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ABSTRACT: Antimicrobial peptides (AMPs) have potential against antimicrobial
resistance and serve as templates for novel therapeutic agents. While most AMP
databases focus on terrestrial eukaryotes, marine cephalopods represent a promising yet
underexplored source. This study reveals the putative reservoir of AMPs encrypted
within the proteomes of cephalopod salivary glands via in silico proteolysis. A composite
protein database comprising 5,412,039 canonical and noncanonical proteins from
salivary apparatus of 14 cephalopod species was subjected to digestion by 5 proteases
under three protocols, yielding over 9 million of nonredundant peptides. These peptides
were effectively screened by a selection of 8 prediction and sequence comparative tools,
including machine learning, deep learning, multiquery similarity-based models, and
complex networks. The screening prioritized the antimicrobial activity while ensuring
the absence of hemolytic and toxic properties, and structural uniqueness compared to
known AMPs. Five relevant AMP datasets were released, ranging from a comprehensive
collection of 542,485 AMPs to a refined dataset of 68,694 nonhemolytic and nontoxic AMPs. Further comparative analyses and
application of network science principles helped identify 5466 unique and 808 representative nonhemolytic and nontoxic AMPs.
These datasets, along with the selected mining tools, provide valuable resources for peptide drug developers.

1. INTRODUCTION
Antimicrobial resistance (AMR) poses a significant global public
health threat, prompting the urgent need for novel antimicrobial
agents. The diminishing effectiveness of conventional antibiotics
against a wide range of resistant pathogens has driven the search
for alternative solutions.1 Antimicrobial peptides (AMPs) have
emerged as promising candidates to address this crisis, offering
versatile antimicrobial activities and diverse modes of action.
Their therapeutic potential extends beyond the development of
new antibiotics to combat multidrug-resistant bacteria.2,3 AMPs
also hold promise in the creation of agents with antitumoral,
antiviral, antifungal, and other therapeutic properties.4

To fully harness the potential of AMPs, extensive efforts have
been made to compile and organize AMP-related information
into specialized databases. Notable among these are databases
like the antimicrobial peptide database,5 collection of anti-
microbial peptides,6 and database of antimicrobial activity and
structure of peptides,7 which have been continuously updated.
In addition to these, the StarPep database (StarPepDB) stands
out as one of the most comprehensive curated repositories of
AMPs, integrating unique entries from 42 AMP databases with
their metadata.8 These databases facilitate the study of AMP
sequences, structures, activities, and other relevant information,
significantly enhancing their potential translation into ther-
apeutic interventions.

The origin distribution of AMPs has also been facilitated by
databases. Most AMPs reported to date stem from eukaryotic
origins, notably plants, animals, and fungi.9 Antimicrobial
properties have been attributed to various bodily fluids since
1885, including blood, sweat, saliva, plasma, white blood cell
secretions, and granule extracts.10 Historically, terrestrial
eukaryotes have been a primary source of AMPs. However,
more recently, marine organisms, particularly invertebrates,
have gained prominence due to their robust and effective innate
immune systems, enabling their survival for over 450 million
years in diverse ecological niches.11,12 The immense ecological
diversity of marine environments provides a promising land-
scape for the discovery of AMPs with unique structures and
potent antimicrobial activities. Notably, AMPs from marine
invertebrates constitute a significant proportion, approximately
67% of all marine AMPs (statistics as of December 2022).12

Marine invertebrates, including shrimp, oysters, and horse-
shoe crabs, are known to consistently express AMPs.13,14 For
instance, horseshoe crabs produce highly effective AMPs like
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tachyplesin and polyphemusin, exhibiting antibacterial and
antifungal properties at low micromolar levels.11 Notably,
polyphemusin, similar to several other AMPs, demonstrates
antiviral activity against human immunodeficiency virus.15 More
recently, the exploration of marine invertebrates has expanded
through omics techniques, offering greater sensitivity in
detecting the presence of AMPs.16 In this context, our research
group identified AMPs within the ascidian’s tunic and the
salivary glands of Octopus vulgaris through shotgun proteomics
analyses,17,18 and more recently others found AMPs common
within octopus skin mucus proteome.19 The comprehensive
discovery of AMPs in O. vulgaris was made possible by applying
an optimized methodological workflow and utilizing a
composite protein database constructed from proteomic and
transcriptomic data of the cephalopods’ salivary appara-
tus.18,20,21 This database included 16,990 characterized AMPs
from StarPepDB,8 notably excluding the only 14 peptides
registered for the Cephalopoda class, which are neuropeptides
with no reported antimicrobial activity. Despite this, the
proposed proteome-wide exploration predominantly detected
histone-derived AMPs, ubiquitin-like AMPs, and bovine
pancreatic trypsin inhibitor (BPTI)-related AMPs.18 In order
of discovery, these included analogues of well-known AMPs
such as Buforin,22 cgUbiquitin,23 and BTP1.24

Cephalopods, known for their efficient predatory tactics
involving a diverse array of substances, predominantly
cephalotoxins and neurotoxins to immobilize prey,25 possess
omics data characterizing their salivary apparatus that holds the
potential for venom-related proteins, toxins, and AMPs, as
substantiated in previous research.18,21 However, AMPs with
encrypted sequences within longer transcripts or proteins,
exemplified by cases such as histones,26 those not constitutively
expressed, or potentially disregarded by the computational
omics workflow [e.g., small-size transcripts or protein fragments
less than 100 amino acids (AAs)]16 can be unveiled by a
comprehensive examination of a composite protein database
sourced from the cephalopods’ salivary apparatus.20 This
composite protein database was purposefully built for a
proteome-wide AMPs discovery by including “noncanonical”
proteins, exploring all the open reading frames (ORFs) from
cephalopods’ salivary glands transcriptomes, and proteins
shorter than the TransDecoder default minimum protein length
threshold of 100 AAs.20

In this context, this study focused on a privileged marine
source represented by the salivary glands of cephalopods, where
a potentially abundant reservoir of hidden AMPs is believed to
exist. Our approach to unveil these cryptic AMPs involves the in
silico proteolysis of the composite protein database originating
from cephalopods’ salivary apparatus. This enzymatic digestion
is performed using proteases commonly employed in
proteomics. Subsequently, the resulting peptide libraries,
comprising millions of peptides, were subjected to in silico
screening. During this screening, we consider essential AMP
characteristics relevant for drug development and pay particular
attention to their structural distinctiveness within chemical
space.

The resulting mining workflow yields various AMP datasets,
catering to a spectrum of research needs. These datasets range
from those solely focusing on antimicrobial activity to a refined,
distinct dataset consisting of nonhemolytic AMPs devoid of
toxic attributes. These datasets are publicly accessible and offer
valuable resources for peptide drug developers, adaptable to
their specific requirements.

2. DATASETS AND METHODS
2.1. Omics Data as a Substrate for in Silico Proteolysis.

A version of the composite protein database, comprising various
omics datasets sourced from the cephalopods’ salivary
apparatus, as reported in ref 20, served as the substrate for the
in silico proteolysis. This composite database includes five
distinct datasets originally labeled and referenced as follows:

• Database A�19,087 proteins derived from proteoge-
nomic analyses of the O. vulgaris salivary apparatus, as
reported by Fingerhut et al. (2018).21

• Database C�2427 proteins corresponding to the
postsalivary glands (PSGs) of threeO. vulgaris specimens,
as detailed by Almeida et al. (2020).18

• Database D�84,778 proteins identified by TransDecoder
across 16 publicly available transcriptomes from PSGs of
13 different cephalopod species.18,20

• Database E�5,106,635 six-frame translated proteins
shorter than the TransDecoder default minimum protein
length threshold of 100 AAs, which were not included in
Database D.18,20

• Database F�720,910 six-frame translated proteins
extracted from the ORFs from O. vulgaris PSGs
transcriptomes that were not part of Database A.20,21

Database B was not considered for proteolysis because it
contained characterized AMPs from the StarPepDB.8 Putative
duplicates in each database were removed, and then the
databases were fused into a composite protein database,
followed by a redundancy removal process with the cd-hit tool
at 0.98 sequence identity (https://github.com/weizhongli/
cdhit).27 The seqkit tool (https://bioinf.shenwei.me/seqkit/)
was used to assist in both duplicates removal and finding
common sequences between two databases,28 which allowed for
an all-vs-all comparison among databases. The Jaccard index was
used as a pairwise similarity metric.29

2.2. In Silico Proteolysis and Peptidomes Character-
ization. Five main proteases commonly used in proteomics:
trypsin, chymotrypsin, proteinase K, AspN, and GluC were
applied.30 Peptidomes were generated using 13 distinct
proteolysis protocols involving the action of one enzyme or
two enzymes, which could be applied in sequential (S) or
concurrent (C) mode. We performed the in silico enzymatic
digestion using the Rapid Peptides Generator (RPG) tool
(https://rapid-peptide-generator.readthedocs.io/en/latest/
index.html).31 The previously mentioned proteases were
involved in the three digestion protocols (Table 1).

The peptide libraries or peptidomes resulting from each
proteolysis protocol were filtered following these steps: (i)
retaining only peptides that were 6−40 AAs in length, (ii)
removing duplicates, (iii) removing peptides sharing above 0.98
of sequence identity, (iv) leaving out peptides with nonstandard
AAs. The seqkit and cd-hit tools were used to perform this

Table 1

One Enzyme
Two Enzyme Sequential

Mode
Two Enzyme Concurrent

Mode

Tryp Tryp-Chym Tryp-Chym
Chym Tryp-Proteinase-K Tryp-Proteinase-K
Proteinase-K Tryp-GluC Tryp-GluC
GluC Tryp-AspN Tryp-AspN
AspN
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prescreening. Then, each peptide library was characterized
based on its global peptide features, such as sequence length, AA
frequency, isoelectric point (pI), global charge, global hydro-
phobicity, and global hydrophobic moment. The PDAUG
package (https://github.com/jaidevjoshi83/pdaug) was used
to calculate these features.32

2.3. Antimicrobial and Toxicity Screening. Each
resulting peptide library is subsequently screened for promising
AMPs, which had been revealed by the proteolysis step. To
ensure accurate detections, we determined the final prediction
output by the consensus agreement of three prediction models/
tools. The screening of the 13 peptidomes started by the
prediction of the antimicrobial activity using one model
implemented in Macrel: (Meta)genomic AMP Classification
and Retrieval33 and other two from modlAMP.34 The
subcommand “macrel peptides” were used to run marcel on
peptide libraries (https://github.com/BigDataBiology/macrel)
while modlAMP used the data “AMPvsUniProt” for training its
two implemented machine learning (ML)-based classifiers:
modlAMP_Random Forest and modlAMP_Support Vector
Machine (https://modlamp.org).

Subsequently, the toxicity, which is the most undesired
property of AMPs for drug development, was assessed by the
prediction of their hemolytic potential and their content of toxic
signatures. The hemolysis prediction was also performed by
macrel,33 HemoPI,35 and by a multiquery similarity searching
model (MQSSM) developed in ref36. Since macrel output also
provides hemolytic predictions for detected AMPs, “macrel
peptides” were run as before (https://github.com/
BigDataBiology/macrel). The standalone version of HemoPI
was used (https://webs.iiitd.edu.in/raghava/hemopi/
standalone.php), particularly its virtual screening option where
the hybrid model is selected. The hybrid model considers the
integration of motif- and SVM-based predictions. The MQSSM
I1, the best model reported in ref.,36 was constructed using the
half-space proximal network (HSPN) projecting the chemical
space of 2004 hemolytic peptides from StarPepDB. The HSPN
was constructed without similarity cutoff, and the angular
separation was used as a pairwise similarity metric. Sub-
sequently, a representative hemolytic subset was extracted
from the HSPN using the following parameters: hub-bridge
centrality, global alignment, and a similarity cutoff of 0.8. This
representative subset was further improved as described in ref.,36

and it was finally used to build a MQSSM model using global
alignment and a similarity cutoff of 0.40.

The detection of toxic signatures was performed by two
models from ToxinPred337 and by ToxIBTL.38 ToxinPred3 has
implemented two prediction model types, a ML-based classifier
trained with compositional features of peptides and the other a
hybrid model combining two or more models including motif-
and ML-based predictions (https://github.com/raghavagps/
toxinpred3). ToxIBTL is a deep learning approach based on the
integration of evolutionary information and physicochemical
properties of peptides into the information bottleneck principle,
and transfer learning to predict the toxicity of peptides (https://
server.wei-group.net/ToxIBTL/Server.html). Venn diagrams
were used for identifying consensus predictions among the
outputs of the three prediction models.

In summary, the 13 proteolysis protocols rendered the
following datasets: (i) peptide libraries (peptidomes), (ii) AMP
consensus, (iii) nonhemolytic AMPs, and (iv) nonhemolytic/
nontoxic AMPs. Peptide subsets corresponding to the 13
digestion protocols within each of the four datasets were

concatenated and sequence redundancy was removed at 0.98 of
identity with cd-hit.
2.4. Selection of Cephalopods Singular AMPs. A

comparison of the nonredundant nonhemolytic and nontoxic
AMPs to StarPepDB,8 one of the most comprehensively
reported peptide databases, was performed using the cd-hit-2d
tool at 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90 identity cutoffs. This
was done to identify new peptide representations encoded in the
cephalopods’ proteome that differ from the previously reported
peptides. Cephalopods singular peptides (CSPs) are considered
those sharing sequence identities below the 0.40 threshold with
StarPepDB members, while peptides with an equal or higher
threshold were considered similar. Prior to the comparison, the
StarPepDB’s original space of 45,120 peptides was reduced to
32,863 by applying the cd-hit tool at 0.98 identity and retaining
only peptides that ranged from 5 to 100 AAs in length and
contained standard AAs.
2.4.1. Validating the Singularity of Cephalopods’ AMPs

Using Complex Networks. To validate the no relatedness of
CSPs with respect to the known chemical space from
StarPepDB,8 both chemical spaces were represented as
HSPNs.39 The nonredundant nonhemolytic and nontoxic
AMPs from cephalopods were divided into a set of CSPs
(identity <0.40 with StarPepDB space) and a more-closely
related set to StarPepDB (identity >0.40). These sets were then
used together with the 32,863 peptides from StarPepDB to build
HSPNs using the StarPep Toolbox.40 Each peptide/node was
represented by an optimized set of molecular descriptors, and
the Euclidean distance metric with min−max normalization
were applied to determine the pairwise similarity relationships
among them. AMPs within the HSPNs were clustered using the
modularity optimization algorithm based on the Louvain
method.41 Peptides sharing similar features are grouped
together, thus, occupying the same chemical space in the
network.
2.5. Representativeness from Cephalopods Singular

AMPs by Complex Networks. To further reduce the CSPs at
selecting the most representative ones, centrality analyses were
performed. A HSPN was constructed using only the CSPs
(identity <0.40 with StarPepDB space). The HSPN con-
struction followed the same procedure described above, but a
similarity cutoff of 0.75 was applied to improve network
topology for mining information. Clusters, also known as
communities, were identified using the Louvain method,41 and
then two centrality measures were calculated: hub-bridge
centrality (HB)42 and harmonic centrality (HC).43 Centrality
values measure the importance of a node in a network.
Additionally, pairwise similarity comparisons were performed
using the Smith-Waterman method.44 Using the peptide’s
centrality and a sequence similarity cutoff of 0.30, the least
redundant yet most important peptides in the network were
identified. This process is described in ref39. Afterward, two
datasets were recovered: the union and the intersection of the
sets recovered using both HB and HC centralities.
2.6. Computer Resources. The in silico proteolysis of

5,412,039 proteins and the subsequent screening of resulting
peptidomes were managed using a high-performance desktop
computer with the following specifications: CPU: Dual 20-core
Intel Xeon Gold 6148 processors with (min/max) speed 1010/
1000/3700 MHz, RAM: 256 GB, SSD: NVMe KINGSTON
SNV2S/2000G (2 TB - M.2-3500 MB/s), Operating System:
Linux kernel 5.15.0−72-generic for x86_64 architecture,
Processors: 880.
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2.7. Workflow Focusing Cephalopods’ Omics Data to

AMP DataSets. The diagram representing how cephalopods’

omics data have been focused to different AMP datasets to cater

to a spectrum of research needs is displayed in Figure 1.

3. RESULTS
3.1. Construction of the Starting Composite Database

from Cephalopods Salivary Glands. The composite protein
database integrating transcriptomic and proteomic data used for
the wide-proteome discovery of AMPs in O. vulgaris,18,20 is
reutilized here, for uncovering AMPs encrypted within the
salivary apparatus of cephalopods. The scheme for building such

Figure 1.Workflow proposed to uncover several AMPs datasets encrypted in cephalopod salivary glands. This scheme shows howmillions of proteins
that characterize the cephalopod salivary apparatus are focused into several AMP databases by using proteolysis and a rational screening strategy.
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composite database is depicted in Figure 2, where it is evident
that characterized AMPs originally integrated as database B are

leaving out. The original smaller databases (A, C, D, E, and F)
that integrated the composite were analyzed by considering
pairwise similarities based on common sequences, which are
encoded by the Jaccard index (Figure 2). The individual
databases exhibited significant uniqueness. Although databases
C and D could be related, since the latter was used to detect the
2427 proteins registered in database C, their similarity, as
measured by a Jaccard index, is only 0.48%. Likewise, despite
being derived from non-standard ORFs in cephalopod PSGs
transcriptomes, databases E and F also show considerable
divergence, with a Jaccard index of just 0.44% (Figure 2).
Redundancy was also explored within each individual database,
and duplicates were found in 4 out of 5 databases. The resulting
individual databases after removing duplicates can be found at
doi:10.17632/hgwkkmms3h.1 (Dataset 1). Such individual
databases were concatenated, and a more stringent redundancy
reduction was carried out at 0.98 sequence identity on the
resulting composite database. Thus, a nonredundant composite
database made up of 5,412,039 proteins was created
(doi:10.17632/gxmkytwdhx.1, Dataset 2), to be used as
substrate at the in silico proteolysis.
3.2. In Silico Proteolysis of Cephalopods Omics Data

and Filtering of Virtual Peptidomes. This composite
protein database was used as the substrate for the intended in
silico digestion. The digestion used the five main proteases used
in proteomics: trypsin, chymotrypsin, proteinase K, AspN, and
GluC. Since trypsin is the most commonly used protease in
proteomics, it was combined with the remaining four proteases
in sequential and concurrent mode. This combination was
aimed at complementing the trypsin action with other cutting
sites in order to obtain a higher diversity within the virtual
peptidomes.

As previously mentioned, three main digestion protocols were
applied involving five enzymes, so a total of 13 distinct

enzymatic digestions were performed on the nonredundant
composite database (Figure 3). Consequently, 13 virtual peptide
libraries were generated, offering a wide peptide diversity from
cephalopods to explore in the field of peptide science. Such
peptidomes are publicly available at doi:10.17632/
c3zhzgwsnw.1 (Dataset 3).

Each resulting peptidome was filtered to approach them to
AMPs features. In this sense, only peptides ranging from 6 to 40
AAs in length were initially selected, followed by the removal of
duplicates and a more stringent redundancy reduction at 0.98
sequence identity using cd-hit. At this stage, the length range for
the peptides varied from 11 to 40 AA and nonstandard AAs were
also removed to facilitate further screenings.

Figure 3 shows how much each peptide library varied at each
filtering step, arriving at the final libraries containing peptides
with standard AAs ranging from 11 to 40 AAs in length
(doi:10.17632/6fjsdnvygb.1, Dataset 4). These 13 final peptide
libraries were concatenated to give a total of 52,488,742
peptides, subsequently reduced to 9,216,442 peptides when
applying redundancy removal at 0.98 sequence identity
(doi:10.17632/v67g7r8nf2.1, Dataset 5). This extensive but
nonredundant peptidome sourced from cephalopods’ salivary
glands will be of great utility for those researchers who want to
discover new bioactive peptides by computational and in vitro
screenings.
3.3. Focusing Cephalopods Peptidomes to Several

AMP DataSets. The final peptidomes corresponding to each
proteolysis protocol (last column of the table shown in Figure 3)
were screened individually against antimicrobial activity. To
determine whether a query peptide is an AMP, consensus
prediction agreement among three models was considered. The
Figure 1SA contains 13 Venn diagrams corresponding to the
screened peptidomes, showing the AMPs detected solely by
macrel, modelAMP_RF, and modlAMP_SVM, respectively, as
well as the agreement/intersection among the three prediction
tools. The FASTA files containing AMPs libraries, identified by
consensus across three prediction models for each proteolysis
protocol, can be accessed freely at doi:10.17632/wwk7zzcfhv.1
(Dataset 6). Additionally, the results of predictions on the 13
individual peptidomes by the three models are available in File
1S (available at 10.26434/chemrxiv-2023-rqqqb).

The consensus AMP libraries were then filtered by
considering their toxicity potential, expressed by their hemolytic
activity and the presence of toxic signatures. The hemolytic
activity was first evaluated by three prediction tools. The Venn
diagram representing nonhemolytic predictions from Macrel,
HemoPI, and MQSSM is illustrated in Figure 1SB. The
definitive predictions for nonhemolytic AMPs are found at the
intersections. The corresponding FASTA files for the 13
nonhemolytic AMP consensus libraries can be accessed at
doi:10.17632/pvptjh7kmv.1 (Dataset 7). Additionally, the raw
predictions made by each individual model are available in File
2S (available at 10.26434/chemrxiv-2023-rqqqb). Subse-
quently, these consensus nonhemolytic AMPs were screened
against toxic signatures using ML-based and hybrid models
implemented in ToxinPred3 and the deep learning tool
ToxIBTL. Similarly, Venn diagrams were employed to establish
consensus predictions for nonhemolytic/nontoxic AMPs, as
depicted in Figure 1SC. The libraries containing nonhemolytic/
nontoxic AMPs, identified through the agreement of the three
models, can be accessed publicly at doi:10.17632/ccp94tgcp2.1
(Dataset 8). Furthermore, the raw predictions from each model
are available for consultation in File 3S. The tracking of this

Figure 2. Building a nonredundant composite database with 5,412,039
proteins for the in silico proteolysis. This figure illustrates the scheme
followed for concatenating and analyzing the starting omics database
from cephalopods’ salivary apparatus to generate the final composite
protein database.
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Figure 3. Tracking the filtering of the peptidomes resulting from each proteolysis protocol. The scheme illustrates how the number of peptides
decreased as the number of screening steps increased. Initial peptides were produced by directly applying proteases and were filtered to satisfy mainly
sequence length (6−40 AAs) and redundancy (no duplicates and representative peptides at 0.98 sequence identity) criteria.

Table 2. Focusing Peptidomes Resulting from Each Proteolysis Protocol to AMP Datasetsa

Proteolysis protocol Peptidomes (no. peptides) AMPs_Consensus Non-Hem. AMPs_Cons Non-Hem/Non-Tox. AMPs_Cons

Tryp 4,785,875 46,615 9897 7478
Chym 1,574,181 21,801 3970 2604
ProtK 112,387 775 310 157
AspN 5,643,298 294,959 33,108 22,978
GluC 5,609,322 404,990 43,955 31,756
Tryp-Chym_S 6,061,301 67,811 13,558 9875
Tryp-ProtK_S 4,883,567 47,316 10,142 7599
Tryp-AspN_S 7,583,442 307,767 36,455 25,454
Tryp-GluC_S 8,047,367 413,108 70,043 42,514
Tryp-Chym_C 515,994 1179 600 430
Tryp-ProtK_C 26,425 168 148 52
Tryp-AspN_C 4,201,827 46,713 9670 7270
Tryp-GluC_C 3,443,756 57,691 10,335 7696
total 52,488,742 1,710,893 242,191 165,863
NonR_0.98_SeqId 9,216,442 542,485 104,242 68,694

aThe table illustrates how the peptide libraries are rationally reduced by the robust detection of AMPs, non-haemolytic AMPs and non-haemolytic/
non-toxic AMPs by three prediction tools at each screening step.
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screening process from the peptidomes generated by the 13
proteolysis protocols to the generation of the datasets
corresponding to nonhemolytic/nontoxic AMPs is summarized
in Table 2.

Table 2 also displays in bold the total number of non-
redundant AMPs after all libraries within each column were
concatenated and sequence redundancy was removed with cd-
hit at 0.98 of sequence identity. The resulting 542,485 AMP
sequences from cephalopods, which represent a potential
reservoir of novel AMPs, are promising for additional screenings
to uncover peptide candidates for drug development
(doi:10.17632/tr7xbp2pyt.1, Dataset 9). This subset was further
filtered by extracting 104,242 nonhemolytic AMPs, which may
have an increased relevance for drug development
(doi:10.17632/6gsdfj9876.1, Dataset 10). However, the most
promising dataset, made up of privileged AMPs, was obtained
after toxic signatures were removed from nonhemolytic AMPs,
render ing 68 ,694 nonhemoly t i c/nontox ic AMPs
(doi:10.17632/8mttp4pvmc.1, Dataset 11).

The evolution of the 13 virtual peptidomes at the key AMPs
mining points, which are shaded in Table 2, is monitored by
changes in the distribution of six global peptide features, such as
length, AA (AA) frequency, isoelectric point (pI), global charge,
global hydrophobicity, and global hydrophobic moment, within
each peptide library class (Figure 2S). Changes in the
distribution of the global peptide feature values can be observed
from the peptidomes (Figure 2SA) to the nonhemolytic/
nontoxic AMPs (Figure 2C).Whilemedian peptide length at the
peptidomes are generally below 15 AAs, there is a shift to higher
than 15 AAs with a top around 28 AAs in mostly of the
nonhemolytic/nontoxic AMPs libraries. A similar shift to
increased values is shown for the distribution of the pI and
global charge. The median pI values distribution at peptidomes
changed to be roughly around 8 to be consistently distributed
around 10 at intermediate AMPs (Figure 2SB) and final AMPs
datasets (Figure 2SC). Similarly, the global charge is completely
shifted to the right at the AMPs and nonhemolytic/nontoxic
AMPs libraries, where most of the AMPs take charges above 0.
On the other hand, the hydrophobicity holds its values in a range
from −1 to 1 for the peptidomes, intermediate, and final AMPs
libraries, while the hydrophobic moment values slightly moved

from a median of 0.35 at the peptidomes to higher values than
0.4 in the nonhemolytic/nontoxic AMPs libraries. The AA
frequency did not change significantly from the peptidomes to
AMP libraries, even focusing attention on the positively charged
AAs, which are key for antimicrobial activity.

The singularity of the peptide libraries generated at the AMPs
mining points highlighted in Table 2, is also inspected by all-vs-
all comparison using the Jaccard index. The Jaccard index
quantifies how many peptides are shared by two libraries,
namely, the intersection of two sets. Thus, it is used as a pairwise
similarity metric to evaluate the diversity among peptide
libraries from each proteolysis protocol at three key AMPs
mining steps. The Jaccard index heatmaps corresponding to
each proteolysis protocol for the generated peptidomes,
predicted AMPs consensus, and predicted nonhemolytic/
nontoxic AMPs are shown in Figure 4.

Generally, the heatmaps show a striking singularity among the
digestion protocols at each of the evaluatedmining steps (Figure
4). The Jaccard index only reached values above 60% among the
peptidomes when trypsin was compared to a combination of
trypsin-chymotrypsin and trypsin-proteinase K in a sequential
mode or when these last proteolysis protocols were compared to
each other. A significant library redundancy is also observed
when comparing the proteolysis with AspN to its sequential
action after trypsin (Figure 4A).

Similarly, redundancy among AMP libraries is mostly
observed between trypsin and its sequential counterparts,
trypsin-chymotrypsin and trypsin-proteinase K. However,
additional pairs from the concurrent mode, such as trypsin-
AspN and trypsin-GluC, also show significant similarities with
trypsin proteolysis. GluC proteolysis shows a high AMP
redundancy with its trypsin-GluC sequential counterpart. The
same sequential pairs that shared redundancy with trypsin,
trypsin-chymotrypsin and trypsin-proteinase K, also share
redundancy with the concurrent action of trypsin-AspN and
trypsin-GluC (Figure 4B).

Finally, a similar redundancy pattern is displayed for the
nonhemolytic/nontoxic AMPs (Figure 4C), including the high
peptide redundancy derived from the action of AspN and the
sequential proteolysis of trypsin-AspN.

Figure 4. Peptide diversity among 13 proteolysis protocols in three steps of AMPmining on cephalopod salivary glands. (A) Virtual peptidomes were
generated by 13 proteolysis protocols. (B) AMPs detected by the consensus of three prediction models from peptidomes are shown in (A). (C)
Nonhemolytic/nontoxic AMPs detected by the consensus of three prediction models from AMPs libraries shown in B. Jaccard index is used as a
pairwise similarity metric.
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While the heatmaps allowed for comparative analyses even
between proteolysis protocol pairs not originally intended in the
primary design, this analysis suggests that sequential application
of chymotrypsin and proteinase K after trypsin leads to high
peptide redundancy at all mining stages. Similarly, but in a less
consistent manner, this is observed for the concurrent action of
trypsin with AspN and GluC, respectively.

Therefore, for future proteolysis-driven virtual mining efforts
aimed at AMP discovery using the proposed enzymatic digestion
protocols, it is not recommended to employ the sequential
application of chymotrypsin and proteinase K following trypsin.
Similarly, although with less emphasis, the concurrent action of

trypsin with AspN and GluC should be avoided. These two
recommendations are further supported by the observed
recurrent similarity in the distribution pattern of global peptide
features between trypsin and its sequential action with
chymotrypsin and proteinase K, as well as between trypsin
and its concurrent action with AspN and GluC at the same
mining AMP stages (Figure 2SA−C).

The singularity of the sequence space represented by the
68,694 nonhemolytic/nontoxic AMPs from cephalopods’
salivary glands was evaluated against the 32,863 characterized
AMPs registered in StarPepDB. To achieve this, both databases
were compared using cd-hit-2d to identify how many and which

Figure 5. (A)Heat map and (B) histogram of pairwise sequence identity of the 5466 CSPs. The heat map and histogramwere built with in-house tools
SeqDivA (https://github.com/eancedeg/SeqDivA)45 and Dover Analyzer (http://mobiosd-hub.com/doveranalyzer/).46

Figure 6. Superposition of the 68,694 nonhemolytic/nontoxic AMPs from cephalopods on the known sequence space represented by 32,863 peptides
from StarPepDB, projected through Half-Proximal Similarity Networks (HSPNs). (A) HSPN constructed with cephalopod and StarPep datasets.
Clusters are delineated using different colors. (B) HSPN projecting the superposition of cephalopods AMPs on StarPepDB members in yellow. (C)
HSPN projecting the overlapping of three AMP datasets: (i) StarPepDB in yellow, (ii) cephalopod AMPs sharing higher than 40% of sequence identity
with StarPepDB, colored by clusters, and (iii) cephalopod AMPs sharing less than 40% of sequence identity (black) with StarPepDB. (D) HSPN
projecting cephalopod AMPs sharing less than 40% of sequence identity with StarPepDB, highlighting the network clusters or communities.
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AMPs from cephalopods were clustered to StarPepDB’s
members above identity cutoffs of 0.40, 0.50, 0.60, 0.70, and
0.80. The similarity clusters resulting from the comparison were
parsed to extract the cephalopod AMP sequences satisfying the
previously mentioned identity cutoffs. Both the similarity
clusters and the FASTA files corresponding to the extracted
subsets are shown in File 4S (available at 10.26434/chemrxiv-
2023-rqqqb). Out of 68,694 cephalopod AMPs, 63,228 were
clustered to StarPepDB members above the threshold of 0.40
sequence identity, suggesting that these AMPs are more closely
related to the known chemical space of characterized AMPs.

The remaining 5466 nonhemolytic/nontoxic AMPs are
denoted by the acronym CSPs, as explained in the Materials
and Methods section. Both sets of AMPs are accessible at
doi:10.17632/8mttp4pvmc.1 (Dataset 12), along with addi-
tional datasets that categorize the similarity with StarPepDB
based on identity percentages within the following ranges: 40−
50, 50−60, 60−70, 70−80, and greater than 80. These datasets
consist of 26,744, 30,217, 5,716, 453, and 98 AMPs, respectively.

Given that the 5466 CSPs share less than 40% of sequence
identity with the characterized chemical space of AMPs, their
internal diversity was also explored by all-vs-all global alignments
(Figure 5). Figure 5A illustrates the heatmap of the pairwise
sequence identities from all-vs-all global alignments above, while
Figure 5B shows the distribution/frequency of the peptide pairs
satisfying sequence identities at ranges increasing by 0.10 units.
This analysis was also applied to characterize the 63,228
cephalopods AMPs displaying similarities above 40% of identity
with StarPepDB, using the datasets discretized by identity ranges
(Figure 3S).

As shown in Figure 5, the internal sequence diversity among
the 5466 CSPs is high, also indicating the structural singularity
among its members. This singularity among these virtual
scaffolds bearing privileged antimicrobial potentials is a strong
point for peptide drug development.
3.4. Singularity of Cephalopods’ AMPs from the

Outlook of Complex Networks. Based on the previous
comparison, where 63,228 out of 68,694 promising cephalopod
AMPs were identified as more closely related to characterized
StarPepDB members, while the remaining 5466 appear to be
unique with respect to the known chemical space, the
relatedness of the cephalopod AMPs with the characterized
chemical space of AMPs can also be demonstrated using
HSPNs, which are less computationally demanding at
considering all peptides but not all pairwise similarity relation-
ships.39,47 AHSPNwas constructed from the 32,863 StarPepDB
peptides and the 68,694 cephalopod AMPs, including the two
subsets with different degrees of relatedness to the StarPepDB
chemical space. A clustering algorithm was then performed over
the network topology to delineate network communities that
should group peptides with similar features. Figure 6 illustrates
how the cephalopod chemical space represented by 68,694
promising AMPs are overlapped on the known sequence space
represented by the 32,863 peptides from StarPepDB. HSPNs
were used to project such chemical/sequence spaces.

Figure 6C supports the findings of the comparison of the
68,694 nonhemolytic/nontoxic AMPs from cephalopods to
StarPepDB using the cd-hit-2d tool. The chemical space
corresponding to the cephalopod AMPs sharing higher than
40% of sequence identity with StarPepDB is closer to the known
sequence space of StarPepDB (colored in yellow), while the
sequence space occupied by CSPs sharing less than 40% of

sequence identity (black) with StarPepDB is somewhat spatially
disconnected from the yellow zone.
3.5. Singularity of Cephalopods AMPs as Seen from

Physicochemical Characterization of Network Clusters.
The 5466 CSPs were studied in the context of the 32,863
peptides from StarPepDB. The HSPN consisting of both
peptide datasets revealed nine clusters (Figure 7).

The peptides from each cluster were identified and
physicochemically characterized. The detailed composition of
peptide clusters and their physicochemical characterization can
be found in File 5S (available at 10.26434/chemrxiv-2023-
rqqqb). Of the nine clusters, two were highly represented by
CSPs: cluster 8 (50.7%) and cluster 5 (44.0%). The remaining
clusters were only represented by 0.04−18.40% CSPs (Figure
8).

Cluster 8 is characterized by having an intermediate peptide
length (∼36 AAs), low hydrophobicity (−0.21), high net charge
(4.03), intermediate amphiphilicity (1.02), high isoelectric
point (9.65), and high Boman index (1.99). On the other hand,
peptides from cluster 5 are shorter (∼28 AAs) and more
hydrophobic (−0.07), but they are also less charged (1.54), with
a lower amphiphilicity (0.82), isoelectric point (8.54), and
Boman index (0.95).

Overall, peptides from clusters 8 and 5 differ from other
peptide clusters in their sequence length, as they are neither as
long as in cluster 7 (∼73 AAs) nor as short as those in cluster 1
(∼11 AAs). Additionally, they tend to have higher net charge,
hydrophobicity, and isoelectric point values. These findings
provide more evidence that CSPs are novel peptide
representations.
3.6. Complex Networks for Extracting Representative-

ness from the CSPs. The 5466 CSPs were further reduced by
extracting the most representative ones using network science.
First, an HSPN projecting the chemical space of the CSPs was
constructed. However, to achieve effective extraction of
representative CSPs, HSPN projecting the most informative
topology should be used. This HSPN was found by applying an
optimal similarity cutoff of 0.75 to produce a reasonable trade-
off between the number of communities and singletons,

Figure 7. HSPN corresponding to the clustering of 32,863 peptides
from StarPepDB and the 5466 nonhemolytic/nontoxic AMPs from
cephalopods. Nine clusters (0−8) were identified, and their peptide
contents are displayed as a percentage.
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considering the diversity of the CSPs set. A community or
cluster within the network is considered when at least two nodes
or peptides are connected, and the singletons are those that are
not connected with any other in the network. Singletons are
atypical peptides with singular structures that may represent
privileged scaffolds for designing peptide drugs.

The optimal cutoff of 0.75 was determined by exploring the
network density at different similarity cutoffs. From 0.70 to 0.80,
a significant change in network density is observed, reaching the
desired value of 0.001 for HSPNs at a similarity cutoff of 0.75
(Figure 9A). At this similarity cutoff of 0.75, the number of
communities/clusters increased to 60, while the network density
decreased to 0.001, as mentioned before. Additionally, the
number of disconnected peptides increased to 763, the so-called
singletons, with a degree of 0 (File 6S, available at 10.26434/
chemrxiv-2023-rqqqb). TheHSPN representing this topology is

visualized in Figure 9B, after applying the Fruchterman-
Reingold layout.

From this optimal HSPN topology, the most representative
peptides were extracted using the procedure described in ref 39.
Two subsets of nonredundant and representative peptides were
extracted based on their harmonic (HC) and hub-bridge (HB)
centrality measures. HC centrality weights the relevance or
popularity of each peptide in the entire network, while HB
centrality measures the relevance at the community level. Thus,
two subsets of 1469 and 1453 CSPs were extracted using HC
and HB centralities, respectively. File 6S (available at 10.26434/
chemrxiv-2023-rqqqb) contains the sequences corresponding to
these two subsets, the HSPN characterization at a 0.75 similarity
cutoff, and the properties of its 5466 nodes (CSPs), including
the HC and HB values.

Figure 8. Physicochemical characterization of the peptide clusters. This figure shows the distribution of the physicochemical properties of the peptides
belonging to different network clusters or communities. The color of each cluster represents the percentage of CSPs that it contains. Only clusters 8
and 5 are mostly represented by CSPs. The clusters were obtained after building a HSPN with the StarPepDB peptides and the CSPs.

Figure 9. Selection of the most informative HSPN projecting the chemical space of the 5466 CSPs, by applying an optimal similarity cutoff. (A)
Network density plots at different similarity thresholds. The similarity cutoff of 0.75, indicated in the plot, was selected as optimal. (B) HSPN topology
results from applying the optimal similarity threshold. The HSPN topology is formatted according to the Fruchterman-Reingold layout.
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Finally, the union and intersection of these two subsets
resulted in 2114 and 808 nonhemolytic/nontoxic AMPs,
respectively (Figure 10). These two final datasets are freely

available at doi:10.17632/vv5fcxk5rn.2 (Dataset 13). The larger
final dataset is a nonredundant but comprehensive representa-
tive subset of CSPs, while the smaller one is composed of the
representative CSPs commonly identified by each centrality
metric.

To validate the overall mining process, we assessed whether
the final 2114 CSPs were unique or shared homology with
known AMPs. We utilized a nonredundant dataset of 19,456
AMPs from StarPepDB, selected for their antimicrobial
functions and ranging from 10 to 100 AAs in length, with
redundancy removed at 98% sequence identity. The CSPs were
compared against this dataset using Smith-Waterman alignment
with the BLOSUM62 matrix at the StarPep Toolbox.40 Out of
the CSPs, 18 exhibited similarity scores above 0.6, with
alignment lengths of at least 10 AA, sharing similarity regions
of 10−14 AAs with 14 known AMPs, 13 of which are synthetic
(File 7S). This small number of matches (0.09%), along with the
synthetic origin of the corresponding AMPs, highlights the
novelty of the CSPs.

4. DISCUSSION
In silico proteolysis has been mostly applied to protein families
from plants to identify promising bioactive with clinical
potential.48−52 However, this approach has not been extended
to omics data for the same purpose. This proteolysis-based
exploration has been limited to small protein datasets, likely due
to the high dimensionality and diversity of peptides resulting
from protease application, despite trypsin being the most
commonly used protease and targeting 10.7% of the AAs.30

Trypsin is the preferred protease for (MS)-based proteomics. It
cleaves the carboxy-terminal to arginine and lysine residues,
resulting in a positive charge at the peptide C-terminus, which is
beneficial for MS analysis. Nonetheless, other proteases are
frequently used to gather Supporting Information, such as AspN

Figure 10. Venn diagram illustrating the union and intersection of the
1469 and 1453 nonhemolytic/nontoxic AMPs that were extracted
using harmonic and hub-bridge centralities, respectively. From the
union and intersection of these two subsets, the final AMP datasets
from this study were obtained: 2114 and 808 nonhemolytic/nontoxic
AMPs from cephalopods.

Figure 11. Tracking the screening of nonredundant cephalopods peptides (9,216,442) derived from the application of 13 proteolysis protocols.
Different AMPs libraries were generated, considering the (i) antimicrobial activity (AMPs consensus), (ii) nonhemolytic potential (AMPs NoHaem),
(iii) no presence of toxic signatures (AMPs NoHaem-NonTox), (iv) AMPs singularity regarding the known sequence space of StarPep (similar and
singular NoHaem-NonTox AMPs), and (v) Representative subsets according to network centrality analyses (union and intersection of the subsets
extracted with HC and HB centralities).
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and GluC, which target acidic AAs, and chymotrypsin, which
primarily targets aromatic AAs.30

The sequential use of these proteases following trypsin has
recently been shown to enhance the identification of proteins
and peptides by MS, even encompassing less commonly used
proteases in proteomics like proteinase K due to its broad
specificity, targeting 53.3% of AAs.30 Inspired by these findings
and the growing need to utilize omics data to identify new
AMPs, we evaluated trypsin, chymotrypsin, AspN, GluC, and
proteinase K in silico, as well as the activity of these last four
proteases following trypsin in a sequential and concurrent
manner, using a composite protein database that incorporates all
proteomic and transcriptomic data from cephalopods salivary
glands (CSGs).20

One of the primary challenges of this work was addressing the
“curse of dimensionality”, which is exacerbated when generating
peptidomes through in silico proteolysis of 5,412,039 proteins
representing a comprehensive proteome characterizing the
cephalopods’ salivary apparatus. The total number of non-
redundant peptides (9,216,442) from the 13 proteolysis
protocols significantly exceeded the initial number of proteins
(5,412,039). The selection of appropriate proteolysis and AMPs
mining tools, capable of exploiting high-performance computing
resources and integrated into a rational screening strategy
combining machine learning, deep learning, multiquery
similarity searches, and complex networks for AMP discovery,
enabled the processing of millions of proteins/peptides until
manageable AMP datasets were obtained. The RPG tool played
a pivotal role in the AMPs mining process by facilitating the
execution of the intended proteolysis protocols involving five
proteases and, crucially, enabling the processing of millions of
protein sequences from the composite database.31

The use of an encompassing omics database characterizing
the salivary apparatus of cephalopods for the proteolysis-based
AMPs exploration is a strong point of the study. This
comprehensive database integrates 16 translated transcriptomes
from cephalopods’ PSGs using six ORF translations, considering
noncanonical transcripts. Additionally, proteins shorter than
100 AAs, often disregarded by the TransDecoder coding-region
identifier tool, are included. Therefore, the in silico proteolysis
not only revealed encrypted AMPs from existing proteins but
also brought to light potential AMPs hidden in noncanonical
proteins or in those typically methodologically discarded.

The rational in silico reduction from 9,216,442 unannotated
peptides to various AMP datasets/libraries with varying
relevance for further screenings aimed at discovering/develop-
ing new peptide drugs is depicted in Figure 11. This rational
mining strategy yielded AMPs datasets that were subsequently
narrowed down to a privileged subset of 5466CSPs, which could
be represented by either 2114 or 808 nonhemolytic/nontoxic
AMPs according to network centralities. These AMPs datasets
are publicly accessible and can be utilized by drug developers
according to their specific requirements.

The sequential application of chymotrypsin, AspN, GluC, and
proteinase K after trypsin has been demonstrated to enhance
peptide detection by MS.30 However, our study shows that the
sequential use of chymotrypsin and proteinase K following
trypsin does not significantly increase peptide diversity
compared with trypsin alone, despite both enzymes having
more cleavage sites than trypsin. Furthermore, the concurrent
action of AspN and GluC with trypsin does not significantly
contribute to the diversity of the resulting libraries compared
with trypsin alone. This is evident as AspN and GluC proteases

are highly specific, targeting only aspartic (D) and glutamic (E)
acids, which represent only 5.4 and 6.8% of AAs in proteins.30

5. CONCLUSIONS
Cephalopod salivary glands harbor a remarkable reservoir of
AMPs, including nonhemolytic and nontoxic AMPs, under-
scoring the remarkable biological diversity of these marine
invertebrates and their potential as antimicrobial agents. A
significant portion of these AMPs exhibit unique sequences that
expand the chemical space for exploration beyond existing
databases.

Omics data and advanced in silico analyses provide a powerful
strategy for AMP identification. This multifaceted strategy has
the potential to uncover a vast array of AMPs, including those
encrypted within existing and noncanonical proteins, as well as
those present in smaller proteins often overlooked by standard
translation tools. The proteolysis-driven mining strategy,
coupled with rigorous virtual screening steps aimed to effectively
identify promising AMPs based on their characteristic
signatures, nontoxic nature, and sequence singularity, expands
the potential for AMP discovery in proteogenomic data.

Thus, the peptide datasets provided lay the foundation for
further exploration of cephalopod salivary glands as a rich source
of novel AMPs with therapeutic potential. These findings
contribute significantly to the field of AMP research, our
approach being extensive to other organisms, which holds
promise for combating AMR and promoting peptide-based drug
development.
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