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Bovine milk microbiome: a more complex 
issue than expected
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Abstract 

The aim of this study was to analyze bacterial profiles of bovine mastitic milk samples and samples from healthy quar-
ters using Next Generation Sequencing of amplicons from 16S rRNA genes and to compare results with microbiologi-
cal results by PCR assays of the same samples. A total of 49 samples were collected from one single dairy herd during 
the same day. The samples were divided in two sample sets, which were used in this study. The DNA extraction as well 
as the library preparation and sequencing of these two sets were performed separately, and results of the two data-
sets were then compared. The vast majority of genera detected appeared with low read numbers and/or in only a few 
samples. Results of PCR and microbiome analyses of samples infected with major pathogens Staphylococcus aureus or 
Streptococcus uberis were consistent as these genera also covered the majority of reads detected in the microbiome 
analysis. Analysis of alpha diversity revealed a much higher species richness in set 1 than in set 2. The dominating 
bacterial genera with the highest read numbers clearly differed between datasets, especially in PCR negative sam-
ples and samples positive for minor pathogens. In addition to this, linear discriminant analysis (LDA) was conducted 
between the two sets to identify significantly different genera/family level microbes. The genus Methylobacterium was 
much more common in set 2 compared to set 1, and genus Streptococcus more common in set 1. Our results indicate 
amplification of contaminating bacteria in excess in samples with no or minor amounts of pathogen DNA in dataset 
2. There is a need for critical assessment of results of milk microbiome analyses.
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Introduction
Inflammation of the mammary gland, mastitis, is most 
commonly caused by intramammary infection (IMI) 
derived from bacteria. Approximately 140 bacterial spe-
cies have been isolated by conventional culture in milk 
samples taken from infected bovine mammary quar-
ters [1]. The most common pathogen genera isolated in 
mastitic milk samples are staphylococci, enterobacteria 
and streptococci, which cause the great majority of IMIs 
[2–4]. Udder pathogens have traditionally been divided 
into major and minor pathogens, based on the severity 
of the disease they are able to cause [1]. During the past 
decade, culture-independent DNA-based methods have 
been introduced, which are now commercially available 
in many countries for field mastitis diagnostics [3, 5, 6]. 
PCR test results, which often include more species than 

detected in conventional culturing, have inspired dis-
cussion about the clinical relevance of the target species 
reported [5, 7].

A healthy mammary gland has been considered to be a 
sterile environment, in particular in pre-pubertal animals 
with intact teats before colostrogenesis and initiation of 
milk secretion [8]. Around the first parturition and after 
start of milking, the mammary gland becomes a func-
tionally open system with a direct connection to the envi-
ronment. Presence of a natural community of microbes 
within the mammary gland, the microbiota, has been 
hypothesized [9, 10]. The collective genetic composition 
of the microbiota is usually referred to as the microbiome 
[11]. The mammary gland microbiome and the microbi-
ome of the milk can be considered to be highly similar, 
where the origin of microbes in the milk could be from 
the upper parts of the mammary gland, but it is very 
likely that many of these microbes migrate from extra-
mammary sites and the environment [10]. In cows, milk 
sampling is simple compared with humans or many other 
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animal species [12, 13]. Aseptic sampling is the recom-
mended method to collect bovine milk samples but it can 
never ensure that milk samples are completely free from 
contaminating microbes [7, 14, 15].

The advent of high-throughput sequencing platforms 
has led to studies investigating microbial communi-
ties in a broad range of different biological ecosystems, 
including bovine milk [9]. The most common approach 
to explore the milk microbiome and its dynamics is 
sequencing of the 16S rRNA gene, which has been 
applied in studies on bovine mastitis [16–18]. The para-
digm of IMI as an infection caused by one or maximally 
two microbial species has been challenged by recent 
studies on bovine mastitis. Along with the new microbi-
ome data, a new hypothesis on possible “dysbiosis” of the 
mammary gland has been introduced as a predisposing 
factor for IMI and mastitis [9, 10]. Microbiota consisting 
of a wide selection of genera with a great microbial diver-
sity have been found to be present in milk from quarters 
with mastitis [16–18]. Mastitic quarters have demon-
strated a higher bacterial load than healthy quarters [19]. 
Most microbes reported are completely new in the phy-
logeny of mastitis causing microbial agents. Furthermore, 
the milk microbiome in bovine mammary quarters free 
from intramammary infection and inflammation, with a 
low milk somatic cell count, has been even more diverse 
than that seen in quarters with clinical mastitis [17, 18]. 
The possible clinical significance of these findings in the 
milk microbiome remains completely open.

In milk samples taken from quarters with pathogen-
specific IMI, sequences of bacterial genera and species 
present in the microbiome have in general corresponded 
to those detected by culture [16, 17]. Some common 
udder pathogens such as Escherichia coli, Klebsiella 
spp. and Streptococcus uberis have been the single most 
prevalent microorganism in the microbiome [16]. In milk 
samples from IMIs due to Trueperella pyogenes, Strepto-
coccus dysgalactiae, and Staphylococcus aureus as diag-
nosed by culture, sequences of the same pathogens have 
been among the most common also in the milk micro-
biome [16]. Metagenomic profiling has also previously 
been applied to study the possible impacts of antimicro-
bial treatment on milk microbiota [19–22].

Culture-independent profiling of bacterial communi-
ties in the bovine mammary gland represent an approach 
which, while it provides a considerable amount of new 
information, also requires critical assessment [23, 24]. 
The methodologies used are very sensitive and prone to 
contamination or other pitfalls during sampling, sample 
handling and all processing steps of the analysis [25, 26]. 
Biological conclusions on the results of microbiome anal-
yses must always be done with caution.

The aim of this study was to analyze the composition 
of bacterial communities in bovine mastitic milk samples 
using Next Generation Sequencing of amplicons from 
16S rRNA gene and compare the microbiomes with con-
ventional culture and PCR assay results from the same 
samples. Milk samples from healthy mammary quarters 
with no inflammatory reaction, from the same cows were 
also included. Samples were processed separately in two 
datasets and the results were compared.

Materials and methods
Milk samples
The sampling was carried out in Estonia during 1 day in 
June 2013 on a large dairy herd with 700 dairy cows. They 
were kept in tie stalls with concrete floors and straw bed-
ding, and had an average milk production of 9650 kg. The 
herd belonged to the practice area of the Large Animal 
Clinic of the Estonian University of Life Sciences. The 
experiment was approved by the Commission of Ani-
mal Trials at the Estonian Ministry of Agriculture (No 
7.2–11/1). The sampling procedure is reported in detail 
by Hiitiö et al. [7]. In brief, cows to be sampled were pre-
selected based on composite milk SCC > 200 000 cells/
mL in the previous DHI samples. Extremely dirty or 
nervous cows were excluded to avoid excessive risk of 
sample contamination. On the sampling day, milk CMT 
was performed from each quarter and cows with a CMT 
score ≥ 3 on a scale of 1 to 5 in at least one quarter were 
included in the study. In addition, healthy quarters with a 
CMT score 1 of the same cows were sampled.

Before sampling, the udder and the teats were cleaned 
with a moist towel. The teat end of the sampled quarter 
was wiped with cotton moistened in 70% ethanol until 
visibly clean and 10 mL of milk was collected in a plastic 
milk vial (Linkoputki 16 × 100  mm, Plastone, Mekalasi, 
Finland) without preservatives. The sampler wore dis-
posable gloves. The samples were cooled immediately 
and transported in cooler boxes to the laboratory of the 
Department of Production Animal Medicine (Faculty of 
Veterinary Medicine, University of Helsinki) within 8  h 
and thereafter stored in a refrigerator at 6 °C. The follow-
ing day, milk from all samples was aseptically drawn into 
2.5-mL aliquots (Vacuette Tube Z, 4  mL) and stored at 
−20 °C for PCR analysis. Remaining aliquots were stored 
in similar manner for later DNA extraction for microbi-
ome analysis.

Conventional bacteriological culturing
The milk samples were cultured using conventional 
methods as described by Hogan et  al. [27]. A total of 
0.01 mL of milk was streaked onto blood agar and incu-
bated at 37  °C. Agar plates were examined for growth 
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after 18 to 24  h and after 48  h and colonies identified 
according to standard procedures [27].

Milk NAGase activity determination
Milk NAGase activity was measured by a fluoro-optical 
method using an in-house microplate modification devel-
oped by Mattila and Sandholm [28] and further modified 
by Hovinen et al. [29]. NAGase activity was expressed as 
picomoles of 4-MU/min per microliter of milk at 25  °C. 
Inter-assay and intra-assay coefficients of variation for 
NAGase activity were 4.9 and 3.9%, respectively. The ref-
erence value for normal milk NAGase activity is 0.1–1.04 
[29].

Real‑time PCR
Frozen samples were thawed and analyzed within a 
month from the sampling, using real-time PCR in 
the laboratory of Thermo Fisher Scientific Ltd. (Van-
taa, Finland). PathoProof Complete-16 kit was used, 
which contained oligonucleotides for the staphylococ-
cal β-lactamase gene (blaZ) and for microbial species 
or groups of species: Corynebacterium bovis, Enterococ-
cus faecalis and Enterococcus faecium, Escherichia coli, 
Klebsiella oxytoca and Klebsiella pneumoniae, Myco-
plasma bovis, Mycoplasma spp., Prototheca spp., Serratia 
marcescens, Staphylococcus aureus, Staphylococcus spp., 
Streptococcus agalactiae, Streptococcus dysgalactiae, 
Streptococcus uberis, Trueperella pyogenes and Pepton-
iphilus indolicus, and yeasts.

DNA extraction
For practical reasons, the DNA extraction and microbi-
ome analysis of the milk samples collected at the same 
day were performed in two parts. In the first part (data-
set 1), 25 samples were analyzed, and in the second part 
(dataset 2) 24 samples. One sample was included in both 
datasets and could be used as an internal control of the 
microbiome analysis. The samples for microbiome anal-
ysis were selected based on PCR results: samples posi-
tive for major and minor udder pathogens in PCR were 
selected, as well as samples negative in PCR. Exclu-
sion criteria were ≥ 3 pathogens, yeast or algae (Pro-
totheca) in the sample. The best samples in this respect 
were included in the first dataset. In the second dataset, 
three samples with yeast, two with Prototheca algae and 
two ≥ 3 pathogens [Staph. aureus, non-aureus staphylo-
cocci (NAS) and C. bovis] were included to get enough 
samples. The DNA content of the samples varied but 
samples were not selected based on DNA extraction 
results.

The extraction of DNA from milk samples of both 
datasets was performed by the same experienced labora-
tory technician in the same laboratory in a laminar flow 

cabinet using PowerFood™ Microbial DNA Isolation Kit 
(MoBio Laboratories, Qiagen, Carlsbad, CA, USA). Set 
1 DNA was extracted in November 2014 and set 2 DNA 
in January 2016. The amount of milk, per sample, used 
in DNA extraction was 1.8  mL, except for some sam-
ples, which did not contain enough milk. In these cases 
the remaining volume was used. The DNA concentration 
and purity were measured using a NanoDrop 2000 equip-
ment (Thermo Fisher Scientific, Waltham, MA, USA). 
The DNA concentration, ng/μL, was measured at 260 nm 
and the purity was assessed using the 260  nm/280  nm 
and 260 nm/230 nm wavelength ratios.

Microbiome analysis
Generation of 16S amplicon libraries
Extracted DNA samples were quantified using the High 
Sensitivity DNA Qubit system (ThermoFisher, Paisley, 
UK). 16S libraries encompassing the V3 and V4 regions 
were generated by Glasgow Polyomics. Both sample sets 
were processed by the same technician and used the 
same reagents at different times. In brief, the V3 and V4 
regions of bacterial 16S were amplified using Kapa HiFi 
Hotstart readymix (2×) (Kapa Biosystems, Wilmington, 
MA, USA) with the addition of primers specific for the 
V3 and V4 regions of 16S (based on the standard Illumina 
16S primers), which contain an overlap sequence making 
the primers compatible with the Nextera XT indexing 
reagents (Illumina, San Diego, CA, USA). Samples were 
then amplified using a 5 min 95  °C hotstart followed by 
26 cycles of 95 °C for 30 s and 60 °C for 1 min with a final 
elongation step of 60 °C for 5 min.

The resulting amplicons were purified using bead 
extraction (SPRI select beads, Beckman Coulter, Brea, 
CA, USA), using 0.9× beads followed by 80% ethanol 
washes and resuspension in 20 μL of 10 mM Tris buffer. 
The amplicons were quantified using the High Sensitiv-
ity DNA Qubit system and profiles were obtained from 
an Agilent 2100 Bioanalyser using High Sensitivity DNA 
reagents (Agilent, Santa Clara, CA, USA).

Samples were then standardized to 10 ng per reaction 
and amplified in the presence of Nextera XT v2 indexes 
using Kapa Hifi Hotstart readymix (2×) for 8 cycles. The 
resulting indexed libraries were then purified and quality 
controlled as before.

Sequencing
The libraries were combined in equimolar ratios and 
sequenced on a MiSeq (Illumina, San Diego, CA, USA) 
instrument using a paired end, 2 × 300  bp, sequencing 
run. Samples were sequenced with an average of 50 000 
reads per sample.

Possible contamination of reagents was controlled 
by running a negative control [Nuclease-Free water 
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(Ambion™, AM9932, Thermo Fisher Scientific) instead 
of a DNA sample] through the whole analysis in con-
junction with the samples. Water only samples were 
treated identically to samples. The resultant libraries 
were extremely low, this was significantly lower than 
samples by more than one order of magnitude. These 
libraries were not deemed suitable for sequencing due 
to the extremely low concentrations.

Analysis
FastQ files were quality filtered and trimmed using cut-
adapt [30] with a minimum length of 250  bp per read 
and a minimum quality score of 25. Paired end reads 
were combined using Pandaseq [31], which were then 
combined into a single Fasta file using the QIIME pack-
age [32]. Further processing and analysis was com-
pleted using the QIIME wrapper and its packaged 
software: taxonomic classification was carried out using 
UCLUST [33] and alignment against the Greengenes 
database (gg13) [34] using the PyNAST algorithm [35]. 
Taxonomy was assigned [36–38], and alpha rarefaction 
and beta diversity analyzed [39]. Taxonomy bar charts 
were generated [40, 41]. Samples were analyzed as 
individual samples and as groups. Bar charts and clad-
ograms representing the biomarkers discovered using 
LDA analysis were generated with LefSe [42].

Results
Alpha diversity in datasets
In total, 16S rRNA gene sequences (reads) of 751 bacte-
rial genera were detected with at least one read in one 
sample in either or both of the datasets, 700 in dataset 
1 and 660 in dataset 2. When rare sequences with < 5 
reads in the total of 25 (dataset 1) or 24 (dataset 2) sam-
ples were excluded, the number of genera in datasets 
1 and 2 were 589 and 542, respectively. The number 
of genera with an average > 200 reads per sample was 
45 and 25 in dataset 1 and 2, and the number of gen-
era with median read number > 200 reads per sample 
19 and 9 in datasets 1 and 2, respectively. Thus, most 
genera appeared with low read numbers and/or in few 
samples. The average total read number per sample was 
98 711 in dataset 1 and 63 657 in dataset 2. The median 
of total read number per sample was 76 729 in dataset 1 
and 68 364 in dataset 2.

Analysis of the alpha diversity using whole tree phylo-
genetic diversity (PD_whole_tree) revealed distinct dif-
ferences in the species richness between the two datasets, 
with dataset 1 demonstrating much higher species rich-
ness than dataset 2 even at very low sub-sampling levels 
(Figure 1).

The most common genera
In dataset 1, the genera detected with highest average 
read numbers per sample were Staphylococcus (average 
30 534 reads/sample, 30.9% of all reads), Streptococcus 
(average 10 432 reads, 10.6% of all reads), Corynebac-
terium (average 9303 reads, 9.4% of all reads) and Lac-
tococcus (average 4402 reads, 4.5% of all reads). The 
high average read number of Lactococcus was caused by 
one single sample with high Lactococcus read number. 
In dataset 2, the corresponding genera were Methylo-
bacterium (average 63 657 reads/sample, 50.2% of all 
reads), Staphylococcus (average 17 574 reads, 13.9% 
of all reads), Corynebacterium (average 15 482 reads, 
12.2% of all reads) and Calothrix (average 10 430 reads, 
8.2% of all reads). The high read number for Calothrix 
was due to one sample PCR positive for Prototheca, 
where it covered 94% of the total reads. When look-
ing at medians per sample, the most common genera 
in dataset 1 were Blautia (median read number 2437), 
Sphingobacterium (median 1977), Treponema (median 
1780) and Clostridium (median 1231), and in dataset 2 
Methylobacterium (median 36 776), Corynebacterium 
(median 2307), Blautia (median 649) and Staphylococ-
cus (median 487). The distinct differences between the 
average and median suggest that Staphylococcus and 
Streptococcus present a high average per sample due to 
a small number of samples with overwhelming abun-
dance of these genera, indicative of an active infection. 
Despite significant differences between infected and 
non-infected quarters (p = 0.009) the largest differences 
observed were seen in the separation of dataset 1 and 
dataset 2. This is demonstrated by PcoA analysis which 
clearly defines two groups (dataset 1 and dataset 2) 

Figure 1  Microbial community richness. Alpha diversity 
rarefaction curves (PD whole tree) demonstrating the sizeable 
difference in microbial community richness between set 1 (red) and 
set 2 (blue). Error bars represent the intra-set variation observed.
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whilst the separation of infected vs non-infected is not 
very distinct through this analysis (Figure 2).

Relation between Ct values and read numbers
When the Ct value of the PCR analysis was low indicat-
ing a high amount of pathogen DNA, the read number 
of the corresponding pathogen was high and the reads of 
that bacterial genus/species covered the majority of the 
total and relative amount of reads. Respectively, when 
the Ct value was high indicating low amount of pathogen 
DNA, the read number of the corresponding pathogen 
was smaller and the reads of that bacterial genus/spe-
cies covered a smaller proportion of the total amount of 
reads. This relationship was seen in association with both 
major and minor pathogens and demonstrates the con-
sensus between the two methodologies.

Samples PCR positive for major udder pathogens
All samples positive for major pathogens in the PCR assay 
were also positive according to the conventional culture, 
also all negative samples were negative in both assays. Six 
samples PCR positive for minor pathogens with rather 
high Ct values did not harbor bacterial growth in the cul-
ture. PCR assay is used as the reference microbiological 
test in this study.

Staphylococcus aureus
In dataset 1 three samples were PCR positive for Staph. 
aureus. In PCR the cycle threshold (Ct) values for Staph. 
aureus in these samples were relatively low, < 30.0 (26.2–
28.9) indicating a moderate level of Staph. aureus DNA. 
Two of the samples were also PCR positive for NAS and 
one for C. bovis. The samples had a high amount, 90 550, 

175 062, and 213 389, of Staphylococcus reads, which 
covered 96%, 97% and 93% of the total amounts of reads 
in these samples. Of the 11 PCR negative samples, in 10 
samples Staphylococcus reads covered 0.16% to 1.62% of 
the total amount of reads in these samples, and in one 
sample 9.68%. In this and one other sample the PCR Ct 
values of Staphylococcus spp. were > 37.0 but < 40.0, indi-
cating a low amount of Staphylococcus DNA. At species 
level, reads of Staph. aureus covered 88%, 89% and 92% 
of all Staphylococcus reads. Other Staphylococcus spe-
cies with > 100 reads up to 298 reads were Staph. agne-
tis, Staph. chromogenes, Staph. devriesei, Staph. fleurettii, 
Staph. gallinarum, Staph. intermedius, Staph. pseudolug-
dunens and Staph. xylosus. In the PCR negative sam-
ples, Staph. aureus reads covered 0 to 0.83% of the total 
amount of reads. The sample PCR positive for C. bovis 
in addition to Staph. aureus had 2816 Corynebacterium 
reads (1% of all reads). The C. bovis reads covered only 
19% (426 reads) of all Corynebacterium reads. Other 
Corynebacterium species with > 100 up to 582 reads were 
C. efficiens, C. halotolerans, C. hansenii, C. marinum, and 
C. xerosis. The read numbers of all other genera in these 
three samples were low.

In dataset 2 only one sample was PCR positive for 
Staph. aureus (Ct value 26.0). This sample was PCR 
positive also for NAS and C. bovis (Ct 28.4). The level 
of Staphylococcus reads was high, 370 539, and covered 
96% of the total amount of reads in this sample. In the 
PCR negative samples Staphylococcus reads covered 0.11 
to 1.28% of the total amount of reads. At species level, 
reads of Staph. aureus covered 99% of the total amount 
of Staphylococcus reads. Other Staphylococcus species 
with > 100 reads up to 455 reads were Staph. agnetis, 
Staph. chromogenes, Staph. devriesei, Staph. epidermidis, 
Staph. fleurettii, Staph. haemolyticus, Staph. intermedius, 
and Staph. pseudolugdunens. The amount of Corynebac-
terium reads was 8154, 2% of the total amount of reads. 
At species level, 61% of Corynebacterium reads belonged 
to C. bovis. Another highly abundant species was C. halo-
tolerans, 18%.

Streptococcus uberis
Only one sample in dataset 1 was PCR positive for Strep. 
uberis with a Ct value 22.8 indicating a large amount of 
Strep. uberis DNA. The total Streptococcus read number 
of this sample was 179 331 reads, which covered 96% 
of the total amount of reads. The next common genera 
Blautia, Sphingobacterium, Treponema, Staphylococ-
cus and Bacteroides were represented with ≤ 554 reads. 
At species level, 95% of Streptococcus reads belonged to 
Strep. uberis. The next common Streptococcus species 
were Strep. orisratti (4%) and Strep. bovis (1%).

Figure 2  3D Emperor PcoA plot demonstrating set variance and 
infection status. Microbial community profile using beta diversity 
represented in a 3D Emperor plot using weighted Unifrac distances 
for PcoA analysis. Red dots represent set 1, blue dots represent set 
2. Large spheres represent samples that were not positive for any 
major/minor pathogens by PCR, smaller spheres represent samples 
that were positive for at least one major/minor pathogen by PCR.
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In dataset 2, similarly only one sample was PCR posi-
tive for Strep. uberis, but with a Ct value 34.9 indicating a 
low amount of Strep. uberis DNA. The number of Strep-
tococcus reads was 1037, 11% of the total amount of reads 
in this sample. At species level, 97% of Streptococcus 
reads belonged to Strep. uberis. In this sample the genus 
Methylobacterium had the highest read number which 
covered 60% of the total amount of reads. All other gen-
era were represented with low read numbers only.

Samples PCR positive for minor udder pathogens
Non‑aureus staphylococci
In dataset 1, four samples were PCR positive for NAS 
only. The amount of Staphylococcus reads in these sam-
ples were 190 208, 19 331, 9225 and 1419, which covered 
95%, 35%, 5% and 2%, respectively, of the total amount 
of reads in these samples. In the PCR negative samples, 
only a low percentage of the total amount of reads was 
Staphylococcus (see above). The PCR positive sample 
for NAS with the highest Staphylococcus read number 
also demonstrated higher Staphylococcus DNA levels 
by PCR compared to the other three samples (Ct values 
23.1 vs. 27.8, 28.7 and 34.6). In the sample with the low-
est Ct value and highest amount of Staphylococcus reads, 
Staph. xylosus covered 90% of the Staphylococcus reads. 
The other samples lacked a dominating Staphylococcus 
species and the species with highest read numbers were 
S. arlettae, S. chromogenes, S. cohnii, S. fleurettii, S. galli-
narum, S. massiliensis, S. nepalensis, S. pseudolugdunen-
sis, S. sciuri and S. xylosus (in alphabetic order). The next 
common genera in these samples were Treponema, Strep-
tococcus and Sphingobacterium.

In dataset 2, six samples were PCR positive for NAS 
only. The Ct values were all > 30.0: 31.2 to 36.6, indicat-
ing a low amount of Staphylococcus DNA. The number 
of Staphylococcus reads varied from 61 to 4160 and the 
proportion of Staphylococcus reads of all reads from 0.2 
to 6.3%. The Staphylococcus species with > 100 up to 902 
reads in one or more samples were Staph. aureus, Staph. 
equorum, Staph. haemolyticus, Staph. massiliensis, Staph. 
sciuri and Staph. xylosus. The most common genera in 
these samples were Methylobacterium, Helcococcus and 
Corynebacterium.

Corynebacterium
In dataset 1, one sample was PCR positive for C. bovis 
alone with a Ct value 29.9. The number of Corynebacte-
rium reads in this sample was 86 420, which covered 53% 
of the total amount of reads, 164 205. C. bovis covered 
44% of Corynebacterium reads, C. halotolerans 42%, and 
the rest was covered by diverse Corynebacterium species. 
This sample had 38 249 Streptococcus reads, 23% of the 
total amount of reads. Two samples were PCR positive 

for C. bovis and NAS. The Ct values for Corynebacterium 
were 28.4 and 29.7 and the read numbers of Corynebac-
terium 121 371 and 4888, respectively. The proportions 
of Corynebacterium reads in these two samples were 49% 
and 11%, and proportions of Staphylococcus reads 15% 
and 2%, respectively.

In dataset 2, three samples were PCR positive for C. 
bovis alone with Ct values 27.8, 29.1 and 30.3, and read 
number 83 936, 9160 and 98 948, respectively. In these 
samples Corynebacterium reads covered 31%, 19% and 
34% of the total amounts of reads, respectively. Addi-
tionally, two samples were PCR positive for C. bovis and 
NAS, one sample for C. bovis and yeast, and one sample 
for C. bovis, NAS and yeast. The Ct values for all patho-
gens in these samples were ≥ 30.0. The average number 
of Corynebacterium reads in all 7 C. bovis PCR positive 
samples was 39 905, the proportion of Corynebacterium 
reads varied from 7 to 49%. C. bovis covered 50% to 73% 
of all Corynebacterium reads, and the next most common 
species was C. halotolerans 14% to 30%. The proportion 
of Methylobacterium reads in these samples varied from 
42 to 67%. The proportion of Staphylococcus reads in the 
NAS positive samples varied from 1 to 11%.

Samples from healthy quarters
In dataset 1, four samples had a negative PCR result and 
a milk NAGase enzyme activity < 1, indicating a healthy 
quarter without inflammation. The genera with highest 
average and median read numbers (average/median) with 
the proportion of the total amount of reads (%) are listed 
in alphabetic order: Alicyclobacillus 2389/2328 (2.55%), 
Bacteroides 2212/2684 (2.36%), Blautia 5064/4461 
(5.40%), Bradyrhizobium 3095/2821 (3.30%), Clostridium 
2690/2640 (2.87%), Corynebacterium 2525/1082 (2.69%), 
Oscillospira 2018/1164 (2.15%), Sphingobacterium 
2856/3233 (3.05%), Streptococcus 3970/3836 (4.24%), and 
Treponema 2006/1702 (2.14%). Some genera had high 
average read numbers caused by one single sample but 
lower medians and are not listed here.

In dataset 2, two samples had a negative PCR result and 
a milk NAGase enzyme activity < 1. The genus Methylo-
bacterium covered 93% of reads of these samples. The 
next most common genera in both samples were Blautia 
with an average of 1035 reads (0.39% of all reads), Rumi-
nococcus (627, 0.24%), Corynebacterium (1406, 0.54%) 
and Clostridium (497, 0.19%).

In dataset 1 six samples and in dataset 2 three samples 
were PCR negative but had milk NAGase values > 1 and 
were consequently not classified as samples from healthy 
quarters. One sample in dataset 1 was PCR positive for 
Mycoplasma spp. with a Ct value 36.5. The microbiome 
profiles of these samples do not differ significantly from 
that of the samples from healthy quarters.
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Differences between datasets 1 and 2
The results of the microbiome analyses of datasets 
1 and 2 are distinctly different, as the bacterial gen-
era with the highest read numbers in datasets 1 and 2, 
especially in PCR negative samples and samples PCR 
positive for minor pathogens, are very different. One 
sample, culture and PCR positive for Enterococcus fae-
calis/faecium with a Ct value 28.6 was included in both 
datasets and could be used as an example of differences 
between datasets. Table  1 shows the bacterial genera 
with highest number of reads in this sample in datasets 
1 and 2. Thirty genera with highest number of reads of 
each dataset are included in the table, and only eight of 
these genera belong to the top 30 in both datasets. One 
of these 8 genera is Enterococcus, for which this sample 
was positive in microbiological testing. Twenty genera 
included in top 30 in one dataset have zero reads in the 
other dataset. In addition, 14 of these genera have only 
1 to 11 reads in the other dataset. Table  2 shows the 
read numbers and relative abundance of all reads of the 
19 genera with highest read numbers in datasets 1 and/
or 2. Linear discriminant analysis (LDA) was conducted 
between the two sets to identify genera/family level 
microbes which are significantly different between the 
two sets. Only microbes which were significantly differ-
ent with an LDA score > 4 were included. These results 
reinforce the individual differences mentioned previ-
ously with Methylobacterium being much more com-
mon in dataset 2 compared to dataset 1. Streptococcus 
was also significantly different (Figures 3 and 4).

Discussion
The present study makes one more contribution to the 
complex issue on the microbiome of bovine milk, with 
some critical remarks. In our raw data, the total number 
of genera detected in the milk samples was over 700, 
if all findings starting from one read, were reported. 
However, findings with very low reads are unreliable 
and some cut-off for minimum reads should be used. 
In general singlets should be discounted to ensure that 
results are not sporadic. In fact, the data presented here 
suggests that there is a strong basis for discounting low 
read numbers due to differences between batches or 
sets. Studies on milk microbiome published so far have 
not given threshold for read numbers to be significant, 
which makes comparisons difficult. An important find-
ing here was that results of the two datasets originat-
ing from the same sampling performed during 1 day on 
one single herd differed, as some genera were present in 
all samples in one dataset but not detected in the other. 
The genera detected solely in one dataset are very likely 

post-sampling contaminants which have appeared at 
some stage of the sample processing and analysis.

The most common phyla detected in mastitic milk 
samples in the present study, Firmicutes, Actinobacte-
ria, Bacteroides, and Proteobacteria, were the same as 
have been reported in previous studies [21, 43]. Results 
from earlier studies have been contradictory. In the first 
published study on the mastitic milk microbiome, a high 
number of anaerobic bacterial sequences from genera 
Fusobacterium and Porphyromonas, with sequences 
belonging to Fusobacterium necrophorum were highly 
prevalent in all mastitic samples [16]. In this study, F. nec-
rophorum sequences were practically absent in healthy, 
low SCC quarters, in contrast to our study, where genus 
Fusobacterium was present also in healthy quarters. In 
two studies, samples from quarters with clinical mastitis, 
with no growth in culture, were compared with samples 
from healthy quarters [17, 18]. Kuehn et  al. [17] found 
significantly more Brevundimonas, Burkholderia, Sphin-
gomonas, and Stenotrophomonas in mastitic samples. In 
another study the genus Sphingobacterium was signifi-
cantly more abundant in quarters with increased milk 
SCC, as was Streptococcus [18].

It has been speculated that certain genera would rep-
resent the “natural” microbiome of bovine milk [9, 10, 
17, 18]. Logically, these genera should be present abun-
dantly in milk from healthy quarters. Indeed, it has been 
reported that microbiota profiles from healthy quarters 
could clearly be discriminated from mastitic samples 
[18]. In our study the microbiota profiles of milk of mas-
titic and healthy quarters differ as well, but the bacterial 
genera detected in samples of healthy quarters differ also 
between the datasets 1 and 2. In the study by Oikonomou 
et al. [18] four bacterial genera were present in all samples 
from healthy quarters: Faecalibacterium spp., unclassi-
fied Lachnospiraceae, Propionibacterium spp. and Aeri-
bacillus spp.; also Nocardiodes and Paenibacillus were 
more abundant in healthy quarters [18]. Propionibacte-
rium spp. were present in all healthy quarters, and at spe-
cies level, P. acnes was the most prevalent bacterium in 
the majority of milk samples from healthy quarters with 
low SCC, which led the authors to speculate the possible 
role of these bacteria as “natural microbiota” of healthy 
quarters [18]. The abundance and thus relative propor-
tion of Propionibacterium was very low in our samples. 
In the same study [18], Strep. uberis was detected in all 
groups of samples, and was proposed to possibly belong 
to the natural microbiota of the milk [18]. Our study 
did not support this as Streptococcus sequences were 
abundant in one dataset but almost lacking in the other, 
indicating possible contamination in one dataset. In the 
study by Ganda et al. [19], the dominating genera in milk 
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Table 1  Microbiome results of the milk sample included in both datasets 

Genus Reads in dataset 1 Relative abundance, 
%

Reads in dataset 2 Relative 
abundance, 
%

Acinetobacter 0 0 337 0.9

Agrobacterium 487 1.9 270 0.7

Akkermansia 259 1.0 0 0

Alkaliphilus 233 0.9 6 0.02

Bacillus 95 0.4 824 2.2

Bacteroides 1177 4.5 11 0.03

Blautia 2477 9.5 1062 2.8

Calothrix 296 1.1 2 0.005

Chryseobacterium 1 0.004 11 426 30.4

Clostridium 623 2.4 318 0.8

Corynebacterium 37 0.1 4516 12.0

Delftia 0 0 499 1.3

Desulfotomaculum 3 0.01 1405 3.7

Desulfovibrio 541 2.1 5 0.01

Dysgonomonas 364 1.4 171 0.5

Enhydrobacter 0 0 884 2.4

Enterococcus 447 1.7 7176 19.1

Fibrobacter 565 2.2 0 0

Flavobacterium 46 0.2 443 1.2

Lachnospira 289 1.1 104 0.3

Lactobacillus 303 1.2 1 0.002

Legionella 6 0.02 199 0.5

Leptotrichia 0 0 808 2.2

Candidatus Methylacidiphilum 1120 4.3 0 0

Methylobacterium 0 0 352 0.9

Microbacterium 0 0 181 0.5

Mycobacterium 0 0 308 0.8

Neisseria 0 0 934 2.5

Oscillospira 719 2.8 0 0

Oxalobacter 1 0.004 262 0.7

Paludibacter 312 1.2 103 0.3

Parabacteroides 0 0 161 0.4

Parapedobacter 249 1.0 0 0

Paraprevotella 671 2.6 2 0.005

Pedobacter 629 2.4 120 0.3

Pelomonas 0 0 156 0.4

Phascolarctobacterium 357 1.4 0 0

Porphyromonas 454 1.7 3 0.008

Prevotella 1081 4.2 146 0.4

Propionicimonas 0 0 387 1.0

Pseudobutyrivibrio 282 1.1 0 0

Pseudomonas 204 0.8 349 0.9

Ralstonia 87 0.3 181 0.5

Ruminococcus 623 2.4 60 0.2

Slackia 312 1.2 1 0.003

Sphingobacterium 2587 10.0 133 0.4

Sphingomonas 245 0.9 142 0.4

Staphylococcus 466 1.8 246 0.7
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samples taken from healthy quarters were different from 
reported in our study or in the other studies.

In one study where effects of dry cow therapy on the 
microbiota of healthy quarters were investigated, the 
most abundant genera were Corynebacterium, Acineto-
bacter, Arthrobacter, Staphylococcus, and Psychrobacter 
[21], i.e. different genera than reported in the other cited 
studies. Antimicrobial dry cow therapy had no effects on 
milk microbiome. Contradictory findings were reported 
in another study [22], where bacterial genera of the phy-
lum Proteobacteria increased in the colostrum samples 
after dry cow therapy using a combination of penicillin 
and novobiocin. In that study, the phylum Firmicutes 
including the genus Butyrivibrio, and unclassified fami-
lies Clostridiaceae and Bacillales, were the main bacteria 
in milk microbiota of healthy quarters before drying-
off, which differs from previous studies. Lima et al. [43] 
studied microbiomes in colostrum samples of dairy cat-
tle, finding Staphylococcus, Prevotella, Ruminococcaceae, 
Bacteroidales, Clostridiales, and Pseudomonas as the 
dominating genera. At family level, the most abundant 
families in samples from healthy quarters of twelve cows 
in an experimental mastitis study were Ruminococcaceae 
(mean 16.8%), Lachnospiraceae (mean 7.0%), Aerococ-
caceae (mean 6.8%), Enterobacteriaceae (mean 6.3%), 
Planococcaceae (mean 5.7%), Bacteroidaceae (mean 
5.4%), Corynebacteriaceae (mean 5.1%), Clostridiaceae 
(mean 4.2%), Bacillaceae (mean 3.5%), and Staphylococ-
caceae (mean 2.8%) [20]. As seen above, studies on milk 
microbiome published so far have variable and often con-
tradictory results.

It has been suggested that IMI would be a consequence 
of a dysbiosis of the mammary gland microbiome, and 
not merely an invasion of pathogenic bacteria from out-
side the gland [9, 10]. This hypothesis has been based 
on studies previously referred to, where microbial com-
munities of samples originating from healthy quarters 
have differed from those of mastitic samples. No direct 
scientific evidence for the dysbiosis theory has been 

published. Another, maybe more likely explanation for 
the differences between microbiomes in mastitic and 
healthy quarters could be the changed composition of 
milk in mastitis. Mastitic milk and whey favor growth 
of different bacterial genera as compared with normal 
milk [44–46]. Species not belonging to udder pathogens 
like lactobacilli, Bacillus subtilis and Pseudomonas fluo-
rescens have been inhibited by mastitic milk, whereas 
growth of known pathogens such as Staph. aureus and E. 
coli has been weaker in normal milk [44].

Microbiota present in milk samples drawn from mas-
titic or healthy quarters do not represent the whole 
mammary gland but just milk from teat cistern and pos-
sibly milk chamber of the udder, and we would not call 
the milk microbiome the same as the microbiome of the 
mammary gland. Microbiota in milk samples consist of 
microbes coming from an infected gland or extramam-
mary sites or both, and also hypothetically, microbes 
belonging to the so-called natural microbiota of the 
mammary gland. To date, no scientific evidence on the 
presence of a natural microbiome in a healthy mammary 
gland is available [23]. In IMI the mammary gland is 
infected and microbes can be present in the duct system 
and other compartments of the gland, depending on the 
invasiveness of the pathogen, duration of IMI, and other 
factors [47]. In a lactating cow, the udder is an open sys-
tem, and bacteria enter the gland via the teat canal. They 
can be transferred during milking, in particular during 
inappropriate changes in the vacuum level [48]. Bonsaglia 
et al. [21] reported a higher bacterial load in milk micro-
biomes of samples taken at day 7 post-partum than in 
those taken at drying off, which may indicate the effect of 
milking on the milk microbiota. In a study investigating 
the impact of experimental mastitis treated with antimi-
crobials on milk microbiota, the authors concluded that 
the mammary gland would have a resilient microbiome 
which is established after the exposure to antimicrobials 
[20]. This is logical, assuming that milk microbiota con-
sists of microbes from outside of the gland, where they 

The sample was positive for Enterococcus spp. in PCR and bacterial culture. Thirty bacterial genera with highest number of 16S reads in this sample in dataset 1 and in 
dataset 2, 52 bacterial genera in total, were included in this table. Only 8 genera belonged to the 30 genera with highest read numbers in both datasets. The number 
and relative amount of reads are italicized when belonging to the top 30.

Table 1  (continued)

Genus Reads in dataset 1 Relative abundance, 
%

Reads in dataset 2 Relative 
abundance, 
%

Streptococcus 247 1.0 3 0.008

Tepidimonas 0 0 373 1.0

Treponema 2760 10.6 0 0

Trichococcus 3 0.01 375 1.0

Total amount of reads in the sample 25,961 37,527
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Figure 3  Biomarker analysis between sets. LefSe was used to establish the most differential taxa between set 1 and set 2. These were 
established with a minimum LDA score (log10) of 4 and a bonferroni corrected p-value < 0.001.
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reflect bacterial genera present on body sites and the 
environment of the cow.

It is difficult to find support for the hypothesis on some 
metagenomic profile which would reflect a “normal” 
microbiome of the milk. During the milk sampling, con-
tamination of the sample can occur at many stages of the 
procedure. Aseptic technique is the prerequisite for tak-
ing good quality quarter milk samples [15]. However, in 
dairy farm conditions milk sampling is always challeng-
ing, because there are many sources of contamination 
like cubicles, faeces, forage, barn air etc. [14, 15]. Metzger 
et  al. [49] found that the composition of bacterial com-
munity in milk samples differed between cows kept on 
different beddings. This indicates that the environment 
affects milk microbiomes even if milk is collected directly 
from the gland cistern as done in this study.

Among genera detected in milk samples, many belong 
to phyla and genera known to belong to the core micro-
biome of the bovine rumen, like Prevotella, Butyrivi-
brio, Ruminococcus, Lachnospira, and Clostridium [50, 
51]. Their presence in the milk samples is not surpris-
ing as bacteria from the rumen also end up in faeces 
and on external body sites and the environment of the 
cow. Many genera reported in the milk like Arthrobac-
ter, Acinetobacter, and Psychrobacter are environmental 

bacteria which can be detected in water, soil and other 
diverse habitats [52]. Despite thorough cleaning of the 
teat end prior to sampling, the teat canal and skin har-
bor bacteria which easily can contaminate the sample. 
Non-aureus staphylococci and Corynebacteria are the 
most likely species in this respect [7, 53, 54]. Our sam-
ples were taken on a large dairy farm with stanchion 
barns and straw bedding, where hygienic conditions were 
not optimal. Geographical conditions and sampling sites 
certainly have an impact on the microbiome detected in 
milk samples, and probably at least partially explain the 
very different microbiomes reported in various studies. 
This is supported by the study by Oikonomou et al. [18], 
who showed that discriminant analysis models could 
identify samples originating from different farms based 
on their microbial profiles. An interesting detail in our 
results was abundance of Calothrix in one mastitic sam-
ple positive for Prototheca. This has also been reported 
by other authors [55], who suggested that the finding may 
be related to environmental factors or host immunity.

In the present study, milk samples originating from 
mastitic quarters, the bacteria diagnosed as the cause of 
mastitis with multiplex real-time PCR and culture domi-
nated the results of the microbiome analysis. The pres-
ence of pathogenic bacteria in the microbiome was highly 

Figure 4  Cladogram demonstrating bacterial genera which are different between sets. LefSe analysis establishing the most differentially 
abundant taxa between set 1 and set 2 was used to generate a taxonomic cladogram demonstrating family/genera that were most discriminatory 
between sets. Family/genera increased in set 1 (blue) and set 2 (red) are highlighted. These had a minimum LDA score (log10) of 4, and a Bonferroni 
adjusted p value < 0.001.
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consistent with PCR and culture results. This is in line 
with previous studies where mastitis has been diagnosed 
using conventional culturing [16, 19]. When a major mas-
titis pathogen Staph. aureus or Strep. uberis was detected 
by PCR in the milk sample with a low Ct value for that 
pathogen i.e. a high amount of DNA, the read numbers of 
these pathogens were high and formed the overwhelm-
ing majority of read numbers in these samples. The same 
was true for minor pathogens NAS or C. bovis. On the 
contrary, if the Ct value for a minor pathogen was high 
in the PCR test, indicating low levels of DNA, the read 
number of that pathogen was also low and covered only 
a small proportion of the total read numbers in the sam-
ple. Possible explanations for this phenomenon in quar-
ters with low levels of minor pathogen DNA using PCR 
could be that the detected minor pathogens would ori-
gin from the teat canal and skin, which also harbor large 
amount of microbiota belonging to diverse, often anaero-
bic, genera, which are then also seen in the microbiota. 
In these samples, as well as in the samples from healthy 
quarters, bacterial genera such as Methylobacterium 
and Treponema, appeared with high read numbers. One 
explanation for the larger amount of diverse genera in 
PCR negative samples from healthy quarters could be 
that when the milk sample lacks DNA of udder patho-
gens or their level is low, other genera, originating from 
other sources like teat orifice, barn air or environment, 
and laboratory sources during sample preparation, DNA 
extraction etc., have “space” during the amplification pro-
cess in the microbiome analysis, i.e. have no competition 
and can be amplified in excess. For example, in dataset 
1, the average proportion of Treponema is 2.4%. In the 
three Staph. aureus positive samples the proportion of 
Treponema reads vary from 0.07 to 0.2%, and that of the 
Strep. uberis positive sample is 0.2%. In the sample PCR 
positive for NAS with Ct value 23.1 the proportion of 
Treponema reads is also low, 0.03%. The same for exam-
ple with the genus Blautia, with an average proportion of 
3.1% per sample. In the three Staph. aureus samples the 
proportion of Blautia reads were 0.1%, 0.1% and 0.2%, 
in the Strep. uberis sample 0.3% and in the NAS sam-
ple 0.02%. Similarly in dataset 2, the average proportion 
of Methylobacterium reads is 50% of all reads, but 0.6% 
in the Staph. aureus positive sample. It has been shown 
that samples with originally low biomass and no clearly 
dominating genera, contaminating organisms can com-
prise the majority of total sequences in the microbiome 
analysis [25, 52]. Milk samples from healthy quarters and 
quarters PCR positive with high Ct values could repre-
sent this kind of low biomass samples.

Our two datasets clearly differed in that some gen-
era, for example Alicyclobacillus, Bacteroides, Candida-
tus Methylacidiphilum, Fibrobacter, Methylobacterium, 

Paraprevotella, Sphingobacterium, and Treponema were 
present in one but almost or totally lacking in the other 
dataset. In addition, the genus Streptococcus was present 
with high read numbers in most of the dataset 1 samples 
but in dataset 2 was only seen in the Strep. uberis posi-
tive sample. Most of these genera match with water and 
soil associated bacterial genera reported to contaminate 
samples in sequence-based microbiome analyses [52, 56, 
57]. Contamination can occur during any step of sample 
handling and analysis, for instance laboratory reagents or 
kits have been shown to be contaminated at least in some 
cases [52]. In dataset 2, methylobacteria were detected in 
all samples and in most of them with high read numbers. 
The mean Methylobacterium spp. read number per sam-
ple was 63 656 (median 36 776) reads (min 352, max 261 
148). The Methylobacterium read numbers were approxi-
mately 100-fold higher in samples from healthy quarters 
compared with samples with major mastitis pathogens. 
In dataset 1 methylobacteria were not common: the 
mean read number per sample for different Methylo-
bacterium species was only 321 (median 90) reads (min 
0, max 3355 reads). The milk sample analyzed in both 
datasets but with different results for a substantial part of 
bacterial genera detected (Table 1) raises questions about 
the consistency of microbiome analytics on milk sam-
ples. The DNA extraction of sets 1 and 2 were performed 
at different times and using different batch of the DNA 
isolation kits. It is likely that contamination during some 
step of the process has occurred. This is not exceptional, 
but a common and difficult to avoid problem in sensitive 
next-generation sequencing analyses [25].

We conclude that a critical assessment is necessary for 
assessing the results of milk microbiome analyses. What 
are the roles of the numerous different genera and spe-
cies detected in the milk, are they endogenous or invad-
ers, pathogens, commensals or contaminants? For a true 
understanding of the role and significance of the micro-
biota in the mammary ecosystem more research on their 
presence and dynamics in health and disease, as well as in 
different environments and production systems of dairy 
cattle, is necessary. Furthermore, sampling and analy-
ses should be carried out according to the best practices 
agreed for 16S microbiome research.
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