
 International Journal of 

Molecular Sciences

Review

Biological Activity of c-Peptide in Microvascular
Complications of Type 1 Diabetes—Time for
Translational Studies or Back to the Basics?

Aleksandra Ryk 1 , Aleksandra Łosiewicz 1,2 , Arkadiusz Michalak 1,2 and Wojciech Fendler 1,*
1 Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland;

aleksandra.ryk1@stud.umed.lodz.pl (A.R.); losiewiczaleksandra@gmail.com (A.Ł.);
arkadiusz.michalak.lek@gmail.com (A.M.)

2 Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz,
91-738 Lodz, Poland

* Correspondence: wojciech.fendler@umed.lodz.pl; Tel.: +48-42-272-53-85

Received: 18 November 2020; Accepted: 16 December 2020; Published: 20 December 2020 ����������
�������

Abstract: People with type 1 diabetes have an increased risk of developing microvascular complications,
which have a negative impact on the quality of life and reduce life expectancy. Numerous studies
in animals with experimental diabetes show that c-peptide supplementation exerts beneficial effects
on diabetes-induced damage in peripheral nerves and kidneys. There is substantial evidence that
c-peptide counteracts the detrimental changes caused by hyperglycemia at the cellular level, such as
decreased activation of endothelial nitric oxide synthase and sodium potassium ATPase, and increase in
formation of pro-inflammatory molecules mediated by nuclear factor kappa-light-chain-enhancer of
activated B cells: cytokines, chemokines, cell adhesion molecules, vascular endothelial growth factor,
and transforming growth factor beta. However, despite positive results from cell and animal studies,
no successful c-peptide replacement therapies have been developed so far. Therefore, it is important
to improve our understanding of the impact of c-peptide on the pathophysiology of microvascular
complications to develop novel c-peptide-based treatments. This article aims to review current
knowledge on the impact of c-peptide on diabetic neuro- and nephropathy and to evaluate its potential
therapeutic role.
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1. Introduction

Type 1 diabetes (T1D) is an autoimmune disease that causes destruction of insulin-producing
beta cells of pancreas [1]. The discovery of insulin and its synthesis changed the natural course of the
disease from a rapidly lethal to a chronic one. Currently, intensive insulin therapy allows patients to
lead a long, quality life, providing they maintain a near-physiological glycemic control [2]. However,
despite continuous progress in technology, patients with type 1 diabetes live on average about 10 years
shorter than their peers without this disease [3]. This is mainly due to long-term complications of
diabetes: micro- and macro-angiopathies, which eventually impair eyesight, central and peripheral
nervous systems, kidney function, and cause increased cardiovascular risk.

Over the years, this accumulated vessel damage has been linked to chronic hyperglycemia and,
lately, to increased glucose variability [4]. However, the exact pathophysiological links have not been
completely resolved and there still might be unrecognized factors affecting the risk of T1D complications
development. There is also a pressing need for new active agents or therapeutic strategies that might
help to prevent or treat these disorders.
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The connecting peptide of proinsulin, or c-peptide, has been investigated as a potential candidate
to fill some gaps in the pathogenesis of T1D-related complications. Physiologically, it is a short
31-amino-acid sequence that joins A and B chains of proinsulin [5]. It facilitates the assembly and
folding of the hormone in islet vehicles and is cleaved afterwards by endoproteases [6] to be secreted
into the circulation in a 1:1 ratio to native insulin. Due to c-peptide’s high resistance to plasma
peptidases it has a reasonably long and stable half-life (around 30 to 35 min) its concentration has been
a long-standing marker of beta cell function and insulin secretion.

There is, however, accumulating evidence that c-peptide is not just a by-product of insulin,
but exhibits useful, if non-obvious biological properties [7]. These reports are especially important in
view of current type 1 diabetes therapy regimens, which are centered on the delivery of exogenous
insulin. This hormone is already folded and active, and therefore no c-peptide is co-administered via
the subcutaneous route. Such formulation, however, creates a physiological gap between people with
T1D and their healthy peers, which might contribute to the development of chronic complications.

Unfortunately, despite intensive research, there are many conflicting reports on the biological
activity of c-peptide and its molecular targets. Similarly, the relationship of c-peptide with chronic T1D
complications was also studied extensively; however, so far, no replacement therapies were shown to
be successful in humans. Therefore, there is an ongoing need to decipher the function of c-peptide
and its mechanism of action to determine whether or not, and how, it should be co-administered with
insulin and facilitate translation efforts.

This work aimed to review current knowledge on c-peptide-activated pathways from the
perspective of known mechanisms behind neuro- and nephropathy in T1D, with focus on the
available evidence for c-peptide protective effect in animal and human studies In addition, we provide
an overview of the most significant findings in the field and a summary of methodologies used in these
studies as well as critically analyze the reasons behind the discrepancies between pre-clinical studies
and human trials.

2. Literature Search

We searched Pubmed using the following queries: “c-peptide and nephropathy and type
1 diabetes”, “c-peptide and retinopathy and type 1 diabetes”, “c-peptide and neuropathy and
type 1 diabetes”, “c-peptide and microvascular complications and type 1 diabetes”, “c-peptide and
macrovascular complications and type 1 diabetes”, “c-peptide replacement therapy and type 1 diabetes”,
“c-peptide and Na+ K+ ATPase”, “c-peptide and eNOS”, “c-peptide and ERK”, and “c-peptide and
GPR146”. We critically appraised the identified papers, excluding those published before 1990,
in languages other than English and case reports. In the end, we chose 53 papers covering studies
in cell lines (N = 10), animals (N = 20), and humans (N = 11), as well as relevant reviews (N = 12).
The detailed flowchart of the literature search is given in Figure 1.
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3. Overview of Diabetic Microangiopathies

Diabetic neuropathy is a chronic complication that cumulatively affects up to 50% of patients
with T1D [8]. Its most common presentation is chronic symmetrical length-dependent sensorimotor
polyneuropathy, known as diabetic polyneuropathy (DPN), but the nerve damage can also manifest as
autonomic neuropathy, diabetic radiculoplexopathy, various mononeuropathies and treatment-induced
neuropathies. Diabetic neuropathy might affect all types of peripheral nerves—sensory, motor and
autonomic—at various stages, which makes it extremely heterogenous from a clinical perspective.
Currently, the disease is recognized by signs- and symptoms-based probability scales such as
Toronto criteria [9].

Quantitatively, DPN is assessed by measurement of nerve conduction velocities, which are slowed
in the affected patients. Clinically it is characterized by positive, i.e., new and unwanted symptoms
that arise due to nerve damage, as well as negative ones mirroring nerve’s inability to perform its
physiological functions. Positive symptoms include paresthesia (prickling, tingling, and ant-like
sensations) and pain, while the negative ones are usually represented by numbness or a feeling of
reduced sensation while walking. DPN is also one of the main risk factors of diabetic foot ulceration and
consequently, amputation [10]. Currently, there are no effective treatments for DPN, as the condition is
usually diagnosed late when nerve damage is already established [11]. Therefore, patients that develop
DPN require complex, time- and resource-consuming multidisciplinary care.

The other most common diabetes-related neuropathy is autonomic dysfunction, most often recognized
as cardiovascular autonomic neuropathy (CAN). It manifests with tachycardia [12], QTi prolongation,
lower heart-rate variability in ECG as well as orthostatic hypotension and reverse dipping in blood
pressure measurements. Similarly to DPN, it needs to be managed as a multidimensional problem with
many underlying factors and added risks.

The most important risk factor for development of diabetic retinopathy appears to be (similar to
other microangiopathies) poor long-term glycemic control evidenced by high HbA1c. Although DCCT
and EDICT trials reported that some patients receiving intensified treatment also developed
neuropathies [13], the perspective on optimal glycemic control has considerably evolved since
then. However, as evidenced by large-scale cross-sectional studies, achieving and maintaining optimal
glycemic control in T1D is challenging for many patients, especially youth [14]. This coincides with
alarming reports of DPN being diagnosed in as much as 11% of children and adolescents [15] and
emphasizes the need for developing additional preventive steps besides good metabolic control and
healthy lifestyle.
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Adverse impact of diabetes on nerves is generally attributed to prolonged hyperglycemia and
resulting metabolic changes, dyslipidemia, microangiopathy, and chronic inflammation [8,16].

Early changes occurring in T1D models include decreased neural blood supply, increased activity
of polyol pathways and impaired function of neural Na+/K+-ATPase and nitric oxide synthase (NOS),
which is structurally reflected by axonal swelling [17]. They result in a potentially-reversible decrease
in sensory and motor nerve conduction velocity. However, these changes are later aggravated
by additional mechanisms: oxidative stress, chronic inflammation [16] and reduced expression
of neurotrophic factors such as nerve growth factor (NGF) and insulin-like growth factor (IGF-1).
These cause permanent structural changes such as axonal atrophy. However, the view on neuropathy
development evolved considerably, especially in terms of differences according to type of diabetes.
First, researchers observed some nodal and paranodal abnormalities that were unique to insulin-
and c-peptide-deficient T1D and did not occur in hyperinsulinemic and c-peptide-abundant type 2
diabetes (T2D) [18]. These included lateralization of Na+ channels causing conduction blocks and
resulting in disruption of ion-channel barriers and axoglial disjunction. Notably, these changes were
demonstrated to be related mostly to impaired insulin signaling and not hyperglycemia itself [18].
Moreover, it was shown that the exact mechanisms of nerve damage differ between T1D and T2D,
with deposition of advanced glycation end products in nerve extracellular matrix seems prevalent in
T1D and microvascular or intraneural lipid depositions in T2D [19].Therefore, with current knowledge
it is impossible to determine whether the differences in DPN pathology between T1D and T2D result
from c-peptide deficiency or are mediated by other differentiating factors, e.g., lipid metabolism.
However, many of the pathophysiological checkpoints ubiquitous in DPN pathophysiology can be
affected by c-peptide, which shows promise as an active agent modifying the natural course of DPN.

Diabetic nephropathy, also known as diabetic kidney disease (DKD), is another chronic
microvascular complication that is estimated to affect 25–40% of T1D patients during their lifetime.
Advanced DKD is responsible for 30–50% of end-stage kidney disease in patients in the US [20] in
need of renal replacement therapy [21] and also increases cardiovascular mortality.

DKD develops as a result of a series of pathophysiological events triggered by hyperglycemia that
affects the function and structure of glomeruli. Initially, high blood glucose increases renal blood flow
and glomerular filtration rate (GFR). This hyperfiltration is further aggravated by growth hormone,
glucagon, and nitric oxide [22]. The resulting increase in intraglomerular and trans-capillary pressure
as well as elevated mesangial matrix proliferation cause glomerulosclerosis. Moreover, disturbance of
renal hemodynamics triggers the release of cytokines and growth factors that cause further damage
and fibrosis of interstitial tissue. The effect is progressive decline in GFR, which eventually leads to
chronic renal failure.

Clinically, DKD remains asymptomatic for a long time [23] and its manifestation reflects renal
failure. The symptoms reported by patents include foamy urine (indicating presence of protein),
edema of feet and fatigue (suggesting hypoalbuminemia). DKD can then be divided into stages based
on patient’s GFR, from prenephropathy (stage 1) to end-stage renal disease (stage 5) [24]. It is important
that DKD may progress differently among patients, and in rapidly-progressing cases, some stages may
be skipped altogether.

So far, the main counter-measure to prevent DPN and DKD is achieving and maintaining strict
glycemic control. However, even therapeutic success (>70% of time spent in glucose target range [25])
does not abolish the risk completely. This emphasizes the need to investigate therapeutic options
to prevent the development of microvascular complications. One such treatment might include
c-peptide administrations.

Its potential was hinted at by observational studies as early as in 1990. Winocour et al. [26] found
out that among patients with long-standing T1D those with detectable post-prandial (>20 pmol/mL)
c-peptide demonstrated lower prevalence of proliferative retinopathy than non-secretors (matched for
age, diabetes duration, and BMI). However, results for DPN, CAN or DKD remained inconclusive.
Moreover, after two years of observation, initial c-peptide status was no longer associated with any
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complications. Next, to define a potentially-relevant c-peptide concentration, a large cross-sectional
study was performed by Kuhtreiber et al. [27]. In 324 patients, they assayed a fasting c-peptide
and used multivariate logistic regression to test its association with collective presence of diabetes
complications (neuropathy, nephropathy, retinopathy, or foot ulcers). In effect, they demonstrated
that c-peptide ≥10 pmol/L was associated with protection from complications after adjustment for
diabetes duration. However, these analyses did not adjust for the HbA1c concentrations. Hence it is
not clear whether the observed effects were due to the specific action of c-peptide or lower HbA1c
improved by high residual insulin production. Moreover, later studies demonstrated that such high
concentrations are rarely achieved and maintained by T1D patients [28]. In terms of autonomic nerve
dysfunction, a cross-sectional study by Ziegler et al. [29] showed that in T1D patients heart rate
variability was significantly associated with glucagon-stimulated c-peptide secretion. Those with low
c-peptide response present with blunted and lowered heart-rate variability, which is a characteristic
of CAN. Importantly, these associations were preserved after adjustment for HbA1c and diabetes
duration. Interestingly, in another arm of this study featuring patients with type 2 diabetes (and usually
hyper-physiological concentrations of c-peptide), these associations were remarkably smaller.

Summing up, it is possible that preserved c-peptide secretion may offer protection from long-term
diabetes complications. However, this is likely limited to the few patients with sufficiently-high
c-peptide concentrations and to the time period when these concentrations are maintained. Eventually,
c-peptide concentrations drop to clinically-insignificant levels and offer no visible protection against
complications. On the other hand, high concentrations might be easily reached and preserved by
c-peptide administration. Such treatment should be, however, based on investigation into c-peptide
biological activities in vitro and in vivo.

4. Physiological Effects of C-Peptide and Its Potential Targets in Microvascular Complications

Multiple experimental studies on c-peptide replacement therapy in insulin and c-peptide deficient
animals concluded that it exerts beneficial effects on nerve and kidney function.

In general, all projects first induced diabetes by different protocols and then supplemented the
model animals with c-peptide for varying periods of time, to finally apply behavioral and laboratory
tests and pathological examination to assess the progress of organ-specific complications.

Research on diabetic neuropathy showed that c-peptide supplementation diminishes nerve
conduction slowing and functional deficits (thermal hyperalgesia [30], tactile allodynia), which are observed
in non-supplemented animals with type 1-like diabetes [30–33]. These physiological improvements
are mirrored in morphological and histological findings. In c-peptide treated animals, researchers
observed significantly reduced frequency of axonal degeneration, myelinated fibers pathologies,
Wallerian degeneration, paranodal swelling, axoglial disjunction, and paranodal demyelination [32] as well
as improvements in myelinated fibers’ numbers, size, and axonal areas [34]. In terms of c-peptide influence
on kidney function, it has been found to reduce glomerular hyperfiltration [35], microalbuminuria [35],
and mesangial expansion [36]. Additionally, studies on streptozotocin-induced diabetes (STZ rats) showed
that c-peptide infusion results in the improvement of glomerular function and in body weight gain and
reduction of urinary sodium losses.

Many candidate pathways were proposed to explain c-peptide biological activity (Figure 2) and
they were studied using both cell-lines and animal models (Figures 3 and 4).

The favorable effects of c-peptide on diabetic neuro- and nephropathy have been largely attributed
to its ability to regulate Na+/K+ ATPase and endothelial nitric oxide synthase (eNOS) activity. Na+/K+

ATPase is a membrane ubiquitous enzyme, which moves sodium and potassium ions through
cell membrane against its concentration gradients [37]. It maintains resting potential, regulates
cellular volume, and transduces signals to regulate reactive oxygen species (ROS), intracellular
Ca2+ and mitogen-activated protein kinase (MAPK) pathway. Reduced activity of this enzyme in
peripheral nerves leads to inactivation of Na+ channels and intraaxonal Na+ accumulation at the
node, which results in paranodal swelling [32]. C-peptide replacement for two months prevented
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paranodal swelling by 61% and reduced the neural Na+/K+ ATPase defect by 55% in Wor/BB rats [38]
and, prevented a decrease in Na+/K+ ATPase activity in the sciatic nerve and granulation tissue in
hyperglycemic conditions in STZ rats [39]. It is possible that c-peptide-stimulated increase in Na+/K+

ATPase activity prevents paranodal swelling and subsequent disruption of paranodal-axoglial junctions
and in this way improves NCV in diabetic neuropathy.

Similarly, numerous studies reported a stimulatory role of c-peptide on Na+/K+ ATPase activity
in in vitro models of diabetic nephropathy [40,41]. The results of past research suggest that c-peptide
treatment may alleviate glomerular hyperfiltration by inhibiting Na+ reabsorption in the proximal
tubule via activation of Na+/K+ ATPase. It has been reported that c-peptide increases phosphorylation of
the alpha subunit of Na+/K+ ATPase and in this way facilitates its function. C-peptide treatment induces
an increase in the activity of Na+ pump and phosphorylation of the alpha subunit of Na+/K+ ATPase
in rat medullary thick ascending limb of Henle’s loop [42]; however, this effect is not associated with
an increase in the level of expression of the enzyme on cell membrane. In contrast, another study [43]
demonstrated that c-peptide not only promotes phosphorylation of Na+/K+ ATPase alpha subunit,
but also increases the basolateral membrane abundance of Na+/K+ ATPase alpha and beta subunits.
Both of these studies showed that the effects of c-peptide treatment were abolished with a use of protein
kinase C (PKC) inhibitor, which indicates an importance of this protein in the ability of c-peptide to
exert its effects on Na+/K+ ATPase activity. The essential role of PKC was confirmed by a study [41]
which showed that c-peptide treatment increases the activity of Na+/K+ ATPase as well as PKCε
phosphorylation and extracellular signal-regulated kinase 1/2 (ERK1/2) activity in human renal tubular
cells. In addition, it determined that treatment of this cell line with 1 nM of c-peptide increases DNA
binding activity of zinc-finger E-box binding protein (ZEB) transcription factor. Since ZEB is involved
in the expression of Na+/K+ ATPase alpha 1- subunit, it may explain, how c-peptide induces the
increase in the activity of this enzyme.
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Impaired blood flow is another important factor influencing renal and nerve function in
microvascular complications of diabetes. The progress of DN and DKD is characterized by a decrease
in the activity of endothelial nitric oxide synthase (eNOS). eNOS is a member of a family of enzymes
which catalyze the production of nitric oxide from L-arginine. It maintains endothelial homeostasis
by regulating vascular tone and platelet activation. Reduced expression of eNOS was reported in
glomerular [44] and cerebrovascular [45,46] endothelial cells of diabetic animals. Mice with eNOS
deficit had increased levels of proinflammatory cytokines and more advanced pathophysiological
changes in their kidney [47], whereas mice with a reduction of eNOS phosphorylation exhibited reduced
cerebrovascular function and increased infract size [48]. Many studies showed that c-peptide is able to
upregulate eNOS activity and act as a vasodilator. It has been demonstrated, in a model of diabetic
neuropathy, that c-peptide treatment restores NOS activity and improves nerve microcirculation [49].
Furthermore, co-administration of NO synthase inhibitor markedly reduced the beneficial effects
of c-peptide on NCV [49]. Conversely, at the early stages of diabetic nephropathy, c-peptide was
shown to downregulate diabetes-induced elevated levels of eNOS and NO in the glomerulus and
afferent arteriole. As a result, c-peptide prevented an initial increase in glomerular filtration rate (GFR),
which occurs at the beginning of nephropathy. However, the mechanism by which c-peptide regulates
eNOS activity in this system remains unclear.

Pro-inflammatory environment, which is created due to chronic hyperglycemia contributes to
the progress of diabetes-induced microvascular complications [50]. It was shown that inflammatory
cells may accumulate in the glomeruli and interstitium of a kidney and in this way promote renal
fibrosis [51]. In DPN, chronic inflammation was linked to peripheral nerve fiber damage and loss [16].
Multiple findings confirm that c-peptide is able to exert anti-inflammatory effects by regulating the
activity of some components of pathways involved in inflammation including ERK1/2, c-Jun N terminal
kinase (JNK), transforming growth factor β (TGF-β) and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB). A study performed by Chima et.al [52] showed that c-peptide alleviates
inflammation in rat kidney after hemorrhagic shock via reduction of ERK1/2 activity. The investigators
also demonstrated that c-peptide treatment decreases the activity JNK and activating protein 1
(AP1). In contrast, another study [53] showed that c-peptide induces phosphorylation of ERK1/2 in a
concentration dependent manner in renal tubular cells. The results of this study also indicated that
c-peptide increases phosphorylation of JNK via ERK1/2 and induces Akt activity. They also showed that
MEK1/2 inhibitor blocked the c-peptide effect on ERK1/2 phosphorylation. These conflicting data may
suggest that c-peptide regulates ERK1/2 activity in multiple ways, potentially via different receptors.
ERK1/2 mediated anti-inflammatory effects of C-peptide were confirmed by showing that c-peptide
inhibits TGF-β via the activation of ERK in streptozotocin-induced diabetic mice [54]. TGF-β has been
shown to trigger abnormal production of extracellular matrix (ECM) in the glomeruli of diabetic rats
thus contributing to glomerular sclerosis and interstitial tubular damage. The effects of c-peptide could
potentially ameliorate these events.

The ability of c-peptide to modulate inflammatory pathways in a kidney was also recently reported
by Alves et.al. They showed that STZ-diabetic mice treated with c-peptide exhibited reduction in the
urinary levels of anti-inflammatory IL4 and IL10 and proinflammatory IL17 and TGF-α as well as an
increase in IL10 gene expression and a decrease in TGF-α gene expression when compared to diabetic
non-treated group. This suggests that c-peptide may counter-regulate IL10 and TGF-α and modulate
pro-and anti-inflammatory pathways and in this way attenuate kidney inflammation [55].

C-peptide may exert its anti-inflammatory effects by influencing the activity of NF-κB, which is a
pivotal mediator of inflammatory responses. There is evidence that c-peptide reduces NF-κB activation,
affects vascular cell adhesion molecule 1 (VCAM-1) expression and monocyte chemoattractant protein-1
(MCP-1) and interleukin 8 (IL-8) secretion in human aortic endothelial cells (HAEC) [56].

Another important property of c-peptide is its ability to promote cell survival and proliferation.
The results of many studies show that hyperglycemia promotes apoptosis of various cell types including
renal and neural cells. A study performed by Al-Rasheed et al. [57] showed that c-peptide stimulates
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proliferation of opossum proximal tubular kidney cells. It does so by increasing the activity of ERK
and phosphatidylinositol 3-kinase (PI3K). C-peptide-induced proliferation was inhibited by treatment
of cells with wortmannin and pertussis toxin. It suggests that proliferation of these cells is triggered
via activation of PI3K and the signal is transduced by G-protein coupled receptor. Proliferative
effects of c-peptide has been demonstrated on human renal mesangial cells [58]. The study indicated
involvement of SRC-kinase, PI3K, and ERK1/2. C-peptide-induced proliferation may potentially
counteract progressive kidney damage caused by hyperglycemia by stimulating these pathways.
However, it is still uncertain whether the pro-proliferative effects of c-peptide on kidney cells are
harmful or beneficial.

Moreover, another study [59] showed that c-peptide prevents spatial learning and memory deficits
as well as hippocampal neuronal loss in BB/Wor rats. It is a result of inhibiting the increased expression
of Bax and active caspase 3, hence preventing apoptosis. Along the lines, c-peptide was found to affect
other possibly important pathophysiological components involved in DN development: IGF-1 receptor
expression, NGFR TrkA and TrkC expression in dorsal root ganglia and loss of substance P and
CGRP [30,60]. Importantly, these effects occurred despite no significant changes in blood glucose
levels [31]. The expression of IGF-1 and NGF was shown to be reduced in diabetic rats and connected
to progressive axonal degeneration. C-peptide may promote neurotrophic support and promote the
synthesis of neurofilaments in this way affecting axonal size.

It remains unclear which receptors transduce c-peptide’s signal. In 2013, Yosten et al. [61]. determined
that a knockdown of an orphan G-protein-coupled receptor (GPCR)—GPR146, blocks c-peptide-induced
cFos expression in KATOIII cells. Since then, GPR146 remains the main candidate for c-peptide receptor.
However, recently, another group claimed there is no indication that c-peptide acts through any of the
GPCRs expressed in tested cell lines, including GPR146 [62]. At the time of this review, this controversy
remains unsolved.

5. Interventions in Humans

We managed to identify the total of five clinical trials that explored the effects of c-peptide
supplementation in humans (Figure 5). The first c-peptide interventions were conducted in 1992 [63]
and 1993 [64] by Johnsson et al. Those were small randomized, double-blind pilot studies investigating
the effect of c-peptide on renal function and (in case of the second study) blood–retina barrier. In the
first study c-peptide was administered intravenously for 1 h while in the second one the biosynthetic
c-peptide was mixed with equimolar amount of insulin and administered subcutaneously for four
weeks. Both studies included a control group of T1D patients receiving 0.9% NaCl infusion (in the first
one) and just insulin in the second study. As a result, both studies reported a significant decrease in
glomerular hyperfiltration reflected by GFR and albuminuria without significant impacts on effect
on glycemic control parameters such as blood glucose, HbA1c, and fructosamine. The effect on
blood–retina barrier permeability was borderline-significant; however, it should be treated with caution
as c-peptide group presented with significantly higher blood–retina leakage than control. Importantly,
no adverse effects were observed during c-peptide administration.

Initial positive results for short-term c-peptide substitution motivated Johansson et al. to investigate
if they can be maintained during long-term administration. A double-blinded cross-over randomized
controlled trial was performed in which normotensive T1D adult patients with microalbuminuria
were given subcutaneous injections of c-peptide or placebo for three months. In effect, a considerable
decrease in both albumin excretion (by 40%) and albumin/creatinine ration (~30%) was observed
during c-peptide treatment. However, no significant change in GFR was observed. On the other hand,
this study group presented lower GFR at baseline (mean 108 ± 3 mL/min/1.73 m2) than participants
from previous studies. It is therefore likely that those patients already passed the hyperfiltration stage
window for c-peptide action. Following on the previous study, the blood–retina barrier leakage was
also assessed but revealed no significant effect of c-peptide administration.
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Reference N T1D duration
(years)

[mean (min-max) 
or mean ± SD]

Intervention type and duration Measured outcomes

Johansson et al.63
1992 21 11.0 (3.0-20.0) GFR, RPF, FF, Glucose

Johansson et al.64
1993 18 10.0 (3.0-14.0) GFR, FF, RFP, HbA1c, 

Glucose, UAE, BP

Ekberg et al.66
2003 46 10.0 (5.0-15.0) MCV, CMAP, SCV, SNAP, 

NCV, QST

Ekberg et al.67
2007 139 30.6 ± 0.8 CMAP, MCV, NIA, QST, SCV

Wahren et al.69
2016 250 27.2 ± 1.1 SNCV, VPT, mTCNS

MCV – motor nerve conduction velocity, CMAP – compound muscle action potential amplitude, SCV – sensory nerve conduction velocity, SNAP– sensory nerve action potential amplitude, 
NCV – nerve conduction velocity, QST – quantitative sensory testing, NIA – neuropathy impairment assessment, SNCV – sural nerve conduction velocity, VPT – vibration perception threshold, 
mTCNS – modified Toronto Clinical Neuropathy Score, GFR – glomerular filtration rate, RPF – renal plasma flow,  FF – filtration fraction, UAE – urine albumin excretion, BP – blood pressure, 
PEG – polyethylene glycol, s.c. – subcutaneous, i.v. – intravenous;        - 0.9% NaCl and insulin s.c.;        - PEG-ylated C-peptide s.c.;        - C-peptide i.v.;      - 1:1 C-peptide and insulin s.c.;    

- bolus;         - the end of the intervention.

Figure 5. Study design of interventions in humans.

The pooled effect of c-peptide supplementation on GFR was summarized in a systematic review
and meta-analysis by Shaw et al. [65]. They concluded that, collectively, c-peptide administration had
no statistically-significant impact on GFR. However, these conclusions seem to not be backed up by
statistical analysis. In their work, Shaw et al. compared only end-point measures of GFR between
intervention and control groups and disregarded baseline values. Thus, the difference in GFR change
experienced by treated and not treated patients may have been lost.

Overall, c-peptide administration demonstrated a positive but clinically-limited effects on the
nephropathy-associated functional abnormalities. The decrease in glomerular hyperfiltration and
albumin excretion hint for potential clinical utility.

Interestingly, the already-mentioned study by Johnsson et al. also provided cautious but promising
results for DPN. C-peptide administration was associated with statistically-significant increase in heart
rate variability (initially reduced in N = 12) and lowering of thermal and vibration sensory threshold
(abnormal at baseline in N = 6).

These tentative results coupled with promising findings in animal studies resulted in a few
double-blinded randomized clinical trials dedicated to DPN being performed in humans. The first,
exploratory one [66], was carried out in 46 patients with T1D without DPN symptoms and 15 healthy
volunteers. The protocol included three months of treatment with either c-peptide or placebo in
four subcutaneous injections. Such replacement therapy restored serum c-peptide concentration to
a physiological level, but the testing was done relatively soon (~3 h) after injection. There was no
significant HbA1c change in either group during the treatment, however, between-group comparison
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in terms of HbA1c difference was not performed. Importantly, no adverse reactions or events related
to c-peptide administration were observed. Clinically, neither patients with T1D nor healthy controls
reported any DPN symptoms, but those with T1D patients presented reduced sensory and motor
nerve conduction velocities (SNCV, MNCV) in the sural and peroneal nerves, which was consistent
with subclinical DPN. C-peptide administration improved SNCV significantly throughout 12 weeks of
treatment but only by ~5% and slightly improved vibration threshold in comparison to no improvement
in healthy subjects. MNCV changes were transient and similar to those observed in control group.
Improvements of both SNCV and the vibration threshold in patients with subclinical DPN suggest that
it might act in very early stages.

Another study [67] picked up on these promising findings and recruited patients with T1D
and signs and symptoms of DPN, with SNV < −1.5 SD from body-weight-corrected reference.
The patients were randomized to receive placebo control or c-peptide in either low (physiological) or
high dose. The supplementation was carried out for six months, with neurological examination and
neurophysiological measurements performed before and after. In analysis, low and high dose groups
were pooled because there were no significant differences between them in response.

As a primary endpoint, the study demonstrated significant improvement in SNCV in c-peptide
treated group, but placebo-treated group also experienced similar benefit. Nevertheless, the proportion
of responders with improvement in SNCV below 1 m/s was significantly greater in the intervention
groups. From a clinical perspective, vibration perception threshold and neurological examination score
were also significantly improved by c-peptide supplementation. A secondary analysis also hinted that
among those with better SNCV at baseline, c-peptide administration produced significantly greater
improvement than placebo. MNCV deteriorated during six months in all study groups, without any
apparent effect of c-peptide. However, this report was accompanied by a breach of publication ethics
that should be recalled. Two of the paper’s first authors were (at the time of publication) patent holders
for therapeutic use of c-peptide [68], which constitutes an important conflict of interest that was not
disclosed. On the other hand, the publication described the proceedings and analysis well enough that
reported data seem reliable.

Following these results, the (partly the same) group attempted to improve on the formulation
of c-peptide. Both of the above-mentioned trials used native c-peptide administered subcutaneously
four times a day as an active agent. Following the results from animal studies, the next trial tested
the PEG-ylated form administered weekly in high (2.4 mg) and low (0.8 mg) dose [69]. This time,
the authors disclosed having financial relationships with Cebix Incorporated, a company holding
patent for PEG-ylated c-peptide. However, the trial publication failed to name Cebix as the trial sponsor.
This trial [69] recruited T1D patients with mild-to-moderate peripheral neuropathy, blinded and
randomized them while stratifying for HbA1c, diabetes duration and center location. Moreover,
the planned follow-up was 13 months, which is the longest reported time of treatment. The outcomes
were assessed after 26 and 52 weeks of supplementation and included comprehensive array of
DPN signs and symptoms: sensory and motor nerve conduction, vibration perception thresholds,
modified Toronto Clinical Neuropathy Score (TCNS) assessment, reports for pain, sexual function,
and erectile dysfunctions.

The results, however, were comparable with the previous studies. SNCV improvement was
observed in all study groups with no significant difference between placebo- and c-peptide- treated
patients. Vibration perception threshold decreased in both groups supplemented with c-peptide with
insignificant difference between the doses. Other neuropathy features (including MNCV and TCNS)
did not improve with c-peptide administration.

Overall, human trials of c-peptide supplementation produced rather underwhelming results despite
testing various doses and different follow-up times. The only endpoint showing consistent improvement
was vibration perception threshold. However, the reliability of this method is controversial due to
poor standardization of measurement and its vulnerability to confounding factors, such as age and
height [70]. Still, it is an important symptom that warrants further studies into possible utility of c-peptide
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replacement therapy. It could lead to developing a therapy that aims to prevent or even reverse previously
mentioned DN symptoms. The time for intervention, as demonstrated by Ekberg et al. [66], might
also be an important point to consider in inventing effective pharmaceutical therapy of DN. The major
limitation of these findings emerge from the fact that they all come from one center—Karolinska Institute,
which may create problems with the reproducibility of the results. In addition, the previously-discussed
transparency issues seem to further undermine the clinical validity of the findings. Should further
efforts be made to bring c-peptide into the market and clinical practice, they should be thoroughly
scrutinized for transparency.

6. Translational Gap

Overall, despite very promising results in pre-clinical animal trials, in humans the observed
effects of c-peptide administration on chronic diabetes complications are much weaker. The exact
reasons for these discrepancies were not identified but can be speculated to arise from either technical
or methodological weaknesses of previous studies.

First of all, there is wide diversity in terms of chemical purity of c-peptide used in pre-clinical
research. While most protocols reported to have used up to 98%-pure c-peptide, these qualities were
given in terms of mass percentage, which does not reflect molar purity. As revealed by Pinger et al. [71],
even 2 mass % of impurities may translate in case of Fe add-ons into 50:50 molar ratio in the administered
substance. This is unlikely to have affected (at least that heavily) human-based trials where purity
of administered compounds is much more stringent—however, it potentially explains differences
between animal studies and hints that additional substances might modulate c-peptide activity.

This was indeed demonstrated by Liu et al. [72], who reported that c-peptide biological effects are
heavily reliant on the presence of albumin and zinc ions. While both should be abundantly present in
circulation of patients receiving c-peptide, it cannot be excluded that other co-factors present or absent
in human circulation might affect c-peptide action.

Furthermore, one must consider that animal models might not accurately represent diabetes-related
complications encountered in humans with T1D. In most reviewed cases, diabetes was induced
pharmacologically by streptozocin administration, which caused abrupt and preferential destruction
of beta cells. This method, albeit effective, does not reproduce complex autoimmune environment that
over the years causes the development of T1D and possibly continues to affect the patient in later life.
Secondly, in c-peptide-related studies the animals did not receive physiological supplementation of
insulin, which is the case in humans. In most cases, the insulin was titrated to achieve and maintain
hyperglycemia ~20 mmol/L. Biologically, such environment is drastically different from that of humans
with established diabetes, even those who do not achieve good metabolic control. As such, the damage
of nerves and kidneys observed in rodents develops differently than in humans—faster, with more
dependency on hyperglycemia. In such insulin-deficient environment, the insulin-like properties
of c-peptide might be more pronounced and strengthen observed positive effects. To determine the
unique effect of c-peptide not affected by hyperglycemia, animals studies would have to be carried out
on an animal model of microvascular complications with maintained euglycemia, which, according
to our knowledge, has not yet been developed. On the other hand, c-peptide does not seem to exert
much effect on blood glucose levels; it does not counteract hyperglycemia in T2D despite its abundant
presence in the serum. It is possible that insulin and c-peptide resistance occur simultaneously in this
type of diabetes; however, taking into consideration that insulin treatment is sufficient to neutralize
blood glucose levels, this scenario appears unlikely. Moreover, the animal and human studies differ
also in the time of intervention. The former targeted mostly the acute phase of organ damage while
clinical trials recruited mostly patients with established (even if early-stage) neuro or nephropathy.
It might be informative to observe the effects of joined c-peptide and insulin administration in 1:1
molar ratio started at diabetes onset. Such design might be feasible with modern insulin pumps,
as dual-hormone pumps (administering insulin and glucagon) are already in development.
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Additional investigation should also focus on the diabetes complications themselves—to elucidate
more precise mechanisms of their development in humans, identify the most intervention-sensitive
periods and possibly design new ways to measure the outcomes. The latter seems especially important
in neuropathy, where even SNCV—which is measured objectively and considered one of reference
methods to assess neuropathy severity—was demonstrated to improve in placebo group during the
latest trial [60].

Finally, priority should be given to identification of receptor mediating c-peptide action. It might
uncover significant differences between receptor structure between humans and rodents traditional
factors affecting c-peptide signaling in human cells specifically. Furthermore, knowledge about receptor
structure might help design more effective agonists to boost native c-peptide effects. With recent
works debating the role of GPR146 receptor, there is hope that these details might be finally uncovered
and utilized.

7. Conclusions

C-peptide has come a long way from being considered an inactive cellular by-product to
acknowledgment as a biologically-active molecule. Many of its observed properties, as well as
pre-clinical research suggests c-peptide might be utilized in prevention or treatment of chronic
complications in T1D, with neuro- and nephropathy being the most attractive targets. However, so far
the clinical trials have demonstrated only no successes at bench-to-bedside implementation. Observed
effects, while present, were often small and pertained only to a few chosen parameters as opposed to
expected global, clinically-meaningful changes. The fact that all clinical trials on DPN which were to
some extent successful were carried out at one center makes it more difficult to assess the reliability of
the obtained results. The lack of success in application of c-peptide treatment to patients might result
from our incomplete understanding of c-peptide receptor interactions, imperfect representation of
complications by animal models, or finally ineffective timing for the interventions. As a promising
molecule in diabetology, c-peptide certainly deserves more in-depth research before it can be effectively
translated into a second wave of clinical trials.
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Abbreviations

AP1 activating protein 1
CAN cardiovascular autonomic neuropathy
DKD diabetic kidney disease
DPN diabetic polyneuropathy
ECM extracellular matrix
eNOS endothelial nitric oxide synthase
GFR glomerular filtration rate
GPCR G-protein-coupled receptor
HAEC human aortic endothelial cells
IGF-1 insulin-like growth factor
IL-4 interleukin 4
IL-8 interleukin 8
Il-10 interleukin 10
IL-17 interleukin 17
JNK c-Jun N terminal kinase
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1
MNCV motor nerve conduction velocity
NF- κB nuclear factor kappa-light-chain-enhancer of activated B cells
NGF nerve growth factor
NOS nitric oxide synthase
PI3K protein kinase C
PKC protein kinase C
ROS reactive oxygen species
SNCV sensory nerve conduction velocity
STZ streptozocin-induced diabetes
T1D type 1 diabetes
T2D type 2 diabetes
TCNS Toronto Clinical Neuropathy Score
TGF- α-transforming growth factor α
TGF- β-transforming growth factor β
VCAM-1 vascular cell adhesion molecule 1
ZEB zinc-finger E-box binding protein
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