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Abstract: Heparan sulfate (HS) is a type of glycosaminoglycan that plays a key role in a variety
of biological functions in neurology, skeletal development, immunology, and tumor metastasis.
Biosynthesis of HS is initiated by a link of xylose to Ser residue of HS proteoglycans, followed by
the formation of a linker tetrasaccharide. Then, an extension reaction of HS disaccharide occurs
through polymerization of many repetitive units consisting of iduronic acid and N-acetylglucosamine.
Subsequently, several modification reactions take place to complete the maturation of HS. The
sulfation positions of N-, 2-O-, 6-O-, and 3-O- are all mediated by specific enzymes that may have
multiple isozymes. C5-epimerization is facilitated by the epimerase enzyme that converts glucuronic
acid to iduronic acid. Once these enzymatic reactions have been completed, the desulfation reaction
further modifies HS. Apart from HS biosynthesis, the degradation of HS is largely mediated by the
lysosome, an intracellular organelle with acidic pH. Mucopolysaccharidosis is a genetic disorder
characterized by an accumulation of glycosaminoglycans in the body associated with neuronal,
skeletal, and visceral disorders. Genetically modified animal models have significantly contributed
to the understanding of the in vivo role of these enzymes. Their role and potential link to diseases
are also discussed.

Keywords: heparan sulfate; knockout mice; biosynthesis; lysosome

1. Introduction

Heparan sulfate (HS) is a type of glycosaminoglycan (GAG) that contains many
O-(1→4)-linked uronic acid and a glucosamine [1,2]. HS is widely found in tissues, playing
an essential role in maintaining cellular function. In particular, the central nerve system
(CNS), bone, immune system, and tumor metastasis have functional relevance to HS under
(patho)physiological conditions. HS-proteoglycans (HSPGs) are proteins that are O-linked
to HS through Ser residue in the core protein. The biochemical property of proteoglycan
was extensively studied about four decades ago by Yanagishita and Hascall [3,4]. In
contrast, HS-binding proteins are rather ambiguously defined. One clearly defined example
includes a definition of any protein that binds to Heparan-Sepharose and dissociates
from the resin by an increasing concentration of salt under neutral pH [2]. Thus, the
biological effect of HS is exerted by modulation of the interaction between HSPG and
HS-binding protein. The core protein of HSPG is biosynthesized in the ribosome followed
by translocation to the endoplasmic reticulum (ER) and Golgi, where O-linked attachment
of xylose followed by extension of HS takes place (Figure 1A). Following the formation of
linker tetrasaccharide and an extension of glucuronic acid (GlcA) and N-acetylglucosamine
(GlcNAc), the modification of HS by sulfation, epimerization, and desulfation modifies
the bioactivity of HS (Figure 1B). In particular, there are specific enzymes that sulfate at
N-, 6-O, and 3-O of GlcNAc and 2-O of iduronic acid (IdoA) (Figure 1C). Apart from HS
biosynthesis, it may be aberrantly accumulated under pathophysiological conditions. A
well-known example includes mucopolysaccharidosis (MPSs), a group of genetic disorders
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that fail to properly degrade HS in the lysosome (Figure 2). While these disorders are
rare, effective treatments have been developed. Enzyme replacement therapy infuses a
therapeutic enzyme agent intravenously. A notable phenotype involves CNS involvement,
visceral manifestations, and skeletal deformation. Among these three manifestations,
enzyme replacement therapy effectively improves visceral manifestation, contributing to
improving the quality of life of affected individuals.
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cation in HS. Note that SULF1 and SULF2 are involved in the removal of 6-O-sulfate in the last 2 
steps. (C) Chemical structure of ΔUA-GlcNAc. 

Figure 1. HS biosynthesis. (A) Extension of HS from proteoglycan. (B) Enzyme reaction of modifica-
tion in HS. Note that SULF1 and SULF2 are involved in the removal of 6-O-sulfate in the last 2 steps.
(C) Chemical structure of ∆UA-GlcNAc.

From a biochemical point of view, the position and number of N- and O-sulfate are
often critical to understand biochemical property of HS. For this purpose, heparitinases with
altered substrate specificity are generally used in combination. For example, heparitinase I
reacts with a relatively short GAGs, whereas heparitinase III favors a larger GAG substrate.
Due to the absence of distinct chromophore in HS, there are many techniques to detect
HS in biological samples. Classically, fluorometric derivatization has often been used.
Recently, mass spectrometric detection has become an increasingly common technique
for the quantification of low molecular weight compounds. This technique also allows
us to quantify HS disaccharide species in their intact or derivatized form. The intact HS
disaccharides are normally chromatographed using graphite carbon-based separation [5].
In order to obtain higher sensitivity, these compounds may be derivatized using a variety
of reagents, such as 3-methyl-1-phenyl-5-pyrazolone [6,7]. In this reaction, the best result
is obtained under alkali conditions [8]. Alternatively, methanolysis may be used for
quantification of HS disaccharide [9,10]. In this case, the COOH moiety of uronic acid and
one glycosylation bond were methylated during the reaction. Such a technique has been
used for the diagnosis of MPS-affected individuals.
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Figure 2. Degradation of HS by lysosomal enzymes involved in mucopolysaccharidosis. Enzymes 
involved in MPS disease subtypes are as follows: MPS I, α-L-iduronidase; MPS II, iduronate 2-sul-
fatase; MPS IIIA, heparan N-sulfatase; MPS IIIB, α-N-acetylglucosaminidase; MPS IIIC, acetyl CoA: 

Figure 2. Degradation of HS by lysosomal enzymes involved in mucopolysaccharidosis. En-
zymes involved in MPS disease subtypes are as follows: MPS I, α-L-iduronidase; MPS II,
iduronate 2-sulfatase; MPS IIIA, heparan N-sulfatase; MPS IIIB, α-N-acetylglucosaminidase; MPS
IIIC, acetyl CoA: α-glucosaminide acetyltransferase; MPS IIID, N-acetylglucosamine 6-sulfatase;
MPS VII, β-glucuronidase.
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Heparin is an HS-related biopolymer with different biochemical properties. First,
heparin has a much smaller molecular weight (i.e., 10–15 kDa) compared with that of HS
(15–25 kDa). The average number of sulfate moiety in disaccharide in heparin is two to
three compared with one to two in HS. Heparin is biosynthesized in connective tissue-typed
mast cells while HS is formed in almost all cells. Heparin has a strong anticoagulant action
through the activation of antithrombin. For commercial use, porcine intestine mucosa has
been used as the source of heparin.

2. Biosynthesis of HS and Phenotype of Mice Deficient in HS Biosynthesis Enzyme Genes

HS is O-linked through Ser residue to core protein, HSPG (Figure 1). This reaction
occurs in the ER and Golgi apparatus. Matured HSPG localizes either to the membrane
or extracellular space. HS degradation occurs in the lysosome, a cellular compartment
with an acidic environment (Figure 2). HS has many biological properties, including organ
formation, the regulation of signal transduction, and the invasion and translocation of
tumor. It is also known that some bacteria and viruses use HS as their receptors. For
example, HS enhances corona virus infection [11]. Thus, apparently, most of the biological
effects of HS may be exerted by functional modulation between HSPG and HS-binding
protein. HS species with no sulfation are prominent in dried blood spots, and this is also
applicable to many tissues [12,13].

2.1. Linker Tetrasaccharide Formation and Disaccharide Extension

Heparan sulfate has a unique four oligosaccharides GlcA-Gal-Gal-Xyl, of which the
reducing end Xyl is linked to Ser residue of proteoglycans (Figure 1A) [14]. A GlcNAc is
then attached to this end for HS biosynthesis. Subsequently, the GlcA and GlcNAc are al-
ternatively extended by GlcA transferase and GlcNAc transferase, respectively. A complex
of EXT1/EXT2 enzymes catalyzes both GlcA/GlcNAc transferase reactions. EXTL2 has a
GlcNAc transferase activity that terminates HS chain polymerization by the addition of
GlcNAc at the linker tetrasaccharide that has been Xyl-phosphorylated by FAM20B [15]. In
contrast, EXTL3 also has a GlcNAc transferase activity that similarly targets linker tetrasac-
charide without Xyl phosphorylation [16]. As a result, subsequent HS polymerization by
EXT1/EXT2 enzymes continues. While no study has reported the phenotype of EXTL1, B
cell-specific expression of EXTL1 in mice showed a partially impaired B cell maturation [17].

A genetic defect in these genes in mice revealed that these mice are lethal [18] (Table 1).
Another phenotype apparently involves abnormal chondrogenesis [19,20]. This was sup-
ported by a lot of evidence of a variety of conditional knockout mice. Essentially, a defect
in linker tetrasaccharide formation results in osteochondroma or related chondrocyte hy-
pertrophy. This phenotype has been extensively studied because a similar phenotype was
found in humans [21]. The Ext1-dependent heparan sulfate regulates the range of IHH
signaling during endochondral ossification [22]. The defect in HS formation was also
affected by the BMP-mediated signaling pathway [23]. While physiological levels of HS
disaccharide in chondrocytes were approximately 1% of that of CS disaccharide under
normal conditions, total removal of HS through a deficiency of linker tetrasaccharide by the
genetic technique caused a severe defect in chondrogenesis [24]. Other than that, abnormal
neurogenesis and immune modulation have been reported.
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Table 1. Phenotype of mice that lack HS biosynthesis enzymes.

Mouse Phenotype
Description Reference

Lethality Abnormal
Chondrogenesis

Neural
Disorders Immunomodulation

Ext1, Ext2, Ext2l, Ext3l

Ext1(−/−) Let Embryonic lethal [18]

Ext1(+/−) chondr ↑Exostosis-like phenotype [25]

Ext1(+/−)
↑Ihh signaling; ↑chondrocyte
proliferation; ↓hypertrophic

differentiation
[26]

Ext1(+/−);Sgsh(−/−) Normal MPS IIIA pathogenesis [27]

Ext1(gt/gt) Let chondr Embryonic lethal [22]

Ext1(gt/gt) ↑Chondroitin sulfate [24]

Ext1(gt/gt) ↑BMP signaling in
engineered cartilage [28]

Col2-Cre;Ext1(f/f) chondr ↓Bone growth; ↓chondrocyte
hypertrophy [29]

Col2-Cre;Ext1(f/f) chondr ↑Multiple osteochondromas [30]

Col2-Cre;Ext1(f/+) chondr ↑Osteochondromas [25]

Col2a1-Cre;Ext1(f/f) chondr ↑Osteochondromas;
↑phosphorylation of Smad1/5/8 [31]

Dermo1-Cre;Ext1(f/+) chondr ↑Osteochondromas [25]

Fsp1-Cre;Ext1(f/f) chondr ↑Osteochondromas [32]

Gdf5-Cre;Ext1(f/f) chondr ↓Proximal limb joints [33]

Prg4-Cre;Ext1(f/f) chondr ↑Hypertrophic chondrocyte;
↑cartilage thickness [34]

CaMKII-
Cre2834;Ext1(f/f) Neural ↓Excitatory synaptic transmission [35]

Wnt1-Cre;Ext1(f/f) Neural ↓Commissural axon path finding [36]

Lck-Cre;Ext1(f/f) Immuno ↑DN4 cells in thymocytes [37]

Pdgfrα-Cre;Ext1(f/f) Immuno ↓Size of fetal thymus
organ cultures [38]

Shh-Cre;Ext1(f/f) ↓Cell proliferation in stomach;
↓FGF signaling [39]

Shh-Cre;Ext1(f/f) ↓Shh signaling; ↑branching tips;
↑branching number [40]

2.5P-Cre;Ext1(f/f) Abnormal podocyte morphology;
→ albuminuria [41]

Col2-rtTA-
Cre;Ext1(e2neofl/e2neofl) Let chondr ↑Multiple osteochondromas [19]

Col2-rtTA-
Cre;Ext1(e2fl/e2fl) Immuno ↓Osteoarthritis [42]

Tek-rtTA+;Tet-
Cre;Ext1(f/f) Immuno

↓Chemokine presentation in
epithelial cells;

↓lymphocyte homing
[43]

Krt14-rtTA;Tet-
Cre;RosaLSL;Ext1(f/f)

↓Corneal epithelium;
↓epithelial layers [44]

Ext2(−/−) chondr ↑Exostoses [20]

Ext2(−/−) ↓FGF signaling in mutant embryo [45]

Ext1(+/−);Ext2(+/−) chondr ↑Exostosis-like phenotype;
↓heparan sulfate [25]

Ext1(+/−);Ext2(+/−) ↓Sodium storage capacity in skin;
↓endothelial surface layer thickness [46]
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Table 1. Cont.

Mouse Phenotype
Description Reference

Lethality Abnormal
Chondrogenesis

Neural
Disorders Immunomodulation

Ext1(+/−);
Ext2(+/−);Sgsh(−/−) Neural ↓MPS IIIA pathogenesis [27]

Extl2(−/−) Neural ↑Chondroitin sulfate
proteoglycans deposition [47]

Extl2(−/−) Immuno
↑Incidences in non-alcoholic

steatohepatitis and
hepatocarcinoma

[48]

Extl2(−/−) Immuno ↓Body weight; ↓hepatocyte in
CCl4-induced liver failure [49]

Extl2(−/−) ↑Aortic calcification in chronic
kidney disease [50]

Extl3(−/−) Let embryonic lethality [51]

Nphs1-Cre;Extl3(f/f) →Urinary albumin excretion [52]

N-Deacetylase/N-sulfotransferases 1–4

Ndst1(−/−) Let ↑Respiratory distress syndrome [53]

Ndst1(−/−) chondr ↓Defective skull development [54]

Ndst1(−/−) chondr Neural ↓Cerebral development;
↓craniofacial development [55]

Ndst1(−/−) Immuno ↓Binding affinity to vaccinia virus;
↓binding affinity to myxoma virus. [56]

Ndst1(−/−) ↑Pericyte detachment;
↓pericyte migration [57]

Ndst1(−/−) ↓Ca2+ kinetics in myotubes [58]

Ndst1(−/−) ↓Differentiation of lung cells;
↑cell proliferation. [59]

Ndst1(−/−) ↑Glomerular hypertrophy in the
kidney; ↓podocyte organization [60]

Ndst1(−/−) ↓Podocyte-matrix interaction [61]

Ndst1(−/−) ↓Lens development [62]

Ndst1(−/−) ↓Heart development [63]

Ndst1(−/−) ↓ERK signaling in lacrimal
gland bud [64]

Ndst1(+/−) chondr ↓Osteoarthritis [42]

Col2-Cre;Ndst1(f/f) chondr ↓Osteoarthritis [42]

L7-Cre;Ndst1(f/f) Neural →Purkinje cell development [65]

Olig2-Cre;Ndst1(f/f) Neural

↑Lesion size; ↑reactivity of
microglia and oligodendrocyte

precursor cells in
myelin destruction

[66]

CD11c-Cre;Ndst1(f/f) Immuno ↓Lewis lung carcinoma growth;
↑tumor-associated CD8+ T cells [67]

Tek-Cre;Ndst1(f/f) Immuno ↓Leukocyte influx during
experimental glomerulonephritis [68]

Tek-Cre;Ndst1(f/f) Immuno ↓Ovalbumin-induced acute
airway inflammation [69]

Tek-Cre;Ndst1(f/f) Immuno ↓Allergen-induced airway
remodeling [70]

Tek-Cre;Ndst1(f/f) Immuno ↓Neutrophil trafficking [71]

Tek-Cre;Ndst1(f/f) Immuno ↓Acute renal allograft rejection [72]

Tie2-Cre;Ndst1(f/f) Immuno →Neutrophil recruitment [73]
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Table 1. Cont.

Mouse Phenotype
Description Reference

Lethality Abnormal
Chondrogenesis

Neural
Disorders Immunomodulation

Tie2-Cre;Ndst1(f/f) Immuno
↓Th2 cytokines; ↓airway

eosinophilia; ↓mucus secretion;
↓smooth muscle mass

[74]

Alb-Cre;Ndst1(f/f) ↑Triglyceride-rich
lipoprotein particles [75]

Alb-Cre;Ndst1(f/f)
↓Hepatic hepcidin expression;
↑iron accumulation in the liver

and serum
[76]

Alb-Cre;Ndst1(f/f) ↑Accumulated plasma
triglycerides [77]

Le-Cre;Ndst1(f/f), ↓ERK signaling in lacrimal
gland bud [64]

MMTV-Cre;Ndst1(f/f) ↓Lobuloalveolar development in
mammary gland [78]

Tie2-Cre;Ndst1(f/f) ↓Pathogenesis of diabetic
nephropathy [79]

Tie2-Cre;Ndst1(f/f) ↓Diaphragm vascular
development [80]

Wnt-1-Cre;Ndst1(f/f), ↓ERK signaling in lacrimal
gland bud [64]

Wnt1-Cre;Ndst1(f/f) ↓Heart development [63]

Wnt1-Cre;Ndst1(f/f), →Lacrimal gland budding [81]

Alb-Cre;Ndst1(f/f);
Apoe(−/−) ↑Plasma triglyceride levels [82]

Krt14-
rtTA/TC/RosaLSL/Ndst1(f/f)

↓Corneal degeneration;
↓wound healing [44]

Ndst2(−/−) Neural Immuno ↑Neurogenic inflammation [83]

Ndst2(−/−) Immuno

↓Histamine release upon
IgE/anti-IgE challenge; ↓sulfated
heparin; ↓connective-tissue type

mast cells

[84]

Ndst2(−/−) Immuno ↑Defective mast cells [85]

Ndst2(−/−) ↑Tumor growth; ↑blood clotting [86]

Ndst2(−/−) ↑Tumor growth [87]

Ndst2(−/−) ↓Branching events in
mammary gland [88]

Ndst2(−/−) ↓Heparin-binding proteases;
↑plasminogen activation [89]

Ndst2(−/−) →Heart development [63]

Ndst2(−/−) →Heparin sulfate composition [58]

Ndst1(−/−);Ndst2(−/−) Immuno ↓Mast cell development [85]

Ndst1(−/−);Ndst2(−/−) ↓Induction of adipocytes and
neural cells;→osteoblast [90]

Ndst1(−/−);Ndst2(−/−) ↓Endothelial cell development [91]

Ndst1(−/−);Ndst2(−/−) Immuno ↓Allergen-induced airway
remodeling [70]

Ndst1(−/−);Ndst2(−/−) Immuno ↓Neutrophil trafficking [71]

MMTV-Cre;
Ndst1(f/f);Ndst2(−/−),

↓Abnormal branching events in
mammary gland [88]
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Table 1. Cont.

Mouse Phenotype
Description Reference

Lethality Abnormal
Chondrogenesis

Neural
Disorders Immunomodulation

L7-Cre;Ndst1
(f/f);Ndst2(−/−) Neural ↓Female reproductive behavior [65]

Wnt1-Cre;Ndst1(f/f);
Ndst2(−/−) ↓Heart development [63]

Le-Cre;Ndst1(f/f);
Ndst2(−/−)

↓ERK signaling in lacrimal
gland bud [64]

Wnt1-Cre;Ndst1(f/f);
Ndst2(−/−); ↓Lacrimal gland budding [81]

Ndst1(−/−);Ndst3(−/−) Let ↓Embryonic development [92]

Pgr-Cre;Ndst1(f/f);
Ndst2(−/−);Ndst3(−/−) Infertile [93]

Ndst4(−/−)
↑Goblet cells; ↓colonocytes in the
proximal colon; ↑apoptosis in the

colonic epithelium
[94]

Glucuronic acid C5-epimerase

Glce(−/−) chondr
↓Development of kidney; ↓lung

development; ↓skeletal
development

[95]

Glce(−/−) chondr ↑Hedgehog signaling in
endochondral bones [96]

Glce(−/−) Immuno ↓Lymphoid organ development [97]

Glce(−/−) Immuno ↓B-cell maturation;
↓APRIL-mediated survival signals [98]

Glce(−/−) ↓Heparin biosynthesis in
mast cells [99]

Glce(−/−) ↓Pericyte migration [57]

Glce(−/−) ↓FGF2-induced proliferation in
MEFs; ↓Erk phosphorylation [100]

Glce(−/−)

↓Maturation of type I alveolar
epithelial cells in embryonic lung;

↓vascularization in the
developing lungs

[101]

HS 2-O-sulfotransferase

Hs2st(gt/gt) Let Neonatal lethality; ↓Kidney
development [102]

Hs2st(gt/gt) ↓Development of metanephric
mesenchyme [103]

Hs2st(−/−) Neural ↓Proper retinal ganglion
cell-mediated axon formation [104]

Hs2st(−/−) Neural ↓Axon guidance [105]

Hs2st(−/−) Neural
↓Cerebral cortex; ↓Erk1/2

activation at the rostral
telencephalic midline

[106]

Hs2st(LacZ/LacZ) Neural ↓Migration of facial branchiomotor
neurons in the hindbrain. [107]

Alb-Cre;Hs2st(f/f) ↑Accumulated plasma
triglycerides [77]

Emx1-Cre;HS2st(f/f) Neural ↓Translocation signals to astroglial
precursors [108]

Zic4-Cre;HS2st(f/f) Neural ↓Translocation signals to astroglial
precursors [108]
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Table 1. Cont.

Mouse Phenotype
Description Reference

Lethality Abnormal
Chondrogenesis

Neural
Disorders Immunomodulation

Tie2-Cre;Hs2st(f/f) Immuno
↑Binding to group B

Streptococcus: ↓formation of
neutrophil extracellular traps

[109]

LysM-Cre;Hs2st(f/f) Immuno →Neutrophil recruitment [73]

Tie2-Cre;Hs2st(f/f) Immuno ↑Th2 cytokines; ↑eosinophils [74]

Tie2-Cre;Hs2st(f/f) Immuno ↑Neutrophil recruitment [73]

Tie2-Cre;Hs2st(f/f) Immuno

↑Airway eosinophilia, ↑mucus
secretion and smooth muscle mass
in Alternaria-challenged allergic

airway inflammation

[74]

Le-Cre;Hs2st(f/f) ↓Lacrimal gland development [110]

Le-Cre;Hs6st1(f/f);
Hs6st2(−/−) ↓↓Lacrimal gland development [110]

Le-Cre;Hs2st(f/f);
Hs6st1(f/f);Hs6st2(−/−) ↓↓↓Lacrimal gland development [110]

HS 6-O-sulfotransferases 1–3

Hs6st1(−/−) Let
↓VEGF-A mRNA; ↓normal

placentation; ↓skeletal
development

Hs6st1(−/−) Neural
↓Retinal ganglion cell-mediated

axon formation; ↑prolific
inter-retinal innervation

[111]

Hs6st1(−/−) Neural ↓Axon guidance [105]

Hs6st1(−/−) Neural ↑Erk activation; ↓corpus callosum
development [112]

Hs6st1(−/−) Neural ↓Cranial axon patterning [107]

Hs6st1(−/−) ↓Puberty maturation [113]

Alb-Cre;Hs6st1(f/f) ↑Plasma triglycerides [77]

Alb-Cre;Hs6st1(f/f) ↓Accumulated plasma
triglycerides [77]

Hs6st2(−/−) ↓Mast cell proteases in fetal
skin-derived mast cells [114]

Hs6st2(−/−) Neural ↓Cranial axon patterning [107]

Hs6st1(−/−);Hs6st2(−/−) ↓↓Mast cell proteases in fetal
skin-derived mast cells [114]

Wnt1-Cre;Hs6st1(f/f);
Hs6st2(−/−) →Lacrimal gland budding [81]

HS 3-O-sulfotransferase 1

Hs3st1(−/−) Immuno ↑LPS-induced TNF-α sensitivity [115]

Hs3st1(−/−) on C57BL/6 Let ↑Lethality [116]

Hs3st1(−/−) on
C57BL/6/129 mix genetic

background

↓Anti-thrombin-binding sites in
carotid artery;→tissue fibrin
accumulation/coagulopathy

[116]

Sulfatase 1/2

Sulf1(−/−) chondr ↓Intervertebral disc homeostasis [117]

Sulf1(−/−) Neural ↑Motor neuron progenitor;
↓oligodendrocyte progenitor [118]

Sulf1(−/−) Neural
↓Cerebellum development;
↓neurite outgrowth deficits

in neurons
[119]
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Table 1. Cont.

Mouse Phenotype
Description Reference

Lethality Abnormal
Chondrogenesis

Neural
Disorders Immunomodulation

Sulf1(−/−) Neural ↓Conversion of motor neurons to
oligodendrocyte precursor cells [120]

Sulf1(−/−) Neural ↑motor neuron progenitor;
↓oligodendrocyte progenitor [120]

Sulf1(−/−) →Kidney development;
→skeletal development [121]

Sulf1(−/−) ↓↓Corneal re-epithelialization [122]

Sulf1(−/−) ↓Angiogenesis; ↑HS after
myocardial infarction [123]

Sulf1(gt/gt) ↑Accelerated ossification [124]

Sulf2(−/−) Neural ↓Brain development; ↓neuronal
and behavioral plasticity [125]

Sulf2(−/−) Neural ↓Neurite outgrowth;
↑hydrocephalus [125]

Sulf2(−/−) Neural
↓Cerebellum development;
↓neurite outgrowth deficits

in neurons
[119]

Sulf2(−/−) Neural ↓Conversion of motor neurons to
oligodendrocyte precursor cells [120]

Sulf2(−/−) Neural ↑Motor neuron progenitor;
↓oligodendrocyte progenitor [120]

Sulf2(−/−) Neural ↓Novel cell population
(Olig2+Sox10-) [126]

Sulf2(−/−) ↓Kidney development; ↓skeletal
development [121]

Sulf2(−/−) ↓Corneal re-epithelialization [122]

Sulf2(−/−) ↓Angiogenesis; ↑HS after
myocardial infarction [123]

Sulf2(gt/gt) ↑Accelerated ossification [124]

Sulf2(gt/gt) ↓Liver regeneration [127]

Olig2-Cre;sulf2(fl/fl);
R26R-tomato Neural ↓Novel cell population

(Olig2+Sox10-) [126]

Sulf1(−/−);Sulf2(−/−) Let ↓Kidney development;
↓skeletal development [121]

Sulf1(−/−);Sulf2(−/−) chondr ↑Accelerated ossification [124]

Sulf1(−/−);Sulf2(−/−) Neural ↓Axon guidance in the
corticospinal tract. [128]

Sulf1(−/−);Sulf2(−/−) Neural
↓Motor function Sulf1/2 DKO
mice on C57BL/6 and CD1d

genetic background
[129]

Sulf1(−/−);Sulf2(−/−)

↑Glomerular cellularity;
↑albuminuria in

streptozotocin-induced
diabetic model

[130]

Sulf1(−/−);Sulf2(−/−) ↓Esophageal contractile [131]

Sulf1(−/−);Sulf2(−/−) ↓Spermatogonial stem cells [132]

Sulf1(−/−);Sulf2(−/−) ↓↓Corneal re-epithelialization [122]
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Table 1. Cont.

Mouse Phenotype
Description Reference

Lethality Abnormal
Chondrogenesis

Neural
Disorders Immunomodulation

Sulf1(gt/gt);Sulf2(gt/gt) Let chondr ↓Bone development;
↓kidney development [121]

Sulf1(gt/gt);Sulf2(gt/gt) chondr ↓Body weight;
↑accelerated ossification [124]

Surfactant protein
C-rtTA;TetO-

Cre;Sulf1(f/f);Sulf2(f/f)
Immuno ↑Neutrophil infiltration;

↑bleomycin-induced mortality [133]

↓, Decrease; ↑, increase;→, no change; +, reported; f, flox; gt, gene trap; Let, lethal; chondr, Abnormal chondroge-
nesis; Neural, Neural disorders; Immuno, Immunomodulation.

2.2. Modification Reactions
2.2.1. N- and O-sulfation

HS is susceptible to N- and O-sulfation. There are four N-deacetylase/N-sulfotransferases
(NDSTs), one 2-O-sulfotransfease (HS2ST), three 6-O-sulfotransferases (HS6ST), and seven
3-O-sulfotransferases (HS3ST) in humans and mice (Figure 1B). Because these enzyme
reactions are not strictly sequential, there is variation of the HS disaccharide in terms of
the position and degree of sulfation. NDST plays a key role in immune modulation. In
contrast, both HS2ST and HS6ST affect the tubular formation of mesenchymal organs.

NDST

Similar to a mouse lacking EXT1/EXT2 enzymes, the lack of the NDST1 enzyme leads
to neonatal lethality [53]. These mice also have a defect in bone and CNS development [55].
The defect in NDST enzyme leads to an increasing accumulation of heparin in mast cells,
suggesting that N-sulfation could activate downstream sulfatases, such as HS2ST, HS6ST,
and HS3ST, by an uncharacterized mechanism [134].

Apart from these globally Ndst1-deficient mice, the distinct role of NDST is best
described in immune modulation. This is correlated with the expression of a chemokine
receptor on endothelial cells, where its contact with leukocytes plays a key role in leukocyte
migration. Notably, a recent report described that a conditional NDST1-deficient mouse
exhibited impaired rejection in an acute renal allograft model [72].

HS2ST

HS2ST is a unique sulfotransferase that specifically catalyzes 2-O-sulfation in mammals
(Figure 1C). In Hs2st(−/−) mice, 2-O-sulfate HS disaccharide was absent while compen-
satory accumulation of N- and 6-O-sulfate was reported [135]. These mice are embryonic
lethal with renal agenesis [102]. There are several defects in CNS, such as retinal axon
guidance [104], astroglial translocation [108], and facial branchiomotor neurons in the hind-
brain [107]. A study using conditional knockout mice revealed that both the endothelial
expression of HS2ST attenuates the rolling velocity of neutrophil and enhances IL-8- and
MIP-2-induced neutrophilic infiltration [73]. Consistent with this immunomodulatory role,
reduced formation of the neutrophil extracellular trap with increasing binding to group B
Streptococcus was reported [109]. Thus, HS2ST also plays an important role in immunity
to infections. Attenuated expression of Hs2st in gene trap mice was shown to impair the
development of the kidney [102] and laminal grands [110]. No chondrocyte phenotype was
reported in Hs2st(−/−) mice.

HS6ST

HS6ST introduces a sulfate at the 6-O position of N-acetylgluctosamine in HS. This
position has been suggested as a critical point for the interaction with FGF2 receptors
that ultimately leads to activation of Erk [136]. In Hs6st1(−/−) mice, abnormal axon
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patterning in retinal ganglion cells [104], cranial axon guidance [107], and corpus callosum
development [105] are the reported CNS phenotypes in murine models. Although there
was no detailed study for these phenotypes, a lack of HS6ST1 enzyme might modulate
the FGF2-mediated signaling pathway in neural cells, such as neuronal stem/progenitor
cells. In Hs6st1(−/−);Hs6st2(−/−) double knockout mice, the percentage of 6-O-sulfation
was almost completely abolished, with reduced tryptase activity in fetal skin-derived
mast cells [114]. Because mast cells are heparin-producing cells [91], as described, thus
attenuated production of heparin in these mice could either inhibit the gene expression or
the extracellular release of trypase in this model.

HS3ST

HS3ST has been suggested to be associated with the generation of heparin because
heparin is heavily sulfated compared with heparan sulfate. Specifically, the 3-O position
of galactose is sulfated in heparin by enzymatic action of HS3ST. The Hs3st1(−/−) mice
were established [116]. They exhibited a reduced antithrombin-binding area in the carotid
artery with normal tissue fibrin accumulation. In an LPS-challenged model, an increasing
sensitivity to TNF-α was reported, suggesting an enhanced immune reaction in these
mice [115]. In Drosophila, a reduction of Hs3st-B, an ortholog of Hs3st3b1 in humans, leads
to a neurogenic phenotype through Notch signaling [137]. However, a similar phenotype
in humans was not reported.

2.2.2. Glucuronic Acid C5-epimerization

Glucuronic acid C5-epimerase (GLCE) is a unique enzyme that catalyzes the epimer-
ization of glucuronic acid to iduronic acid [138]. This conversion occurs by catalyzing
the isomerization of an equatorial COOH in glucuronic acid at C5 to an axial COOH in
iduronic acid. The resulting sulfate group at the C2-position of iduronic acid prevents
C5-epimerization from catalyzing reverse epimerization [139]. Apart from the biochemical
reaction that occurs in animals and in vitro assays, where a relatively small quantity is
sufficient, maximization of the biochemical product is an important issue from an industrial
point of view. This is also applicable to the production of heparin, an anticoagulant used
clinically. Apparently, a lesser content of C2-sulfate in iduronate or higher enzyme activity
of GLCE yields greater heparin production on a biochemical basis.

GLCE(−/−) mice are neonatally lethal due to respiratory failure [95]. In these mice,
kidney formation was not observed; delayed development of the lung and bone has also
been reported. Apart from these in vivo observations, a biochemical examination revealed
a lack of iduronic acid in these mice. For heparin biogenesis, GLCE is unambiguously
essential [99]. In the most recent study, histological analysis of the lungs in embryos
revealed no difference in the morphology between wild-type and mutant animals up to
E16.5 [101]. However, the distal lung of E17.5-18.5 mutants is still populated by epithelial
tubules, lacking the typical saccular structural characteristic of a normal E17.5 lung. Further
immunostaining revealed strong signals of surfactant protein-C but a weaker signal of
T1α/podoplanin in the mutant lungs in comparison with wild-type littermates, suggesting
that the differentiation of type I alveolar epithelial cells was impaired. As a potential
mechanism, it has been discussed that the reduced vascularization in the developing lungs
could be associated with a failure of maturation of these cells.

2.2.3. Sulfatase Reaction

In humans and mice, there are two sulfatases that catalyze the sulfatase reaction at the
6-O position of GlcNAc. This reaction occurs only after sulfation reactions are complete.
SULF1 and SULF2 are enzymes catalyzing the removal of 6-O sulfate of mature HS. These
enzymes are located extracellularly, and their function has been postulated as being the
regulators of cellular function by maintaining the appropriate amount of sulfate. These
enzymes are active under neutral pH; thus, they are distinct from lysosomal sulfatase.
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Sulf1(−/−) and Sulf2(−/−) have defects in CNS development. In Sulf1(−/−) mice, the
neural progenitor cells to motor neuron progenitor are increasing while those to oligoden-
drocyte progenitor are decreasing [118,120]. Furthermore, there are two additional CNS
phenotypes. One report describes impaired axon guidance in the corticospinal tract [128].
A more recent study demonstrated impaired motor functions in these mice [129], with
Sulf1(−/−);Sulf2(−/−) double-deficient mice exhibiting the most severe phenotype involv-
ing embryonic development that is similarly found in Ext1/Ext2- and Ndst-deficient mice.
Furthermore, the chondrogenic phenotype was also reported in Sulf1(−/−);Sulf2(−/−)
double-deficient mice. Interestingly, in a gene trap (gt) experiment that inactivates Sulf1
and Sulf2 (i.e., Sulf1(gt/gt) and Sulf2(gt/gt)), these mice were lethal with abnormal chondro-
cyte development, suggesting that a small residual enzyme activity of sulfatase enzyme
is essential for embryonic lethality in mice [124]. Lastly, it is often observed that the phe-
notype of disease models may be altered depending on the genetic background. This is
also the case in these sulfatases; namely, Sulf1(−/−);Sulf2(−/−) double-deficient mice on a
C57BL/6 genetic background are lethal while those on a C57BL/6 and ICR mixed genetic
background are not [129,140].

2.3. Diseases in Humans

Disorders identified in the genes for HS biotransformation are rare in both HS-
biosynthesis and HS degradation. Exostosis is a rare disease that is caused by domi-
nant mutation of EXT1/EXT2 enzymes in humans [21,141]. Disorders caused by N- and
O-sulfotransferases, C5-epimerase, and 6-O-sulfatases have not been described in humans.

3. Lysosomal Storage Disorders (LSDs)

A lysosome is a cellular compartment that hydrolyzes multiple biomolecules, such as
oligosaccharides, lipids, glycolipids, sphingolipids, and mucopolysaccharides [142,143]. It
is well known that the pH of a lysosome is maintained in the acid range. To achieve this,
lysosomal v-ATPase is an essential molecular machinery that incorporates H+ inside the
lysosome at the expense of adenosine triphosphate. The failure in the proper regulation
of this hydrolyzing activity leads to an accumulation of biomolecules in the lysosomal
vacuoles. Lysosomal degradation is widely found in macrophages and phagocytes. For the
proper lysosomal targeting of enzymes and proteins, these biomolecules are normally post-
transcriptionally modified with mannose-6-phosphate. This ligand, mannose-6-phosphate,
binds to a cation-independent mannose phosphate receptor that is expressed on the lysoso-
mal membrane. Thus, once a mature LSD enzyme is endocytosed, this enzyme is selectively
targeted to the lysosome. This mechanism is known as cross-correction [144]. Today, a lot of
therapeutic strategies, such as hematopoietic stem cell transplantation, enzyme replacement
therapy, and gene therapy, have been developed based on this mechanism.

LSDs are characterized by a deficiency of lysosomal enzymes, associated with an
accumulation of sphingolipids, glycolipids, glycosaminoglycans, and other biological
compounds [145]. We now know that approximately 50–60 genes are involved in this
disorder [143]. The prevalence of classical LSDs is normally very rare, but it increases
significantly when the population contains a high rate of late-onset disorders. LSDs exhibit
a variety of manifestations involving the CNS, bone, and hepatosplenomegaly, but CNS
involvement is commonly observed. Although the gene responsible for each disease has
been identified, the cause of the disorder is not well understood. As a result of genetic
surveys, accumulated evidence has indicated that there are many small populations that
have a unique pathogenic mutation for LSDs. This is most evident in populations with
high rates of consanguineous marriages. Among various mutations, missense mutation is
commonly found in affected individuals, but this generally exhibits a milder phenotype. In
contrast, a severe phenotype is usually associated with gross deletion, frameshift, recom-
bination, and other mutations. Nonsense mutation usually leads to a severe phenotype,
but occasionally it shows a milder phenotype. This partly occurs based on a mechanism
called “read-through”, where tRNA recruits an irrelevant amino acid as expected from the
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triplet codon. For example, the IDS R8X (c.22C>T) mutation is such a missense mutation
where a termination codon appears immediately after the translation start site [146,147].
Some patients survived at the time of the survey without cognitive decline, a representative
clinical manifestation of the mild type of MPS II [146]. The frequency of read-through is
low in all missense mutations but is occasionally identified by genetic testing. The reason
why this is not a general mechanism remains largely unknown. To facilitate read-through,
some antibiotic agents, such as aminoglycoside, are used in vitro [148].

Mucopolysaccharidosis (MPS) is characterized an accumulation of glycosaminogly-
cans in the body that affects multiple organs (Figure 2). There is a distinct substrate speci-
ficity of enzymes responsible for pathogenesis. MPS I and II are caused by α-L-iduronidase
and iduronate-2-sulfatase that accumulate dermatan sulfate (DS) and HS at the same time.
Four disease subtypes of MPS III, namely MPS IIIA-D, are caused by N-sulfoglucosamine
sulfohydrolase, α-N-acetylglucosaminidase, heparan-α-glucosaminide N-acetyltransferase,
and N-acetylglucosamine 6-sulfatase, respectively, which specifically increase HS. MPS IVA
is caused by N-acetylgalactosamine-6-sulfatase, which increases keratan sulfate. MPS VI is
caused by N-acetylgalactosamine 4-sulfatase, which increases DS. MPS VII is caused by
β-glucuronidase, which increases DS, HS, and hyarulonate.

A widely accepted therapy for LSDs includes enzyme replacement therapy, which
infuses recombinant human LSD enzyme [143]. Its efficacy has been demonstrated in
Pompe, Fabry, and Gaucher disease and MPS I, II, IVA, and VI, respectively [142]. Among
various manifestations, visceral disorder, such as hepatosplenomegaly, is a good target
for this therapy. Accumulating earlier studies have demonstrated a younger brother or
sister exhibits better treatment results, especially when the older brother or sister has been
diagnosed. Based on this evidence, it is known that the pharmacological outcome for
LSDs may be maximized when the treatment begins during an asymptomatic period [149].
Consistently, newborn screening, a public health program to identify an affected newborn
in the population, has been implemented in the US, Taiwan, and other countries [150–152].
This outcome of newborn screening is generally satisfactory, especially in the US, because
prompt treatment becomes available. For more than a decade, an intravenously adminis-
tered therapeutic enzyme has been the only bio-engineered strategy for treatment, including
CNS. Based on recent studies about the receptors on pericytes, a recombinant enzyme,
fused to anti-human monoclonal antibody against these endogenous receptors has been
examined with satisfactory results [153].

Importantly, lysosomal biogenesis occurs before an LSD protein becomes pathogenic [154].
Transcription factor EB (TFEB), one of three similar transcription factors in humans and
mice, is an essential transcription factor that is closely associated with lysosomal biogenesis.
In a resting state, TFEB is serine-phosphorylated at multiple sites by mTORC1. Among
them, Ser211 has been considered the key phosphorylation site that is bound to an adaptor
protein 14-3-3 [155]. When TFEB is dephosphorylated by a phosphatase calcineurin, cytoso-
lic TFEB translocates into the nucleus, followed by an initiation of gene expression involved
in both lysosomal enzymes and biogenesis. For example, the expression of LAMP2, a lyso-
somal membrane protein often used as a biomarker, is regulated by the TFEB-induced gene
expression mechanism. Similarly, β-hexosaminidase is an LSD-related gene responsible for
Sandhoff disease, another well-known biomarker for LSD. In this case, the level of GM2, a
ganglioside generated from hexosaminidase enzyme reaction, is elevated as well.

4. MPS Type II
4.1. Pathophysiology

MPS II (OMIM 309900) is an X-linked disorder characterized by a deficiency in en-
zyme activity of iduronate-2-sulfatase (IDS, EC 3.1.6.13, Figure 2) [156]. IDS catalyzes the
elimination of sulfate at the 2-O position of iduronic acid from GAGs, such as dermatan
sulfate and heparan sulfate. The major manifestations include hepatosplenomegaly, skele-
tal deformities, valvular heart disease, enlarged tongue, upper airway obstruction, and
abnormal dentition. The phenotype of MPS II is linked to an accumulation of GAGs in
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tissues. Importantly, approximately 70% of individuals have CNS involvement. In the
case of the IDS gene, there is a pseudogene for the IDS, termed the IDS2, which lacks
enzyme activity [146]. Although many missense mutations have been identified, it has
frequently been found that the IDS mutations involve recombination, a gross deletion,
and a frameshift. This is well correlated with the fact that CNS involvement is the major
manifestation in this disorder. The tertiary structure of the catalytic center has long been
postulated based on the similarity of the amino acid sequence and a reported tertiary
structure of aryl sulfatase. Recently, crystallographic data for the IDS enzyme became
available [157]. Based on this result, most missense mutations have been found in the
cytosolic, transmembrane, or interface regions of the IDS protein. Mammalian sulfatases,
such as IDS, arylsulfatase A and B, and cholesterol sulfatase, are known to be involved
in the post-transcriptional modification of cysteine residue at the catalytic center. Formyl
glycine is a modified amino acid essential for the catalytic activity of sulfatases. For this
reaction, sulfatase-modifying factor 1 plays a key role [158]. In fact, the loss of this enzyme’s
activity leads to multiple sulfatase deficiencies, another LSD. In vitro, the co-expression of
sulfatase and sulfatase-modifying factor 1 enhances sulfatase activity, raising the possibility
that sulfatase agents might require full enzyme activation for therapeutic application.

4.2. Phenotype of Mouse Model

A mouse model lacking IDS activity has been established [159]. Although several lines
have been reported to date, the best studied mouse model contains an allele of which exons
4 and 5 have been replaced with a neomycin resistance gene. The major phenotype includes
splenomegaly, skeletal deformities, microgliosis, astrocytosis, and abnormal CNS function.
The efficacy of many therapies, such as bone marrow transplantation, enzyme replacement
therapy, and gene therapy, has been tested in this model. Among these manifestations,
skeletal deformity is linked to an elevation in DS [159]. In contrast, CNS involvement is
linked to an elevation in HS. When the efficacy of a recombinant enzyme of IDS fused to an
antibody against human transferrin receptor was tested in a murine model, a novel IDS
model expressing human transferrin by a knock-in strategy was used [153].

4.3. Treatment

The current standard therapy for MPS II is an enzyme replacement therapy that infuses
a therapeutic recombinant enzyme intravenously [160]. This treatment has had a positive
therapeutic outcome in somatic, but not neurological, manifestations. The latter is due to
the blood–brain barrier, which separates the blood and brain with neuronal endothelial
cells. To overcome this difficulty, the possibility of intrathecal administration has been
examined [161].

4.4. Biomarker

An accumulation of GAGs is a hallmark of MPS II and other disease subtypes of MPS
ranging from MPS I to MPS VII. Historically, an elevation in the colorimetric substance in
the presence of Alcian blue or Methylene blue has been used as a measure of GAG accumu-
lation in clinical specimens. This is based on the ionic interaction between the sulfate group
and positively charged nitrogen atoms in these dyes under neutral pH. For classification,
electrophoresis has been used for the separation of DS, HS, CS, and keratan sulfate. In MPS
II, together with MPS I, both HS and DS are elevated under pathophysiological conditions.
In contrast, HS, DS, and keratan sulfate alone are preferentially elevated in MPS III, MPS
VI, and MPS IV, respectively. These biomarkers may be quantified as a disaccharide after
digestion with acid or enzyme reaction. Methanolysis and other alcoholysis of GAG into
disaccharides may be performed more affordably, but quantification requires controlled
experimentation because formed disaccharides undergo further degradation after a pro-
longed reaction period [9]. Enzyme digestion of GAG occurs under much milder conditions,
such as neutral pH, but the enzymes used for this digestion have limited availability [162].



Int. J. Mol. Sci. 2022, 23, 1963 16 of 23

5. Future Perspectives

These animal models are anticipated to be applied for the development of novel
therapeutic agents. As mentioned, enzyme replacement therapy has been developed
using these mouse models. Gene therapy that delivers therapeutic genes exogenously has
attracted a lot of attention in LSD and other clinical areas. Historically, the use of lentiviral
vector has been studied extensively. This technique uses autologous hematopoietic stem
cells for delivery; thus, affected individuals do not need to wait long to find an HLA
type-matched donor and have a reduced risk for graft-versus-host disease. More recently,
adeno-associated virus (AAV) has also attracted attention for gene therapy because these
vectors are not incorporated into genomes, thus the descendants of affected individuals do
not have a therapeutic gene [163]. Among more than 10 serotypes of AAVs, serotype 9 has
often been used because its penetration of the blood–brain barrier is better than the others.

Similarly, the roles of disease modifiers will be examined in the future. Among the
reported phenotypes, CNS involvement in LSDs has suggested an association with inflam-
mation because microglial activation is commonly found in mice and humans. A recent
study in macrophage biology has suggested that macrophages can be grouped into two
distinct subpopulations, such as inflammatory M1 macrophages and anti-inflammatory
M2 macrophages [164]. In this classification, M1 macrophages produce inflammatory cy-
tokines, such as TNF-α, IFN-γ, IL-6, and others, while M2 macrophages produce IL-10 and
TGF-β and express mannose receptors and scavenger receptors. Thus, a systematic study
of neuroinflammation in CNS involvement in LSD is required. Apart from inflammation,
X-inactivation is involved in the disease initiation in females with X-linked disorders, such
as MPS II in LSDs. In fact, such an example has been reported in humans, although the
prevalence is low. For diagnosis, the severity of the manifestation in X-linked disorders in
females is commonly dissociated with the changes in biomarkers, such as accumulating
substances and enzyme activity. In future studies, the molecular mechanism behind female
MPS II needs to be elucidated.
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