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Abstract 

Complex systems are open systems consisting of many components that can interact among themselves and the 
environment. New forms of behaviours and patterns often emerge as a result. There is a growing recognition that 
most sporting environments are complex adaptive systems. This acknowledgement extends to sports injury and is 
reflected in the individual responses of athletes to both injury and rehabilitation protocols. Consequently, practition-
ers involved in return to sport decision making (RTS) are encouraged to view return to sport decisions through the 
complex systems lens to improve decision-making in rehabilitation. It is important to clarify the characteristics of this 
theoretical framework and provide concrete examples to which practitioners can easily relate. This review builds on 
previous literature by providing an overview of the hallmark features of complex systems and their relevance to RTS 
research and daily practice. An example of how characteristics of complex systems are exhibited is provided through 
a case of anterior cruciate ligament injury rehabilitation. Alternative forms of scientific inquiry, such as the use of com-
putational and simulation-based techniques, are also discussed—to move the complex systems approach from the 
theoretical to the practical level.
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Key Points

• Complex systems have distinct properties, such as 
nonlinearity, emergence and adaptation. Sixteen 
features of complex systems have been identified in 
sports injury rehabilitation.

• Rehabilitation practitioners may connect complex 
systems theory with their operations in the sports 
setting.

Challenges in Return to Sport Decision Making
Return-to-sport (RTS) can challenge health professionals, 
coaches (i.e., practitioners) and athletes. In competitive 
sports, where marginal gains in performance are sought, 
athletes and practitioners often weigh risks and benefits 
when making the RTS decisions. In a team sports setting, 
full availability of players allows greater flexibility in tac-
tical planning, such as deciding the best team formation 
based on the opponent’s playing style. Player availabil-
ity is linked to performance [1–3] and could reduce the 
financial burden on the team [4, 5].

Research on RTS decision making largely focuses on 
identifying a criteria list based on biological factors and 
on whether the athlete has returned to baseline per-
formance level (e.g., Grindem et al. [6], Stares et  al. [7], 
and Kyritsis et  al. [8]). This approach has assisted prac-
titioners in being transparent in the decision process, 
for instance, to grant a medical clearance. However, 
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underlying complexity and the high degree of interlinks, 
independencies, and temporal components also need 
consideration. For example, the same criteria may not 
apply to athletes of a different mental state, age group or 
playing level. Furthermore, non-linearity is commonly 
seen in the context of sports. As an example, most foot-
ball fans would know that a team composed of the best-
skilled players, does not necessarily produce the best 
performance. Instead, the outcome is highly dependent 
on the interplay of tactical, physiological, social and even 
emotional factors. Similarly, it may be beneficial to view 
RTS more than simply addressing a set of predefined RTS 
criteria, or achieving an arbitrary numerical change in a 
performance test.

To address these limitations and objectives, we propose 
an approach using the complex systems theory. Recent 
work from Bittencourt et al. [9] has raised awareness of 
the theory and more could be done to clarify the charac-
teristics of complex systems and to increase the practical 
utility of the complex systems approach. Consequently, 
this paper builds on the work of Bittencourt et al. [9] and 
aims to (1) clarify the terminologies in the complex sys-
tems approach and adapt them for sports, (2) provide 
examples relevant to rehabilitation and (3) introduce 
tools that can model the complexity and increase practi-
cal utility in applied settings.

What is a Complex Systems Approach?

A Complex Systems Approach to Decision Making in Sports 
Medicine
The complex systems theory, with more than 50  years 
of history [10], acknowledges the multifaceted nature of 
sports and seeks to understand the interactions among 
different factors and the outcomes of the systems [9, 11]. 
Complex systems are dynamic, open systems [12]. They 
are characterised by non-linearity due to feedback loops 
and interaction among the factors. This means that out-
puts are not always proportional to the inputs, and a 
small adjustment may lead to a large change in the sys-
tems and vice versa [13].

In complex systems, factors that interact with each 
other to form the systems are known as units [12]. In 
the context of RTS, these units could include age, well-
ness, biological healing of injured tissue, stress, external 
pressure and injury history. The units interact and define 
the space and dimension of the systems [14]. Conse-
quently, different systems within systems emerge. These 
systems may be categorised based on their nature, for 
example, biomechanical, physiological and psychologi-
cal. They may also be hierarchical and of multiple levels, 
namely individual, organisational and environmental (see 
Fig. 1). The individual level represents factors related to 

• Demographics
• Age 
• Playing experience
• Personality traits

Environmental level

Individual level

• Clinical assessment
• Strength
• Tissue health
• Imaging result

• Psychological state
• Pain perception
• Coping skills
• Belief

• Training performance
• Physical performance

• Management style
• Team playing style

• Medical team support
• Rehabilitation protocol

• Weather
• Playing ground • Competition 

level

• Equipment
• Protective gear availability

Organisational level

• Unknown systems 
and variables

Fig. 1 A multilevel system map with factors related to return to sport decision in anterior cruciate ligament injury
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the individual athlete, from tissue healing to personal 
traits. The organisational level represents external factors 
related to the sporting club, organisation and support 
team, e.g., the coaching and medical team. The environ-
mental level covers factors beyond the organisational 
level, such as the weather, playing schedule and competi-
tion level.

In recent years, the complex systems approach has 
gained momentum and has been used to understand 
sports injury occurrence [9, 15] and behaviour in sports 
performance [16–19]. However, the terminologies used 
in complex systems are often less familiar to practitioners 
and could be easily confused with merely complicated or 
multifactorial. Most studies recognize the importance of 
considering multiple factors in determining readiness for 
RTS or in the context of injury recognition [6, 8, 9, 20–
26], but more work is required to raise awareness on why 
the lens of complex systems approach should be adopted 
by practitioners in rehabilitation.

Applying a Complex Systems Model for ACL rehabilitation
This paper provides examples based on the 16 common 
features of complex systems recently illustrated by Boeh-
nert et al. [27]. They are adapted for the context of sports 
in Table 1, with examples illustrated mainly from an ante-
rior cruciate ligament (ACL) injury.

An ACL injury is used here as the case illustration as 
it is a serious injury that may threaten the career of an 
athlete [28, 29]. The estimated annual medical cost asso-
ciated with ACL reconstruction surgery in Australia was 
over A$75 million per year [30]. Currently, there is no 
consensus regarding the optimal functional rehabilitation 
criteria [20] and objective physiological RTS criteria [31]. 
Despite ACL injuries being one of the most researched 
topics in the sports medicine literature [32], the re-injury 
risk of ACL remains high [33, 34]. The complexity within 
ACL RTS may be explained at the individual, organisa-
tional and environmental levels.

Implications for Practice and Future Research
By illustrating the features of complex systems with a 
common sports injury, we highlight their practical util-
ity in RTS. The complex systems approach provides a 
theoretical framework for interpreting the patterns that 
emerge from biopsychosocial and other external fac-
tors. In ACL rehabilitation, conducting independent 
clinical tests and functional assessments may provide 
useful information regarding the athletes’ physical and 
mental status. However, a complex systems approach 
facilitates a more complete picture of the problem and 
an increased awareness of how different factors may 
interact.

There are two challenges on using the complex systems 
approach: (1) the high degree of complexity may deter 
practitioners who do not have formal training in handling 
large and complex datasets from using this approach, (2) 
Unlike studying in a controlled laboratory environment, 
it is near impossible to isolate a portion of the larger 
systems (i.e., isolation of the biological healing process 
from broader biopsychosocial factors). Fortunately, many 
computer-based decision support systems now have the 
capability of incorporating features of complex systems 
in their design and utility. For example, to operationalise 
one of the above features, “change over time”, the working 
model can allow flexibility in updating the baseline and 
encourage repeated testing at multiple time points during 
the rehabilitation. We believe practitioners who develop 
an understanding of complex systems will be well-posi-
tioned to efficiently articulate their needs with analysts 
and ultimately develop decision support systems that 
inform best practices (e.g., RTS decision making).

Computer simulation (e.g., agent-based modelling), 
machine learning and Bayesian network (BN) analyses 
are all potential tools for analysing both non-complex or 
complex systems [35]. These methods can consider the 
dynamic interaction at multiple levels simultaneously, 
consequently viewing RTS more completely and sup-
porting decision making. These analytical tools may help 
to achieve the following: (1) allow practitioners to study 
and compare the potential outcome (e.g., likelihood of 
reinjury) of different decisions that are otherwise almost 
impossible to test safely in real life, (2) increase the deci-
sion efficiency by learning from previous experience and 
streamlining data from multiple sources and formats, 
(3) identify patterns in data that may cause a certain 
outcome.

These techniques can be used to construct clinical 
decision support systems, which may complement or 
be superior to human decisions. In a review of seventy 
studies, a decision support system improved clinical 
practice in 68% of trials [36]. These decision support sys-
tems have also provided more accurate diagnoses than 
human experts in some medical fields [37, 38]. Yet, the 
application of these approaches in RTS is still scarce in 
the literature. As such, we have provided a vignette here 
to outline how machine learning techniques and Bayes-
ian networks could be applied to support RTS decision 
making: a 30-year-old professional female football player 
tore her hamstring 10  days ago during the season and 
a grade II hamstring strain was diagnosed. There is an 
important match in 2  weeks and there are six relevant 
questions, as covered in the below sections, which the 
practitioners and the coach would like to ask. Ultimately, 
the coach would like to know as early as possible about 
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 a
nd

 e
vo

lv
in

g 
in

 
re

sp
on

se
 to

 th
e 

ch
an

ge
s 

in
 th

e 
en

vi
ro

nm
en

t [
70

].
So

m
e 

pe
op

le
 w

ith
 A

C
L 

de
fic

ie
nc

y 
m

ay
 e

xh
ib

it 
in

cr
ea

se
d 

kn
ee

 fl
ex

io
n 

at
 e

ar
ly

 s
ta

nc
e 

an
d 

re
du

ce
d 

ex
te

ns
io

n 
in

 m
id

 to
 la

te
 s

ta
nc

e 
[7

7]
. T

hi
s 

is
 a

n 
ad

ap
ta

tio
n 

th
at

 a
llo

w
s 

ha
m

st
rin

gs
 to

 b
e 

effi
ci

en
t s

yn
er

gi
st

s 
to

 th
e 

A
C

L 
in

 w
al

ki
ng

 [7
8,

 7
9]

 a
nd

 to
 re

du
ce

 th
e 

an
te

rio
r t

ra
ns

la
tio

n 
fo

rc
e 

of
 th

e 
tib

ia
 [7

7]
. T

hi
s 

re
pr

es
en

ts
 h

ow
 th

e 
bo

dy
 a

da
pt

s 
to

 
A

C
L 

de
fic

ie
nc

y 
by

 b
rin

gi
ng

 c
ha

ng
es

 w
ith

in
 th

e 
sy

st
em

s. 
Th

e 
ad

ap
ta

tio
n 

ap
pe

ar
s 

to
 

ha
pp

en
 a

ut
on

om
ou

sl
y,

 u
nc

on
sc

io
us

ly
, a

nd
 w

ith
ou

t e
xp

lic
it 

pr
og

ra
m

m
in

g.
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Ta
bl

e 
1 

(c
on

tin
ue

d)

Ch
ar

ac
te

ri
st

ic
s

D
efi

ni
tio

n
Ex

am
pl

e

8.
 P

at
h 

de
pe

nd
en

cy
Ev

en
ts

 a
nd

 a
ct

io
ns

 th
at

 o
cc

ur
re

d 
pr

ev
io

us
ly

 in
flu

en
ce

 fu
tu

re
 s

ta
te

s 
an

d 
de

ci
si

on
s 

[2
7]

.
A

C
L 

re
ha

bi
lit

at
io

n 
us

ua
lly

 fo
llo

w
s 

a 
pa

th
 a

nd
 o

ne
 c

an
 o

nl
y 

pr
og

re
ss

 to
 th

e 
ne

xt
 

st
ag

e 
by

 m
ee

tin
g 

a 
se

t o
f c

rit
er

ia
. F

or
 e

xa
m

pl
e,

 in
 th

e 
ea

rly
 re

ha
bi

lit
at

io
n 

ph
as

e,
 

pr
og

re
ss

iv
e 

w
ei

gh
t-

be
ar

in
g 

al
lo

w
s 

th
e 

kn
ee

 jo
in

ts
 to

 a
cc

lim
at

is
e 

to
 in

cr
ea

se
d 

lo
ad

 
an

d 
as

si
st

 in
 th

e 
de

ve
lo

pm
en

t o
f a

 n
or

m
al

 g
ai

t p
at

te
rn

 [8
0,

 8
1]

. P
ly

om
et

ric
 tr

ai
ni

ng
 is

 
on

ly
 in

co
rp

or
at

ed
 if

 fu
ll 

ra
ng

e 
of

 m
ot

io
n 

(R
O

M
), 

su
ffi

ci
en

t s
tr

en
gt

h 
ba

se
, a

nd
 fl

ex
ib

il-
ity

 a
re

 d
em

on
st

ra
te

d.
 F

or
 o

n-
pi

tc
h 

re
ha

bi
lit

at
io

n,
 a

ct
iv

iti
es

 s
ho

ul
d 

be
gi

n 
w

ith
 s

im
pl

e 
dr

ill
s 

an
d 

ad
va

nc
e 

to
 m

or
e 

co
m

pl
ex

 e
xe

rc
is

es
 [8

0]
. A

 c
on

tr
ol

-c
ha

os
 c

on
tin

uu
m

 
(C

CC
) c

ou
ld

 b
e 

fo
llo

w
ed

 o
n-

fie
ld

, w
he

re
 re

ha
bi

lit
at

io
n 

tr
ai

ni
ng

 c
on

st
ra

in
ts

 p
ro

gr
es

s 
fro

m
 h

ig
h 

co
nt

ro
l t

o 
hi

gh
 c

ha
os

 [8
2]

.

9.
 T

ip
pi

ng
 p

oi
nt

If 
th

e 
pe

rt
ur

ba
tio

n 
of

 a
 s

ys
te

m
 g

oe
s 

be
yo

nd
 a

 c
er

ta
in

 th
re

sh
ol

d,
 th

er
e 

w
ill

 b
e 

a 
ph

as
e 

tr
an

si
tio

n 
in

 th
e 

sy
st

em
’s 

be
ha

vi
ou

r w
hi

ch
 m

ay
 n

ot
 b

e 
re

ve
rs

ib
le

 [7
0]

.
In

 A
C

L 
re

ha
bi

lit
at

io
n,

 o
ne

 o
f t

he
 e

ar
ly

 g
oa

ls
 is

 to
 s

tr
en

gt
he

n 
lo

w
er

 li
m

b 
m

us
cl

es
 to

 
m

in
im

is
e 

m
us

cl
e 

at
ro

ph
y 

[8
3]

. S
qu

at
 e

xe
rc

is
e 

m
ay

 b
e 

us
ed

 a
s 

a 
tr

ai
ni

ng
 s

tim
ul

us
 

(p
er

tu
rb

at
io

n)
 a

nd
 it

 m
ay

 c
au

se
 m

ic
ro

-t
ea

rs
 a

nd
 in

fla
m

m
at

io
n 

of
 th

e 
m

us
cl

e 
fib

re
s 

(s
ys

te
m

 d
ev

ia
te

s 
fro

m
 th

e 
st

ab
le

 s
ta

te
). 

Th
e 

ne
ur

om
us

cu
la

r s
ys

te
m

 w
ill

 re
pa

ir 
an

d 
ad

ap
t (

sy
st

em
 re

tu
rn

s 
to

 a
 s

ta
bl

e 
st

at
e)

, l
ea

di
ng

 to
 m

us
cl

e 
hy

pe
rt

ro
ph

y 
[8

4]
. H

ow
-

ev
er

, i
f t

he
 in

te
ns

ity
 a

nd
 v

ol
um

e 
ex

ce
ed

 th
e 

ca
pa

ci
ty

 o
f t

he
 s

of
t t

is
su

e,
 th

er
e 

w
ill

 b
e 

a 
lo

ss
 in

 s
ta

bi
lit

y 
(e

.g
., 

qu
ad

ric
ep

s 
m

us
cl

e 
st

ra
in

) a
nd

 a
n 

in
ab

ili
ty

 to
 re

la
x 

ba
ck

 to
 th

e 
pr

ev
io

us
 s

ta
bl

e 
st

at
e 

au
to

m
at

ic
al

ly
. T

he
re

 w
ill

 b
e 

a 
ch

an
ge

 in
 s

ys
te

m
 b

eh
av

io
ur

 (i
.e

., 
re

-in
ju

ry
 [8

5]
).

10
. C

ha
ng

e 
ov

er
 ti

m
e

Sy
st

em
s 

ar
e 

dy
na

m
ic

 a
nd

 c
an

 e
vo

lv
e 

ov
er

 ti
m

e.
 T

hi
s 

is
 b

ec
au

se
 th

ey
 c

on
st

an
tly

 
in

te
ra

ct
 a

nd
 n

eg
ot

ia
te

 w
ith

 th
e 

en
vi

ro
nm

en
t, 

le
ad

in
g 

to
 c

on
tin

uo
us

 c
ha

ng
e 

[7
0]

.
Ps

yc
ho

lo
gi

ca
l c

ha
ra

ct
er

is
tic

s 
of

 a
th

le
te

s 
ca

n 
ch

an
ge

 d
ur

in
g 

th
e 

A
C

L 
re

ha
bi

lit
at

io
n 

pr
oc

es
s 

an
d 

aff
ec

t h
ow

 th
ey

 c
op

e 
w

ith
 R

TS
 a

nd
 fu

tu
re

 in
ju

ry
 [8

6]
.

In
 th

e 
ph

ys
ic

al
 p

er
fo

rm
an

ce
 a

sp
ec

t, 
tr

ai
ni

ng
 c

ap
ac

ity
 e

vo
lv

es
 a

nd
 g

en
er

al
ly

 d
ec

lin
es

 
w

ith
 a

ge
 [8

7]
. F

or
 e

xa
m

pl
e,

 th
e 

he
ar

t r
at

e 
m

ax
im

um
 d

ur
in

g 
ex

er
ci

se
 d

ec
lin

es
 w

ith
 

ag
e 

[8
8]

. M
ax

im
al

 o
xy

ge
n 

co
ns

um
pt

io
n 

is
 in

ve
rs

el
y 

an
d 

st
ro

ng
ly

 re
la

te
d 

to
 a

ge
 fo

r 
ac

tiv
e 

an
d 

en
du

ra
nc

e-
tr

ai
ne

d 
po

pu
la

tio
ns

 [8
9]

.

11
. O

pe
n 

sy
st

em
Co

m
pl

ex
 s

ys
te

m
s 

ar
e 

co
ns

id
er

ed
 o

pe
n 

as
 it

 is
 d

iffi
cu

lt 
to

 d
efi

ne
 th

ei
r b

ou
nd

ar
y.

 
Th

e 
sy

st
em

s 
in

te
ra

ct
 w

ith
 th

e 
en

vi
ro

nm
en

t a
nd

 a
re

 a
ls

o 
be

in
g 

in
flu

en
ce

d 
by

 th
e 

en
vi

ro
nm

en
t c

on
tin

uo
us

ly
. I

n 
co

nt
ra

st
, c

lo
se

d 
sy

st
em

s 
ar

e 
sy

st
em

s 
w

he
re

 th
e 

in
flu

-
en

ce
 o

f t
he

 e
nv

iro
nm

en
t o

n 
th

em
 is

 n
eg

lig
ib

le
 [1

4]
.

Th
e 

si
ze

 o
f t

he
 s

ys
te

m
s 

co
ul

d 
ha

rd
ly

 b
e 

de
fin

ed
, a

s 
th

in
gs

 in
 th

e 
en

vi
ro

nm
en

t t
ha

t 
ar

e 
se

em
in

gl
y 

sm
al

l m
ay

 a
ls

o 
in

flu
en

ce
 th

em
. F

or
 e

xa
m

pl
e,

 a
 w

et
 tr

ai
ni

ng
 g

ro
un

d 
aff

ec
ts

 th
e 

gr
ou

nd
 re

ac
tio

n 
fo

rc
e 

an
d 

m
ov

em
en

t s
tr

at
eg

y 
fo

r a
th

le
te

s 
du

rin
g 

ru
n-

ni
ng

 [9
0]

. S
ho

e 
de

si
gn

s 
an

d 
ty

pe
s 

of
 p

la
yi

ng
 s

ur
fa

ce
s 

ar
e 

re
la

te
d 

to
 A

C
L 

in
ju

ry
 ri

sk
 

du
e 

to
 th

e 
sh

oe
-s

ur
fa

ce
 fr

ic
tio

n 
[9

1]
. P

la
yi

ng
 m

us
ic

 d
ur

in
g 

re
ha

bi
lit

at
io

n 
tr

ai
ni

ng
 

m
ay

 re
du

ce
 th

e 
pe

rc
ep

tio
n 

of
 p

hy
si

ca
l e

ffo
rt

 d
ur

in
g 

tr
ai

ni
ng

 a
nd

 im
pr

ov
e 

ph
ys

ic
al

 
pe

rf
or

m
an

ce
 b

y 
de

la
yi

ng
 fa

tig
ue

 o
r i

nc
re

as
in

g 
w

or
k 

ca
pa

ci
ty

 [9
2,

 9
3]

.

12
. U

np
re

di
ct

ab
ili

ty
D

ue
 to

 n
on

-li
ne

ar
ity

 a
nd

 e
m

er
ge

nc
e 

pr
op

er
tie

s, 
it 

is
 d

iffi
cu

lt 
to

 p
re

di
ct

 h
ow

 th
e 

sy
st

em
s 

w
ill

 e
vo

lv
e 

[9
].

Pr
ec

is
e 

fo
re

ca
st

in
g 

of
 w

he
n 

an
 a

th
le

te
 s

ho
ul

d 
RT

S 
is

 c
ha

lle
ng

in
g.

 It
 is

 d
iffi

cu
lt 

to
 p

re
di

ct
 th

e 
es

tim
at

ed
 ti

m
e 

fo
r r

ec
ov

er
y 

as
 th

er
e 

is
 u

np
re

di
ct

ab
ili

ty
 o

n 
ho

w
 

th
e 

sy
st

em
s 

ev
ol

ve
. F

or
 e

xa
m

pl
e,

 h
ow

 w
ill

 th
e 

m
ot

iv
at

io
n 

of
 th

e 
at

hl
et

e 
ch

an
ge

 
th

ro
ug

ho
ut

 re
ha

bi
lit

at
io

n?
 H

ow
 w

ill
 th

e 
ch

an
ge

 in
 a

 p
er

so
na

l r
el

at
io

ns
hi

p 
aff

ec
t t

he
 

pe
rf

or
m

an
ce

 o
f t

he
 a

th
le

te
? 

In
 s

om
e 

ca
se

s, 
it 

is
 im

po
ss

ib
le

 to
 g

at
he

r, 
st

or
e,

 a
nd

 u
se

 
al

l o
f t

he
 in

fo
rm

at
io

n 
ab

ou
t t

he
 s

ta
te

 o
f c

om
pl

ex
 s

ys
te

m
s 

at
 o

ne
 p

oi
nt

 to
 p

re
di

ct
 th

e 
ou

tc
om

e.

13
. U

nk
no

w
ns

Th
er

e 
ar

e 
al

w
ay

s 
un

its
 th

at
 in

flu
en

ce
 th

e 
sy

st
em

s 
w

hi
ch

 a
re

 e
ith

er
 u

nk
no

w
n 

or
 

co
ul

d 
no

t b
e 

ob
se

rv
ed

 o
r m

ea
su

re
d.

 T
he

re
fo

re
, i

t m
ay

 s
ee

m
 th

at
 th

e 
sy

st
em

s 
ev

ol
ve

d 
un

pr
ed

ic
ta

bl
y 

[9
].

Th
er

e 
ar

e 
fa

ct
or

s 
th

at
 d

ec
is

io
ns

 m
ak

er
s 

m
ay

 n
ot

 b
e 

aw
ar

e 
of

 d
ur

in
g 

th
e 

A
C

L 
re

ha
bi

li-
ta

tio
n 

du
e 

to
 d

iff
er

en
t r

ea
so

ns
, f

or
 e

xa
m

pl
e,

 li
m

ite
d 

kn
ow

le
dg

e 
(e

.g
., 

ho
w

 a
 g

en
et

ic
 

va
ria

nt
 is

 a
ss

oc
ia

te
d 

w
ith

 A
C

L 
re

ha
bi

lit
at

io
n 

an
d 

in
ju

ry
 ri

sk
?)

, t
ec

hn
ol

og
y 

co
ns

tr
ai

nt
s 

(e
.g

., 
ho

w
 re

lia
bl

e 
ar

e 
th

e 
m

ea
su

re
m

en
t t

oo
ls

?)
, i

ns
uffi

ci
en

t r
es

ou
rc

es
 (e

.g
., 

is
 it

 p
os

-
si

bl
e 

to
 m

ea
su

re
 e

ve
ry

th
in

g?
), 

bi
as

 a
nd

 is
su

es
 th

at
 s

ta
ke

ho
ld

er
s 

ha
ve

 b
ee

n 
un

aw
ar

e 
of

.
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Ta
bl

e 
1 

(c
on

tin
ue

d)

Ch
ar

ac
te

ri
st

ic
s

D
efi

ni
tio

n
Ex

am
pl

e

14
. D

is
tr

ib
ut

ed
 c

on
tr

ol
Co

nt
ro

l o
f a

 s
ys

te
m

 is
 d

is
tr

ib
ut

ed
 a

cr
os

s 
di

ffe
re

nt
 p

ar
tie

s 
an

d 
no

 o
ne

 h
as

 c
om

pl
et

e 
co

nt
ro

l o
ve

r t
he

 s
ys

te
m

s 
[9

]. 
Th

er
e 

is
 n

o 
to

p-
do

w
n 

co
nt

ro
l a

pp
ro

ac
h 

as
 th

e 
pr

oc
es

s 
is

 n
ot

 c
on

tr
ol

le
d 

by
 a

 s
in

gl
e 

fa
ct

or
 a

t a
 s

up
er

io
r l

ev
el

.

Th
e 

su
cc

es
s 

of
 A

C
L 

re
ha

bi
lit

at
io

n 
is

 d
et

er
m

in
ed

 b
y 

al
l i

nt
er

ac
tin

g 
un

its
, f

ro
m

 
bi

ol
og

ic
al

 g
ra

ft
 h

ea
lin

g 
at

 th
e 

m
ic

ro
sc

op
ic

 le
ve

l, 
to

 in
tr

a-
pe

rs
on

al
 fa

ct
or

s 
(c

lin
ic

al
 

as
se

ss
m

en
t, 

fu
nc

tio
na

l t
es

t, 
an

d 
bi

op
sy

ch
os

oc
ia

l f
ac

to
rs

), 
an

d 
in

te
r-

pe
rs

on
al

 fa
ct

or
s 

at
 th

e 
m

ac
ro

sc
op

ic
 le

ve
l. 

N
o 

si
ng

le
 fa

ct
or

 in
 is

ol
at

io
n 

co
ul

d 
de

te
rm

in
e 

th
e 

su
cc

es
s 

of
 th

e 
ou

tc
om

e.

15
. N

es
te

d 
sy

st
em

Th
er

e 
ar

e 
ne

st
ed

 h
ie

ra
rc

hi
es

 w
ith

in
 th

e 
co

m
pl

ex
 s

ys
te

m
s, 

fo
rm

in
g 

sy
st

em
s 

w
ith

in
 

sy
st

em
s 

[2
7]

.
A

C
L 

re
ha

bi
lit

at
io

n 
its

el
f e

xh
ib

its
 n

es
t h

ie
ra

rc
hi

es
 in

 th
e 

fo
llo

w
in

g 
or

de
r:

Ce
ll >

 m
us

cl
e 

>
 b

ra
in

 >
 in

te
r-

pe
rs

on
al

 >
 fa

m
ily

 a
nd

 fr
ie

nd
s >

 o
rg

an
iz

at
io

n 
>

 e
nv

iro
n-

m
en

t.
A

t t
he

 c
el

l l
ev

el
, s

ho
rt

ly
 a

ft
er

 g
ra

ft
 im

pl
an

ta
tio

n,
 fi

br
ou

s 
sc

ar
 ti

ss
ue

 w
ill

 b
e 

fo
rm

ed
 

be
tw

ee
n 

th
e 

gr
af

t a
nd

 h
os

t b
on

e 
[9

4]
, f

ol
lo

w
ed

 b
y 

lig
am

en
tiz

at
io

n 
[9

5]
. A

t t
he

 
m

us
cu

la
r s

ys
te

m
 le

ve
l, 

qu
ad

ric
ep

s 
m

us
cl

e 
at

ro
ph

y 
an

d 
dy

sf
un

ct
io

n 
ar

e 
co

m
m

on
ly

 
ob

se
rv

ed
 a

ft
er

 A
C

L 
re

co
ns

tr
uc

tio
n 

an
d 

ar
e 

of
te

n 
as

so
ci

at
ed

 w
ith

 a
lte

re
d 

m
ov

e-
m

en
t p

at
te

rn
 [9

6,
 9

7]
, p

os
si

bl
y 

du
e 

to
 a

lte
ra

tio
ns

 a
t t

he
 b

ra
in

 (m
ot

or
 c

or
te

x)
 le

ve
l 

an
d 

ne
ur

op
hy

si
ol

og
ic

al
 c

ha
ng

es
 in

 m
us

cl
es

 [9
8–

10
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the availability of the player so that they could plan the 
players’ list and hence the game strategy.

Machine Learning Techniques
As a subfield of artificial intelligence (AI), machine learn-
ing focuses on the use of data to train algorithms that 
can make classifications or predictions [39, 40]. That is, 
it could recognise new meaningful correlations, patterns 
and trends in a large amount of data [41]. Not only are 
machine learning techniques suitable for non-complex 
analysis, but they can also accommodate multi-dimen-
sional analysis in sport [42, 43]. New data could also be 
input into the model for it to learn and improve the task, 
leading to refinement of skills [40].

The goals of machine learning techniques in sports 
medicine setting can be divided into predictive and 
descriptive modelling [44]. Specifically, predictive model-
ling can be used for injury prognosis, diagnosis, and reha-
bilitation planning. Descriptive modelling can be used to 
characterize the general property of an injury, such as its 
severity, as well as include hypotheses of causality. How-
ever, as with traditional statistical approaches, machine 
learning techniques are simply a method for analysing 
the data, providing a prescriptive or descriptive output. 
For understanding and estimating causal relationships, 
appropriate study designs are required, for example, 
randomised controlled trials. Machine learning is often 
characterised by five major approaches (i.e., association, 
classification, clustering, relationship modelling and rein-
forcement learning), each having already been applied for 
injury risk assessment and/or performance prediction in 
sports [45–49]. Each of these approaches could serve as 
the methods to answer questions relevant to RTS.

Question 1: Should the Athlete Progress to Full Training?
Scenario The athlete has completed 10  days of reha-
bilitation training. The practitioners would like to assess 
whether the athlete is ready to progress to full training. 
An association approach could be used here, using the 
rule-based system (Table 2).

Rule-based approaches identify meaningful and fre-
quent patterns between variables in a large dataset [50]. 
Often less identifiable by the practitioner, the rules may 
help them identify patterns that indicate optimal rehabil-
itation combinations of variables by flagging both com-
monly occurring and meaningful patterns in data.

In the above hypothetical example, a multivariate anal-
ysis of rules associated with a rehabilitation outcome is 
conducted. The model was set to only produce 3 catego-
ries of rules that contained the rehabilitation outcome 
as a result (i.e., ready for full training, not yet ready and 
unchanged). These could be the three rules most strongly 

associated with the rehabilitation outcome. A tick rep-
resents the presence of the context within the rule. The 
system could identify the number of rules required based 
on previous rehabilitation experience and to implement 
the rules when the complexity of the content is beyond 
human brain capacity. An increased number of rules 
may better represent complexity; however, it may poten-
tially make the solution more difficult to operationalize 
practically.

Question 2: What is the Likelihood that the Athlete Could 
Return to the Pre‑injury Level Given the Current Level 
of Training?
Scenario There are only 2  weeks until an important 
match. The coach would like to know the likelihood that 
the athlete could return to pre-injury level by then. Given 
the volume of high-speed running training that the ath-
lete has completed, a classification method could be used 
to identify the likelihood (Table 3).

A decision tree uses dichotomous divisions to create 
the classification algorithm. Representing the rules, the 
decision tree could be used to develop a clinical decision 
algorithm for RTS [49, 51]. Each node denotes a test on 
an attribute value and each branch represents an out-
come of the test, with the leaves representing the class.

The above is a graphical representation of the decision 
tree that used a classification algorithm to identify the 
probability of RTS from a hamstring injury. Each node 
is associated with a rule condition, which branches off 
to the child node. In this example, the outcome of RTS 
is likely a non-linear relationship with the training vol-
ume and mental readiness, which is a characteristic of 
the complex systems approach (see Table 1, example 5). 
Using the classification approach may help to include 
non-linearity into analyses.

Question 3: When is the Athlete Expected to Return to Sport?
Scenario The coach would like to know when the athlete 
is expected to RTS based on the experience of the clini-
cian and also accounting for the athlete’s age. Clustering 
technique could be used to analyse the past data.

Clustering allocates data points into groups that share 
similar or dissimilar features [52]. In RTS, this may be 
useful in the allocation of multiple athletes to training 
groups. This could be done for clinical presentation, play-
ing position, demographics, or inter-and intra-personal 
factors.

Table  4 visualizes one of the multiple approaches to 
which injured athletes could be clustered. Each dot rep-
resents an injured athlete and is coloured based on their 
severity. Size represents a measure of each athlete’s age, 
with a larger size representing older age. They are further 
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grouped into three different clusters, representing the 
severity and time to RTS. In this hypothetical example, 
the model output is the predicted days to RTS. However, 
it could also be designed to produce categorical outputs 
such as being ready to train or not yet ready to train.

Question 4: The Athlete has a High Level of Mental 
Readiness. Would that Change the Level of Confidence About 
the Athlete’s Readiness to Play in an Important Game?
Scenario From the clustering approach, the coach has 
considered that the athlete may require at least 2 weeks 
to return to competition at pre-injury level. However, the 

Table 2 The association approach to determine should the athlete progress to full training

Rule 1

Range of motion full

Rule 2

Limb asymmetry index 100% 

Rule 3

Training load >100% match 

requirement 

Rule… Decision

Ready for full training.

progress

Not ready for full training

- Continue current

rehabilitation

Table 3 The classification approach to identify the likelihood for an athlete to RTS

Approach Classification

Task Supervised

Technique Decision tree and random forest

Output type Categorical or continuous
Examples: ready to compete, not yet ready to compete

Application example

(2) Mental readiness 
score (%)

(1) High speed running 
volume

(% pre-injury) 

RTS at preinjury level: 
80%

Non RTS: 20%

RTS at preinjury level: 
40%

Non RTS: 60%

RTS at preinjury level: 
45%

Non RTS: 55%

RTS at preinjury 
level: 55%

Non RTS: 45%

(3) Mental readiness 
score (%)

RTS at preinjury 
level: 65%

Non RTS: 55%

RTS at preinjury level: 
95%

Non RTS: 5%

>85% >85%
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coach noticed that the athlete had a high level of mental 
readiness, as reflected by relevant measures (e.g., Injury-
Psychological Readiness to Return to Sport scale [53]). 
The coach would like to know how this new informa-
tion, combined with the previous knowledge, may change 
the practitioner’s judgement. A relalationship modelling 
approach described below is used.

Relationship modelling involves estimating relation-
ships between a dependent variable and one or more 
independent variables. Regression analysis, commonly 
used in the analysis, is also a type of relationship mod-
elling technique and could be used with the complex 
systems approach. For example, it could be used for mod-
elling the relationship between outcomes, such as match 
results [54] and injury incidence [45].

Table 5 shows a hypothetical example of how the confi-
dence to RTS (y-axis) may be associated with the volume 
of high-speed running done (x-axis) and the mental-
readiness score (size of the bubble). The level of mental 
readiness is denoted by the size of the bubble. A higher 
level of mental readiness is indicated with a larger size 
bubble and is in green colour. A lower level is indicated 
with a smaller size and is in red. The association could 
be multi-dimensional and could be constructed based on 
the number of inputs available, e.g., running speed, load 
accumulation, psychological readiness.

Question 5: What is the Optimal Sequence of Rehabilitation 
in a Case of Hamstring Injury Rehabilitation?
Scenario After reviewing the dataset, the coach and the 
clinician would like to explore how to further leverage the 
available data and identify adaptive personalized treat-
ment plans in the future. Reinforcement learning may 
help to optimize the sequence of decisions that favour a 
long-term outcome. Reinforcement learning is described 
below.

Unlike supervised or unsupervised learning, reinforce-
ment learning trains itself through trial and error to 
explore behaviours in the system that could maximize 
the reward [55]. This feature makes it suitable for solv-
ing sequential decision problems. In this clinical vignette, 
reinforcement learning could help to identify a personal-
ized rehabilitation pathway for maximizing the reward 
(i.e., managing the injury or reaching the rehabilitation 
goal).

In the context of a hamstring injury (see Table  6), a 
practitioner has to decide when to initiate and adjust 
rehabilitation training, such as jogging, eccentric ham-
string exercise, and high-speed running. Each decision 
affects the athlete’s rehabilitation outcome at the end of 
the program and the total days of absence. The rewards 
require practitioners’ input, such as comparing the inten-
sity and volume of high-speed running to the pre-injury. 
The reliability of the treatment-quality estimate depends 

Table 4 The clustering approach to identify when the athlete may return to sport

Approach Clustering

Task Unsupervised

Technique K-nearest neighbours

Output type Categorical
Examples: RTS grade, days to RTS

Application example

Grade I

-14 days

RTS 1- days

RTS 14-28 days

Grade III

Grade II
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heavily on the amount of data that were used to train the 
algorithm used in the reinforced learning, and the extent 
to which the proposed and observed treatment policies 
agree.

Bayesian Network
Besides the machine learning approach, Bayesian meth-
ods are becoming increasingly popular in the study of 
sports [56] and may contribute to RTS. Various forms 
of BN have been applied across different sectors, includ-
ing medical [57–61], ecology [62–64] and transportation 
[65].

BN uses Bayesian inference for probability computa-
tions and can be visually presented using directed acyclic 
graphs. Arrows on the BN, known as directed arcs, indi-
cate the direction of the influence [66]. These show how 

various discrete or continuous factors in RTS influence 
one another and the outcome in a graphical presenta-
tion [66]. BN allows calculation of the conditional prob-
abilities of the outcome of a decision when the value of 
some of the factors has been observed. As new evidence 
is revealed, changes are brought to the conditional prob-
ability of the decision outcome [67].

Question 6: How Would the Sex of the Athlete Affect 
the Perceived ACL Injury Risk?
Scenario The athlete has now recovered from the ham-
string injury but is worried about the potential ACL 
injury risk. The coach wants to know how the sex of the 
athlete (prior) [as female] would affect how one perceives 
the ACL injury risk (outcome) [higher risk of ACL injury] 

Table 5 The relationship modelling approach to identify the effect of mental readiness

Approach Relationship modelling

Task Supervised

Technique Regression and neural networks

Output type Continuous

Application example

Co
nfi

de
nc

e 
le

ve
l (

%
)

High-speed running volume 
rela�ve to previous level (%)

Mental readiness score (%)

0 100

100

Low 0-30%

Moderate >30-

-100%

Table 6 Use of reinforcement learning to optimise the sequence of rehabilitation

Approach Reinforcement learning

Task Not applicable

Technique Markov decision process

Output type No output variable

Application example

Jogging?
Eccentric 
hamstring 
exercise? 

High speed 
running?
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(Fig. 2) [68], and how it may inform the potential conse-
quence of a RTS decision.

Only one prior is used here to explain the application 
for easier understanding. However, a BN can account for 
multiple variables to increase the accuracy of the model 
and to acknowledge the complex systems approach, as 
seen from a hypothetical example here in Fig. 3.

A BN could be operated in both directions, perform-
ing both predictive and diagnostic inference. As an 
example, a BN may provide the following information to 
support RTS decisions: (1) given the observation of the 
athlete’s rehabilitation markers, what is the likelihood for 
the athlete to perform at pre-injury level upon RTS? (2) 
to increase the likelihood to achieve certain outcomes 
of RTS, what is the combination of test results and/or 
observations required?

Logically, BN seems to fit into the requirement of RTS 
decisions, as often multiple unknown factors are involved 
in the process (e.g., how wellness may be associated with 
the injury risk). Although these unknown parameters 
are uncertain, they could be described by a probability 

distribution table, with information supplied by a domain 
expert or relevant literature.

Establishing a BN requires data and could be comple-
mented by expert knowledge [66]. Expert knowledge 
allows the model to specify the decision options available 
and the utilities that the user is after. For example, deci-
sion-makers may decide if the utility (degree of satisfac-
tion) of the RTS outcome is based on either maximising 
the team performance, minimising the risk of subsequent 
injury, or equilibrium between the two. However, this 
also implies that the quality of the model output would 
rely on the quality of the existing evidence and expert’s 
knowledge, which may be flawed or biased.

Future Research
A shift towards a complex systems approach may help to 
view RTS more realistically. Future research should be 
mindful of the following issues:

(1) The complex systems approach and the machine 
learning techniques cannot necessarily elucidate the 

Female 50%
Male 50%

Sex

Contact_sports 50%
Non_contact_sports 50%

Nature of Sports

High_risk45%
Low_risk 55%

ACL injury

a The Bayesian network with no prior. 

Female 100%
Male 0%

Sex

Contact_sports 100%
Non_contact_sports 0%

Nature of Sports

High_risk80%
Low_risk 20%

ACL injury

b The Bayesian network after it has been updated with prior.
Fig. 2 Illustration of a Bayesian network before (a) and after it has been updated with a prior (sex or/and nature of sport) (b). The outcome of the 
prediction (ACL injury risk) has changed as a result
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causal mechanism. Based on Table 1, the character-
istics of complex systems do not permit cause and 
effect relationships to be determined. However, that 
does not imply they are inappropriate for understand-
ing a problem nor they are of low practical utility.

(2) The accuracy of the computation relies heavily on 
the quality of the dataset and previous knowledge. 
For example, what is the association between differ-
ent variables (e.g., age, playing style, previous injury 
history, culture, and lifestyle)? What is the potential 
effect of external factors (e.g., stress, financial pres-
sure, lack of social support) on RTS progress and 
decision making? Currently, there is insufficient 
evidence on these aspects. High quality randomized 
controlled trials and longitudinal research that 
acknowledges the complex systems approach are 
required to observe regularities that are antecedent 
to the success of a rehabilitation program.

(3) The RTS systems that researchers could construct 
would consist of what is available and known, 
rather than what is important. Some factors may be 
difficult to measure due to the availability of time, 
resources and their non-deterministic or qualitative 
nature [69]. For example, motivation for RTS during 
rehabilitation is important but often not measured 
due to difficulty obtaining accurate feedback. How-
ever, this is inevitable, as unknowns and unpredict-
ability are characteristics of complex systems. Nev-
ertheless, if possible, real data should be applied to 

prove the concept and provide useful output for 
practitioners, as the ultimate goal of embracing 
complex systems approaches in RTS is to produce 
findings closer to the real world.

Conclusion
The complex systems approach has been applied to 
understand different aspects of sports science and medi-
cine. This review has highlighted the characteristics and 
terminologies of complex systems, as exhibited by a case 
of ACL rehabilitation. When assessing the test result for 
clinical and functional tests, practitioners should also be 
aware of the dynamic systems evolving around the injury 
rehabilitation (refer to the examples in Table  1) and 
endeavour to understand the full picture. Future research 
may make use of computational modelling and machine 
learning techniques to identify the regularities of the 
pattern that emerges as a whole. A paradigm shift that 
results in the application of complex systems approach 
to understanding the RTS process and decision making 
should be encouraged.
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Female 100%
Male 0%

Sex

Contact_sports 100%
Non_contact_sports 0%

Nature of Sports

High_risk70%
Low_risk 30%

ACL injury

Strong 0%
Weak 100%

Hip Strength

Strong 100%
Weak 0%

Dynamic knee valgus

Good 100%
Poor 0%

Psychological Readiness to RTS

Dry 100%
Wet 0%

Playing surface

Unknowns

Strong 0%
Weak 100%

Core Control
Symetrical 100%
Asymmetrical 0%

Quadricep strength symmetry

Fig. 3 A hypothetical example of a Bayesian network with multiple priors for ACL injury risk

https://www.bayesfusion.com/
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