
mortality from M3 and M4.

When disease diagnoses were updated to March 2020, the as-
sociation between PhenoAgeAccel (PhenoAge adjusted for baseline 
chronological age) and either severity outcome was further reduced 
(Table 4 M6) but remained statistically significant at the 5% sig-
nificance level. Additionally, the attenuated association with type 2 
diabetes from M3 to M4 was not found from M5 to M6. Dementia, 
type 2 diabetes, history of pneumonia, hypertension, delirium, and 
previous falls or fragile fractures were associated with inpatient test 
positivity and COVID-19-related mortality in both M5 and M6. M6 
and M7 shared similar associations with diseases and demographics 
but the association with sex significantly increased from M6 to M7 
for COVID-19-related mortality. Interestingly, albumin (OR = 0.87 

Table 1. Characteristics of the Included Samples (n  =  339  285): 
Participants Attending Baseline Assessment Centers in England 
and Alive Before the Pandemic (set as March 16, 2020)

Included Samples Frequency (%) or Mean ± SD 

Sex (=female) 186 125 (54.6%)
Ethnicity
 White 319 786 (94.3%)
 Black 5905 (1.70%)
  Others (incl. Asian, Chinese, and 

Mixed)
13 594 (4.0%)

Age at baseline (years) 56.3 ± 8.1
Attained age on March 16, 2020 (years) 67.9 ± 8.1
COVID-19 severity groups
Inpatient positives between March 16 
and April 27, 2020

613 (0.18%)

  COVID-19-related deaths to October 
2020

154 (0.05%)

 Other-cause deaths to October 2020 23 (0.01%)
 Survivors to October 2020 436 (0.13%)
Tested negative 32 098 (9.46%)
Untested 306 574 (90.36%)
PhenoAge biomarkers
 Albumin (g/L) 45.28 ± 2.54
 Alkaline phosphatase (U/L) 82.73 ± 22.37
 Creatinine (μmol/L) 71.95 ± 14.13
 log C-reactive protein (CRP) (mg/dL) 0.30 ± 1.04
 Glucose (mmol/L) 5.09 ± 0.93
 Lymphocyte percentage (%) 29.03 ± 7.14
 Mean corpuscular volume (fL) 91.04 ± 4.22
  Red blood cell distribution width 

(RDW) (%) 
13.46 ± 0.85

 White blood cell count (1000 cells/μL) 6.83 ± 1.69
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per SD increase, 95% CI: 0.80–0.94, p = 5.9 × 10−4) and log(CRP) 
(OR = 1.10 per SD increase, 95% CI: 1.01–1.20, p =  .037) more 
than a decade ago remained significantly associated with inpatient 
test positivity but not with COVID-19-related mortality likely due 
to a lack of power given the ORs were similar for both outcomes 
(Supplementary Table S2).

174 558 participants free of the considered diseases were used 
for mediation analysis, including 216 inpatient positives where 165 
survived and 39 died due to COVID-19. We found that 22% of the 
effect of accelerated aging (ie, PhenoAgeAccel > 0) on inpatient test 
positivity was mediated by comorbidities (number of diagnosed dis-
eases through March 2020, 41  158 about 24% reported at least 
one incident disease diagnosis), which mediated 18% of the effect 
of accelerated aging on COVID-19-related mortality. The mediation 
effect varied with diseases, mostly by type 2 diabetes with 13% for 
inpatient test positivity and 8% for COVID-19-related mortality, fol-
lowed by hypertension (9% and 8%) and pneumonia (8% and 8%) 
(Supplementary Tables S4 and S5). Of note, the disease mediation 
effects are not additive as they likely share common mechanisms. 
Given that the mediation analyses are exploratory due to limited in-
patient positives and COVID-19-related deaths, more research needs 
to be conducted to confirm any causal links.

Using samples with complete data to train M1–M7 models, the 
AUC was higher for COVID-19 mortality than that for inpatient test 
positivity (Figure 1). Using baseline and up-to-date disease diagnosis 
data significantly improved AUC compared to using baseline data 
only. The AUC was similar for models using more or less baseline 
data, that is, M1–M4, and was not substantially increased by baseline 
PhenoAge, additional to demographics and baseline disease states.

As shown in Figure 1, the difference in positive predivtive value 
(PPV) among models for either severity outcome decreased when 
sensitivity increased. For inpatient test positivity, 278 per 100 000 
identified cases are expected to be tested positive or hospitalized 
(PPV = 278/100 000) using M5 including recent disease states and 
the predicted probability threshold 0.00116 for 80% sensitivity, 

and the PPV increases to 442/100 000 when the sensitivity is set to 
0.6, compared to the sample inpatient test positivity rate 181 per 
100  000. Adding PhenoAgeAccel or biomarkers in PhenoAge at 
baseline to M5 did not significantly improve the predictive perform-
ance (M6, M7 vs M5) (Supplementary Table S3). For COVID-19-
related mortality, 141 per 100 000 identified cases are expected to 
die with inpatient test-confirmed COVID-19 (PPV = 141/100 000) 
using M5 including recent disease states and the predicted prob-
ability threshold 0.00035 for 80% sensitivity, and the PPV increases 
to 314/100 000 when the sensitivity is set to 0.6, compared to the 
sample mortality rate 45 per 100  000. Adding PhenoAgeAccel or 
biomarkers in PhenoAge at baseline to M5 did not significantly im-
prove the predictive performance (M6, M7 vs M5) (Supplementary 
Table S3).

Discussion

Higher PhenoAge was linked to COVID-19 severity with adjustment 
for chronological age. The association was modestly reduced by 
prevalent diseases at baseline and decreased when disease states were 
updated to the start of the pandemic. Our mediation analysis results 
suggested that only ~20% of the association between accelerated 
aging a decade or more prior and increased COVID-19 severity was 
mediated by incident diseases (acquired over that period of time).

The association between age-adjusted PhenoAge and COVID-19 
severity, with involvement of disease pathology, may be explained 
by mechanisms underlying accelerated aging by PhenoAge. In our 
recent genome-wide association study on PhenoAge acceleration, 
we observed enrichment for biological processes involved in im-
mune system, cell function, and carbohydrate homeostasis (23). 
A  methylation clock (DNAmPhenoAge) trained using PhenoAge 
as a surrogate for biological age, instead of chronological age, has 
been shown to be associated with activation of pro-inflammatory, 
interferon, DNAm damage repair, transcriptional/translational 

Table 2. Models for COVID-19 Inpatient Test Positivity and COVID-19-Related Mortality With Inpatient Test-Confirmed COVID-19: M1 and M2

M1: Age at the Pandemic (March 16, 2020)
M2: Age at the Pandemic (March 16, 2020) + 
PhenoAgeAccel at Baseline

Positive (n = 613) vs 
Untested or Nega-
tive (n = 338 672)

Positive Dead (n = 151) 
vs Positive Alive, Untested 
or Negative (n = 339 108)

Positive (n = 613) vs 
Untested or Nega-
tive (n = 338 672)

Positive Dead (n = 151) 
vs Positive Alive, Untested 
or Negative (n = 339 108)

Sex* (=male) 1.56 (1.33, 1.83)  
p = 4.6e-08

2.07 (1.48, 2.89)  
p = 1.8e-05

1.41 (1.20, 1.66)  
p = 2.9e-05

1.70 (1.21, 2.38)  
p = 2.1e-03

Ethnicity†

 Black 3.09 (2.06, 4.63)  
p = 4.7e-08

3.44 (1.48, 8.00)  
p = 4.2e-03

2.81 (1.87, 4.22)  
p = 6.1e-07

2.96 (1.26, 6.92)  
p = .012

  Other  
(incl. Asian, 
Chinese, and 
Mixed)

2.09 (1.52, 2.88)  
p = 5.5e-06

1.78 (0.85, 3.72)  
p = .12

2.01 (1.46, 2.77)  
p = 1.7e-05

1.65 (0.79, 3.46)  
p = .18

Age at the 
pandemic (per 
5 years)

1.12 (1.07, 1.18)  
p = 1.1e-05

1.95 (1.69, 2.25)  
p = 1.9e-20

1.12 (1.06, 1.17)  
p = 2.3e-05

1.92 (1.67, 2.21)  
p = 1.2e-19

PhenoAgeAccel 
(per 5 years)

1.37 (1.27, 1.47)  
p = 1.1e-17

1.63 (1.43, 1.86)  
p = 4.7e-13

Notes: In bold if p < .05; assessment center results skipped.
*Reference: female.
†Reference: White.
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signaling, and various markers of immunosenescence: a decline of 
naïve T cells and shortened leukocyte telomere length (12). Overall, 
this suggests that the accelerated biological aging profile captured 
by PhenoAge is largely characterized by accelerated inflammaging 
(chronic low-grade inflammation) (24), whose underlying mechan-
isms may exacerbate COVID-19 symptoms. This is also supported 
by the observation that albumin and CRP more than a decade ago 
were associated with increased risk of inpatient test positivity.

While we modeled PhenoAge and PhenoAge biomarkers alter-
natively using exactly the same data, they have different indica-
tions in the context of COVID-19 severity. As we have emphasized 
in the Method section that PhenoAge was pretrained using a 
U.S.  cohort (NHANES III) to be a proxy of biological aging via 
the surrogate of all-cause mortality, it is expected to be a robust 
predictor for a wide range of age-related outcomes, hypothetic-
ally including COVID-19 severity, which is tested in this study. 

Table 3. Models for COVID-19 Inpatient Test Positivity and COVID-19-Related Mortality With Inpatient Test-Confirmed COVID-19: M3 and M4

M3: Age at the Pandemic (March 16, 2020) + Preexisting 
Diseases or Conditions at Baseline

M4: Age at the Pandemic (March 16, 2020) + 
Preexisting Disease or Conditions at Baseline + 
PhenoAgeAccel at Baseline

Positive (n = 613) vs 
Untested or Nega-
tive (n = 338 672)

Positive Dead (n = 151) vs 
Positive Alive, Untested or 
Negative (n = 339 108)

Positive (n = 613) vs 
Untested or Negative 
(n = 338 672)

Positive Dead (n = 151) 
vs Positive Alive, Un-
tested or Negative 
(n = 339 108)

Sex* (=male) 1. 50 (1.28, 1.77)  
p = 1.0e-06

1.96 (1.39, 2.75)  
p = 1.1e-04

1.41 (1.19, 1.66)  
p = 4.5e-05

1.69 (1.20, 2.38)  
p = 2.9e-03

Ethnicity†

 Black 2.89 (1.93, 4.35)  
p = 3.1e-7

3.11 (1.32, 7.29)  
p = 9.2e-03

2.77 (1.84, 4.16)  
p = 1.0e-06

2.92 (1.24, 6.88)  
p = .014

  Other (incl. Asian, Chinese, and 
Mixed)

1.94 (1.41, 2.68)  
p = 5.4e-5

1.66 (0.79, 3.50)  
p = .18

1.94 (1.40, 2.67)  
p = 5.8e-05

1.68 (0.80, 3.53)  
p = .17

Age at the pandemic (per 5 years) 1.07 (1.01, 1.13)  
p = .019

1.81 (1.57, 2.10)  
p = 1.6e-15

1.07 (1.02, 1.13)  
p = 9.8e-03

1.82 (1.58, 2.11)  
p = 6.1e-16

PhenoAgeAccel (per 5 years) 1.25 (1.16, 1.35)  
p = 6.1e-09

1.50 (1.30, 1.73)  
p = 3.1e-08

Dementia (n1 = 0; n2 = 0)
Type 2 diabetes (n1 = 41; n2 = 11) 2.0 (1.43, 2.81)  

p = 5.6e-05
1.54 (0.81, 2.93)  

p = .19
1.59 (1.12, 2.25)  

p = 9.1e-03
1.02 (0.53, 1.98)  

p = .95
History of pneumonia (n1 = 15; 
n2 = 3)

1.07 (0.64, 1.8)  
p = .80

0.71 (0.22, 2.27)  
p = .57

1.04 (0.62, 1.76)  
p = .87

0.69 (0.22, 2.19)  
p = .53

Depression (n1 = 64; n2 = 17) 1.77 (1.36, 2.30)  
p = 2.3e-05

1.98 (1.15, 3.40)  
p = .014

1.71 (1.31, 2.23)  
p = 6.9e-05

1.89 (1.10, 3.25)  
p = .022

Atrial fibrillation (n1 = 21; n2 = 8) 1.68 (1.07, 2.64)  
p = .024

1.77 (0.85, 3.69)  
p = .13

1.58 (1.01, 2.49)  
p = .045

1.56 (0.74, 3.26)  
p = .24

Hypertension (n1 = 250; n2 = 85) 1.41 (1.18, 1.67)  
p = 1.1e-04

1.91 (1.36, 2.67)  
p = 1.7e-04

1.33 (1.12, 1.59)  
p = 1.3e-03

1.73 (1.23, 2.43)  
p = 1.5e-03

COPD (n1 = 28; n2 = 13) 1.88 (1.26, 2.80)  
p = 1.8e-03

3.61 (1.98, 6.59)  
p = 3.0e-05

1.74 (1.17, 2.59)  
p = 6.6e-03

3.08 (1.68, 5.65)  
p = 2.8e-04

Chronic kidney disease (n1 = 4; 
n2 = 1)

2.38 (0.87, 6.48)  
p = .091

1.99 (0.27, 14.56)  
p = .50

1.71 (0.62, 4.72)  
p = .30

Liver disease (n1 = 11; n2 = 3) 2.86 (1.55, 5.27)  
p = 7.5e-04

3.37 (1.05, 10.75)  
p = .04

2.61 (1.42, 4.82)  
p = 2.1e-03

2.72 (0.85, 8.73)  
p = .092

Rheumatoid arthritis (n1 = 8; 
n2 = 4)

0.93 (0.46, 1.88)  
p = .84

1.70 (0.62, 4.61)  
p = .30

0.80 (0.40, 1.62)  
p = .54

1.26 (0.46, 3.46)  
p = .65

Coronary artery disease (n1 = 60; 
n2 = 19)

1.18 (0.89, 1.58)  
p = .25

0.96 (0.58, 1.61)  
p = .88

1.14 (0.86, 1.53)  
p = .37

0.91 (0.54, 1.52)  
p = .72

Delirium (n1 = 0; n2 = 0)
Stroke (n1 = 5; n2 = 2) 2.20 (0.90, 5.39)  

p = .083
2.57 (0.62, 10.59)  

p = .19
2.16 (0.88, 5.27)  

p = .092
2.47 (0.60, 10.19)  

p = .21
Asthma (n1 = 84; n2 = 13) 1.05 (0.83, 1.33)  

p = .69
0.52 (0.28, 0.96)  

p = .035
1.02 (0.80, 1.29)  

p = .89
0.49 (0.26, 0.90)  

p = .022
Previous falls/fragile fractures 
(n1 = 26; n2 = 6)

1.73 (1.16, 2.57)  
p = 6.8e-03

1.20 (0.49, 2.94)  
p = .69

1.69 (1.14, 2.52)  
p = 9.2e-03

1.14 (0.46, 2.80)  
p = .77

Osteoarthritis (n1 = 69; n2 = 24) 1.09 (0.84, 1.41)  
p = .51

1.19 (0.75, 1.87)  
p = .46

1.07 (0.83, 1.38)  
p = .62

1.15 (0.73, 1.80)  
p = .56

Notes: In bold if p < .05; assessment center results skipped; n1: number of inpatient positives between March 16 and April 27, 2020; n2: number of COVID-19-
related deaths following an inpatient positive result between March 16 and April 27, 2020.

*Reference: female.
†Reference: White.
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It should be noticed that PhenoAge is not a unique predictor for 
biological aging. Other sets of variables have been used to de-
velop biological age predictors, eg, (14). These variables may or 
may not have direct connection to biological aging. Therefore, it 
is less meaningful to discuss the contribution of each biomarker 
to the association between PhenoAgeAccel and COVID-19 se-
verity. However, we acknowledge the importance of research on 

prognostic biomarkers for COVID-19 severity. Compared to bio-
logical age predictors, we tend to have a better understanding of 
biomarkers, which would suggest underlying mechanisms and po-
tential interventions.

The case fatality rate of COVID-19 increases with chronological 
age, PhenoAge, and accumulation of chronic comorbidities. There is 
therefore a potential that the effects of COVID-19 on mortality may 

Table 4. Models for COVID-19 Inpatient Test Positivity and COVID-19-Related Mortality With Inpatient Test-Confirmed COVID-19: M5 and M6

M5: Age at the Pandemic (March 16, 2020) + Preexisting  
Diseases or Conditions to March 2020

M6: Age at the Pandemic (March 16, 2020) + 
Preexisting Diseases or Conditions to March 2020 + 
PhenoAgeAccel at Baseline

Positive (n = 613) vs 
Untested or Nega-
tive (n = 338 672)

Positive Dead (n = 151) 
vs Positive Alive, Untested 
or Negative (n = 339 108)

Positive (n = 613) vs 
Untested or Nega-
tive (n = 338 672)

Positive Dead vs Posi-
tive Alive, Untested or 
Negative (n = 338 108)

Sex* (=male) 1.41 (1.19, 1.66)  
p = 6e-05

1.76 (1.24, 2.49)  
p = 1.6e-03

1.37 (1.16, 1.62)  
p = 2.0e-04

1.66 (1.17, 2.37)  
p = 4.6e-03

Ethnicity†

 Black 2.59 (1.71, 3.90)  
p = 6.1e-06

2.39 (1.00, 5.68)  
p = .049

2.56 (1.69, 3.86)  
p = 8.1e-06

2.34 (0.98, 5.59)  
p = .055

  Other (incl. Asian, 
Chinese, and Mixed)

1.81 (1.30, 2.50)  
p = 3.8e-04

1.38 (0.65, 2.94)  
p = .40

1.82 (1.31, 2.52)  
p = 3.3e-04

1.42 (0.67, 3.02)  
p = .37

Age at the pandemic (per 
5 years)

0.95 (0.90, 1.00)  
p = .057

1.46 (1.26, 1.69)  
p = 3.9e-07

0.95 (0.90, 1.01)  
p = .09

1.48 (1.28, 1.71)  
p = 1.7e-07

PhenoAgeAccel (per 
5 years)

1.10 (1.02, 1.19)  
p = .016

1.21 (1.04, 1.40)  
p = .011

Dementia (n1 = 60; 
n2 = 31)

5.56 (4.00, 7.74)  
p = 2.5e-24

7.20 (4.37, 11.86)  
p = 9.0e-15

5.62 (4.04, 7.82)  
p = 1.2e-24

7.35 (4.46, 12.11)  
p = 4.7e-15

Type 2 diabetes (n1 = 131; 
n2 = 52) 

1.65 (1.32, 2.05)  
p = 9.9e-06

2.04 (1.39, 2.99)  
p = 2.6e-04

1.54 (1.23, 1.93)  
p = 2.1e-04

1.80 (1.21, 2.67)  
p = 3.7e-03

History of pneumonia 
(n1 = 112; n2 = 41)

2.27 (1.79, 2.89)  
p = 1.4e-11

2.28 (1.48, 3.50)  
p = 1.7e-04

2.24 (1.76, 2.84)  
p = 3.9e-11

2.20 (1.43, 3.39)  
p = 3.3e-04

Depression (n1 = 104; 
n2 = 31)

1.38 (1.10, 1.73)  
p = 5.3e-03

1.50 (0.97, 2.31)  
p = .07

1.37 (1.09, 1.72)  
p = 6.1e-03

1.50 (0.97, 2.32)  
p = .068

Atrial fibrillation (n1 = 99; 
n2 = 36)

1.47 (1.15, 1.88)  
p = 2.3e-03

1.29 (0.84, 1.97)  
p = .24

1.46 (1.14, 1.87)  
p = 2.7e-03

1.27 (0.83, 1.95)  
p = .26

Hypertension (n1 = 352; 
n2 = 118)

1.47 (1.22, 1.77)  
p = 6.0e-05

2.22 (1.46, 3.38)  
p = 2e-04

1.44 (1.19, 1.74)  
p = 1.3e-04

2.15 (1.41, 3.28)  
p = 3.5e-04

COPD (n1 = 71; n2 = 29) 1.21 (0.92, 1.61)  
p = .18

1.69 (1.06, 2.69)  
p = .028

1.18 (0.89, 1.57)  
p = .24

1.61 (1.01, 2.57)  
p = .047

Chronic kidney disease 
(n1 = 72; n2 = 29)

1.66 (1.26, 2.19)  
p = 3.6e-04

1.65 (1.04, 2.61)  
p = .032

1.57 (1.18, 2.08)  
p = 1.7e-03

1.48 (0.93, 2.36)  
p = .10

Liver disease (n1 = 36; 
n2 = 6)

1.27 (0.89, 1.81)  
p = .19

0.61 (0.26, 1.43)  
p = .26

1.25 (0.87, 1.78)  
p = .23

0.58 (0.24, 1.37)  
p = .21

Rheumatoid arthritis 
(n1 = 26; n2 = 12)

1.16 (0.77, 1.75)  
p = .47

1.60 (0.84, 3.07)  
p = .15

1.12 (0.74, 1.68)  
p = .60

1.46 (0.76, 2.82)  
p = .26

Coronary artery disease 
(n1 = 133; n2 = 47)

1.03 (0.83, 1.29)  
p = .79

0.98 (0.66, 1.44)  
p = .90

1.03 (0.82, 1.28)  
p = .83

0.96 (0.65, 1.43)  
p = .85

Delirium (n1 = 40; n2 = 19) 1.79 (1.21, 2.66)  
p = 3.8e-03

1.85 (1.01, 3.38)  
p = .045

1.79 (1.21, 2.66)  
p = 3.9e-03

1.85 (1.01, 3.39)  
p = .045

Stroke (n1 = 30; n2 = 11) 1.41 (0.95, 2.08)  
p = .089

1.30 (0.68, 2.49)  
p = .43

1.39 (0.94, 2.06)  
p = .10

1.26 (0.66, 2.43)  
p = .48

Asthma (n1 = 117; n2 = 24) 1.09 (0.88, 1.35)  
p = .42

0.71 (0.44, 1.13)  
 p = .15

1.09 (0.88, 1.35)  
p = .45

0.70 (0.44, 1.13)  
p = .14

Previous falls/fragile 
fractures (n1 = 140; 
n2 = 48)

1.87 (1.50, 2.32)  
p = 2.3e-08

1.68 (1.11, 2.54)  
p = .014

1.85 (1.49, 2.31)  
p = 3.5e-08

1.65 (1.09, 2.50)  
p = .018

Osteoarthritis (n1 = 80; 
n2 = 28)

0.84 (0.65, 1.07)  
p = .16

0.89 (0.58, 1.38)  
p = .61

0.83 (0.65, 1.07)  
p = .15

0.89 (0.58, 1.37)  
p = .60

Notes: In bold if p < .05; assessment center results skipped; n1: number of inpatient positives between March 16 and April 27, 2020; n2: number of COVID-19-
related deaths following an inpatient positive result between March 16 and April 27, 2020.

*Reference: female.
†Reference: White.
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be reduced by reversing/slowing the aging process. Drugs under de-
velopment to slow the aging process may provide future avenues for 
reducing the risks associated viral infections, like COVID-19. This is 
inline with the geroscience framework and further supported by our 
previous work showing that people with younger biological ages 
are less prone to a plethora of diverse age-related diseases (25). By 
intervening to slow aging, therapeutics may in turn reduce patho-
logical burden as well as minimize the risks of diseases like COVID-
19, which are exacerbated by aging and pathology. To date, a 
number of aging therapeutics are being considered, which target key 
pathways and hallmarks of aging—reducing insulin/IGF-1 signaling 
(rapamycin), removing senescent cells (senolytics), and/or improving 
insulin sensitivity (metformin). Increasing autophagy and reducing 
age-related inflammation are also emerging as key mechanisms tar-
geted by these drugs (26). Overall, our findings further substantiate 
the role of biological aging in the progression of COVID-19.

The predictive performance for COVID-19 severity outcomes 
was significantly improved by basic demographics and recent disease 
states, compared to the prevalence of test positivity and mortality 
in the cohort. Adding current PhenoAge may further improve the 
performance as the variation of biological age in relative to chrono-
logical age increases with age; therefore, current PhenoAge may be 
a more sensitive measure than PhenoAge at baseline for accelerated 
aging. However, models to predict rare events like COVID-19 se-
verity outcomes inevitably have low positive predictive values. In 
other words, people with predicted probabilities greater than a 
threshold are at higher risk than others for severe COVID-19 but 
the absolute risk remains low. This model or other improved models 
with additional input could be a useful tool for risk evaluation, 
which in combination with educational intervention may encourage 
behavioral changes and greatly reduce the fatality rate of COVID-19.

There are limitations to this study, which warrant acknowledge-
ment. First, we did not include cancers in the analysis as the status 
of cancer (eg, progressing vs remission) is not available, which 

is strongly associated with mortality related to COVID-19 (27). 
Additionally, some participants are not old enough to develop late-
onset diseases. As disease cases may be misclassified as nondisease 
cases, the disease OR estimates were likely to be biased toward 
the null (28). Also, clinical severity data are not available, but we 
used the mortality data to derive the severity outcome, COVID-19-
related mortality with inpatient test-confirmed COVID-19. Lastly, 
the UKB sample is known to be healthier than the general popu-
lation (29); however, risk factor associations are usually general-
izable (30).

In conclusion, PhenoAge more than a decade ago prior to the 
pandemic was associated with COVID-19 severity. Our analysis sug-
gested that this acted partly through disease pathology. Accelerated 
aging by PhenoAge has previously reported to be largely character-
ized by inflammaging (24) and may represent susceptibility to in-
nate immune overreaction, as in the case of cytokine storm. Overall, 
our findings have major public health implications for COVID-19 
risk stratification. It provides additional justification for the design, 
testing, and ultimate clinical targeting of geroscience-guided ther-
apies seeking to improve COVID-19 outcomes by targeting bio-
logical aging (25). Such approaches may be transformational by 
offering opportunities for use in both the current and future pan-
demics involving other infections by targeting the vulnerable host as 
opposed to the pathogen.
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Series A: Biological Sciences and Medical Sciences online.
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Figure 1. Receiver operating characteristic curves (ROCs), areas under the 
ROC curves (AUCs), and positive predictive value versus sensitivity for 
inpatient test positivity and COVID-19-related mortality with inpatient test-
confirmed COVID-19.
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