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Abstract 

Background:  Pancreatic ductal adenocarcinoma (PDAC) is an often fatal malignancy with an extremely low survival 
rate. Liver metastasis, which causes high mortality, is the most common recurring metastasis for PDAC. However, the 
mechanisms underlying this liver metastasis and associated candidate biomarkers are unknown.

Methods:  We performed mRNA profiling comparisons in 8 primary tumors (T) and 12 liver metastases (M) samples 
using the Gene Expression Omnibus (GEO) database. After determining differentially expressed genes (DEG), gene 
ontology (GO), pathway enrichment and protein–protein interaction (PPI) network analyses were performed to 
determine DEG functions. Then, Cytoscape was used to screen out significant hub genes, after which their clinical rel-
evance was investigated using The Cancer Genome Atlas (TCGA) resources. Furthermore, prognosis-associated gene 
expression was validated using Oncomine and TCGA database. Lastly, associations between prognosis-associated 
genes, immune cells and immunological checkpoint genes were evaluated using the Tumor Immune Estimation 
Resource (TIMER).

Results:  In total, 102 genes were related to liver metastasis and predominantly involved in cell migration, motil-
ity, and adhesion. Using Cytoscape, this number was narrowed down to 16 hub genes. Elevated mRNA expression 
levels for two of these genes, SPARC (P = 0.019) and TPM1 (P = 0.037) were significantly correlated with poor disease 
prognosis. For the remaining 14, expression was not related to overall patient survival. SPARC had higher expression 
in patients with metastatic PDAC than those with non-metastatic PDAC in TCGA dataset. SPARC and TPM1 levels were 
also positively correlated with the immune infiltration of specific cell types. Additionally, both genes exhibited strong 
co-expression associations with immune checkpoint genes.

Conclusions:  Combined, we suggest SPARC has high potential as biomarker to predict liver metastasis during PDAC. 
Additionally, both SPARC and TPM1 appeared to recruit and regulate immune-infiltrating cells during these patho-
physiological processes.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is a predomi-
nantly fatal malignancy with a very low survival rate of 
approximately 9% [1]. The online GLOBOCAN (2018) 
database previously stated pancreatic cancer was the 7th 
major cause of cancer mortality, with almost as many 
deaths (n = 432,242) as new incidence cases (n = 458,918) 
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[2]. A major significant PDAC trait is its extreme aggres-
siveness, with localized invasion and distant metastasis 
characteristics. The most frequented distant metastasis 
site is the liver [3]; in more than 60% of resected patients, 
relapse was accompanied by distant hepatic recurrence 
within the first two years post-surgery [4, 5]. Currently, 
in clinical practice, there are no defined protocols pre-
dicting liver metastasis occurrence in individuals with 
PDAC, therefore, molecular mechanisms must be inves-
tigated and potential biomarkers identified for these seri-
ous and complex pathophysiological conditions.

The tumor microenvironment (TME) exerts key func-
tions during tumorigenesis, metastasis, and drug resist-
ance towards PDAC [6, 7]. PDAC is non-immunogenic in 
nature and is characterized by a desmoplastic TME, with 
high fibroblastic cell numbers and extracellular matrix 
deposition, poorly infiltrated by CD8+ T cells [8]. The 
structure is highly effective in promoting immune escape, 
thereby protecting tumor cells against the effective deliv-
ery of chemotherapeutic agents [9]. A similar desmoplas-
tic TME also occurs at liver metastatic sites during PDAC 
[10, 11], however, metastatic TME functions and impli-
cations for tumor development and immunotherapy for 
PDAC are unclear.

Here, we compared mRNA expression profiles between 
primary tumor and liver metastasis samples using Gene 
Expression Omnibus (GEO) resources. We performed 
differentially expressed gene (DEG) analyses using Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment, protein–protein interaction (PPI) network 
analyses, and gene ontology (GO) processing to deter-
mine gene functions. Then, using the Cytoscape cyto-
Hubba plugin, we screened for the most significant hub 
genes. Next, we assessed the clinical relevance of hub 
genes using TCGA. Lastly, associations between liver 
metastasis and prognosis-associated genes and immune 
cell types were examined by the Tumor Immune Estima-
tion Resource (TIMER). Our observations provide new 
knowledge and further insights on liver metastasis mech-
anisms during PDAC.

Methods
Data collection and processing
GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/) is a 
global public repository for archiving and freely distrib-
uting high-throughput gene expression and genomics 
data sets, which is created by the National Center for 
Biotechnology Information (NCBI) [12]. The microarray 
datasets, GSE19279 [13] and GSE42952 [14] from GEO 
database were used for our studies. GSE19279 comprised 
4 primary (T) PDAC and 5 pancreatic liver metasta-
sis (M) samples, whereas GSE42952 included 4 primary 
(T) PDAC and 7 liver metastasis (M) samples. GEO2R 

website (http://​www.​ncbi.​nlm.​nih. gov/geo/geo2r/) was 
an analysis tool that comes with the GEO database and 
was used to screen for differentially expressed mRNAs 
in M versus T. For analyses, P adj. < 0.05 and |log2FC|> 1 
were established as cut-off criteria for DEG identification.

Functional enrichment analyses
Metascape (http://​metas​cape.​org) is an effective and 
efficient online analysis database for gene annota-
tion, functional enrichment, interactome analysis, and 
membership search [15]. In this study, pathway enrich-
ment analyses (GO, KEGG, BioCarta, and Reactome) 
of DEGs were conducted using Metascape. The R pack-
ages ‘GOplot’ [16], ‘DOSE’ [17], ‘enrichplot’ [18] and 
‘clusterProfiler’ [19] (The R Foundation for Statistical 
Computing, Vienna, Austria) were utilized to implement 
visualized figures of GO and KEGG enrichment analyses. 
GO functional enrichment analysis is the major method 
to explore the potential biological process (BP), molecu-
lar function (MF), and cellular component (CC) of genes. 
KEGG is an important public pathway related biological 
systems database that integrates genomic, chemical and 
systemic functional information [20–22]. KEGG path-
way enrichment analysis is a common method to iden-
tify significantly enriched metabolic pathways or signal 
transduction pathways in the functional genes. Also, 
GeneMANIA (http://​www.​genem​ania.​org/) is an online 
prediction website for generating hypotheses about gene 
function, analyzing gene lists and prioritizing genes for 
functional assays [23]. In the present study, GeneMANIA 
was used to provide gene networks and co-expressed 
genes. P < 0.05 was established as cut-off criterion.

Building PPI networks and module analyses
STRING (https://​string-​db.​org/), an online platform of 
predicted protein interactions, aims to collect, score, and 
integrate all publicly available sources of PPI informa-
tion, and to complement these with computational pre-
dictions [24]. We conducted a PPI network diagram of 
identified DEGs with STRING. Those with a combined 
score ≥ 0.4 were eligible to build the relational network, 
visualized in Cytoscape (version 3.7.2). Then cytoHubba 
is a plugin of Cytoscape to rank nodes by their network 
features in a network, and is utilized to provide 11 analy-
sis methods including DEGREE, Density of Maximum 
Neighborhood Component (DMNC), Maximal Clique 
Centrality (MCC), Maximum Neighborhood Compo-
nent (MNC), Edge Percolated Component (EPC), and 
six centralities (Bottleneck, Ec-Centricity, Closeness, 
Radiality, Betweenness, and Stress) [25]. Hub genes were 
ascertained using five models (DEGREE, DMNC, MCC, 
MNC, and EPC) in cytoHubba.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih
http://metascape.org
http://www.genemania.org/
https://string-db.org/
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Prognostic hub gene signatures using the TCGA database
TCGA ( https://​portal.​gdc.​cancer.​gov/) is a vast reposi-
tory of high-throughput data on DNA, RNA, and pro-
teins data in many cancer types and multi-omics data 
that is supported by the National Cancer Institute of 
the United States [26]. The mRNA expression profile 
and clinical information of a total of 178 PDAC samples 
were obtained from the TCGA website for The Can-
cer Genome Atlas pancreatic ductal adenocarcinoma 
(TCGA-PAAD) dataset project.

The R ‘survival’ package [27] was used to investigate 
overall survival analysis. 177 patients with pancreatic 
cancer were assigned to high (n = 88) and low expres-
sion groups (n = 89) and correlations examined between 
expression levels and patient survival. One patient had no 
survival time, excluding survival analysis. Patient progno-
sis in groups were processed using Kaplan–Meier meth-
ods, and survival outcomes in groups were compared 
using log-rank tests. A log-rank P value and a hazard 
ratio (HR) were calculated and P < 0.05 was considered 
statistically significant.

Validation of liver metastasis‑associated gene expression
Oncomine (https://​www.​oncom​ine.​org/​resou​rce/​login.​
html) is a cancer microarray database and a bioinfor-
matics analysis tool across 18,000 cancer gene expres-
sion microarrays which aims at collecting, standardizing, 
analyzing, and delivering cancer transcriptome data to 
the biomedical research community [28]. Badea Pancre-
aes dataset is one of the pancreatic cancer datasets in the 
Oncomine database. we adopted the Badea Pancreaes 
dataset to further validate the expression of liver metas-
tasis-associated gene in PDAC.

Gene Expression Profiling Interactive Analysis (GEPIA) 
(http://​gepia.​cancer-​pku.​cn/​index.​html) is an interactive 
web server for analyzing the RNA sequencing expres-
sion data of 9,736 tumors and 8,587 normal samples from 
the TCGA and the Genotype-Tissue Expression (GTEx) 
projects, which is developed by Peking University [29].
We also investigated liver metastasis-associated gene 
expression using GEPIA. Due to limited normal pan-
creatic tissue at TCGA, we validated specific DEG lev-
els using TCGA PDAC tumor information and matched 
normal tissue information from TCGA and GTEx plat-
forms. |log2FC|> 1 and P < 0.05 values were statistically 
significant.

UALCAN (http://​ualcan.​path.​uab.​edu/​analy​sis.​html) is 
a comprehensive and interactive web resource for analyz-
ing TCGA gene expression data. It allows researchers to 
study gene expression levels, not only to compare tumor 
with normal samples, but also to compare across various 
tumor subgroups based on pathological cancer stages, 

tumor grade, race, gender, body weight, and other clin-
icopathologic features [30]. In our study, the UALCAN 
website was used to determine which clinicopathological 
factors were related to the expression of liver metastasis-
associated gene in PDAC.

One hundred seventy-eighth samples of TCGA-PAAD 
dataset were divided into non-metastasis and metasta-
sis group, and liver metastasis-associated gene expres-
sion levels between the two groups were compared using 
GraphPad Prism 8.0.2 (GraphPad Prism Software Inc., 
San Diego, CA, USA). The Mann–Whitney U test was 
applied to compare the differences between two groups. 
The data were summarized as median with inter quartile 
range (IQR). Statistical significance was assumed for a 
two-tailed P-value of < 0.05.

Connections between liver metastasis‑associated genes, 
immune cell infiltration and immune checkpoints
TIMER (https://​cistr​ome.​shiny​apps.​io/​timer/) is a com-
putational tool to comprehensively explore the molecu-
lar characterization of tumor immune interactions across 
diverse cancer [31]. It calculates the abundances of six 
immune infiltrates (CD8 + T cells, CD4 + T cells, B cells, 
neutrophils, macrophages, and dendritic cells) based on 
RNA-Seq expression profiles data. We used TIMER to 
assess correlations between metastasis-associated gene 
expression and six immune cells and CTLA4, CD274, 
PDCD1, and PDCD1LG2 checkpoint genes.

Results
DEG screening
The details of the GEO datasets in this study are shown 
in supplementary Table S1, and the clinicopathologi-
cal characteristics of the patients are displayed in Table 
S2. GEO2R was used to investigate gene expression pro-
files from GSE19279 and GSE42952 datasets. To iden-
tify liver metastasis-associated genes in PDAC, mRNA 
expression levels were compared in M versus T samples. 
For analyses, |log2FC|> 1 and P < 0.05 were established 
as statistically meaningful cut-off points. In total, 1128 
DEGs, comprising 406 upregulated and 722 downregu-
lated genes were identified in GSE19279, and 1347 DEGs 
comprising 862 upregulated and 485 downregulated 
genes were ascertained in GSE42952 (Figs.  1a-b). Venn 
diagrams showed that 102 genes (37 upregulated and 65 
downregulated) overlapped between datasets (Figs.  1c-
d), suggesting potentially relevant functions in PDAC 
metastasis.

Functional DEG analysis
From GO investigations, 102 DEGs were primarily posi-
tively enriched for the regulation of cell migration, cell 
motility, cellular component movement, and locomotion 

https://portal.gdc.cancer.gov/
https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
http://gepia.cancer-pku.cn/index.html
http://ualcan.path.uab.edu/analysis.html
https://cistrome.shinyapps.io/timer/
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(Fig.  2a). KEGG analyses showed DEGs were primarily 
enriched for phagosome, cell adhesion molecules (CAMs), 
and Epstein-Barr virus infection (Fig. 2b). GO and KEGG 
enriched genes are shown in Fig. 2c and d. Pathway analy-
ses using Metascape indicated hub genes were primarily 
enriched for hemostasis, binding and uptake of ligands by 
scavenger receptors, cytokine signaling in immune system, 
and post-translational protein phosphorylation (Figs. 3a-b).

Building PPI networks and selecting and analyzing hub 
genes
To examine putative DEG interactions, we investi-
gated associations between identified 102 DEGs using 

STRING. We generated a PPI network of DEGs with com-
bined scores ≥ 0.4. Interacting genes were visualized in 
Cytoscape for network analysis. Sixteen hub genes were 
identified based on DEGREE (Fig.  4a), DMNC (Fig.  4b), 
MCC (Fig. 4c), MNC (Fig. 4d), and EPC (Fig. 4e) Cytoscape 
models: FLNA, F5, THBS1, GAS6, VCAN, ACTA2, 
HSP90B1, CXCR4, SPARC, KTN1, TPM1, SRGN, LTBP1, 
CALR, MYL9 and TPM4 (Fig.  4f). We then used Gene-
MANIA to analyze these hub genes and their co-expressed 
genes. All sixteen genes displayed complex PPI networks: 
63.82% were co-expression, 24.68% physical interactions, 
7.25% shared protein domains, 4.10% were co-localization 
and 0.16% were Genetic Interactions (Fig. 3c).

Fig. 1  DEGs associated with liver metastasis in PDAC. A– B Volcano plots were drawn to show the DEGs in primary PDAC (T) samples versus 
pancreatic liver metastasis (M) samples from the two GEO datasets (GSE19279: 4 primary T vs. 5 M samples, GSE42952: 4 primary T vs. 7 M samples). 
Red points: upregulated expressed mRNAs; green points: downregulated expressed mRNAs; black points: normally expressed mRNAs. GEO2R online 
tool was used to analyze DEGs, with the cut‑off criteria of |log2FC|> 1 and adj. P < 0.05. Venn diagram displaying C 37 upregulated DEGs and D 65 
downregulated DEGs based on the two GEO datasets
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The prognostic relevance of hub genes for PDAC
To evaluate hub gene expression for PDAC prognosis, the 
TCGA PAAD dataset was used to identify genes asso-
ciated with overall survival (OS). As indicated (Fig.  5), 
elevated mRNA expression levels of SPARC (P = 0.019, 
OS HR = 1.60) and TPM1 (P = 0.037, OS HR = 1.54) were 
significantly correlated with poor prognosis. Expression 

of the remaining 14 genes was not associated with overall 
patient survival.

Validation of liver metastasis‑associated gene expression 
using Oncomine, GEPIA and UALCAN database
SPARC and TPM1 mRNA expression levels were 
next verified in PDAC using Oncomine, GEPIA and 

Fig. 2  DEGs functional enrichment analysis. GO analysis and KEGG pathway analysis of 102 DEGs were conducted using Metascape database. The R 
packages were utilized to implement visualized figures of GO and KEGG enrichment analyses. A Top 10 enriched GO biological processes for DEGs. 
B Top 10 enriched KEGG pathways for DEGs [20–22]. C–D Hierarchical clustering of gene expression profiles in GO and KEGG pathway
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UALCAN. The Oncomine database revealed that SPARC 
transcripts were 8.351-fold higher in PDAC when com-
pared with normal samples from Badea Pancreaes Statis-
tics (P = 2.41E-13) (Fig.  6a) and TPM1 transcripts were 
2.116-fold higher in PDAC comparison to normal sam-
ples (P = 6.68E-8) (Fig.  6b). Furthermore, SPARC and 
TPM1 expression were both higher in PDAC liver metas-
tasis tissue than PDAC tissue, however, due to low speci-
men numbers, P values were not calculated (Fig. 6c-d).

GEPIA data also indicated SPARC and TPM1 mRNA 
levels were significantly elevated in PDAC in comparison 
to normal pancreatic tissue (Fig. S1).

The correlation of SPARC and TPM1 expression and 
clinicopathological parameters, including tumor stage, 
tumor grade and lymphnode metastases, was ana-
lyzed by UALCAN database. The results indicated that 
the expression level of SPARC was higher in grade 2 
(P = 0.004) and grade 3 (P = 0.046) than that in grade 

Fig. 3  Analysis of hub gene pathways and interaction networks. A–B Top 20 enriched pathways involving 102 DEGs using Metascape according 
to KEGG, BioCarta and Reactome. C Hub genes and co-expression genes were analyzed using GeneMANIA, 16 hub genes were indicated in the 
inner circle while 20 of the predicted co-expressed genes were located in the outer circle. The color of the line represented different type of their 
relationships. The color inside the gene dots illustrated functions which these genes were involved in
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Fig. 4  Hub genes identification. A–E The top 20 hub genes were ascertained using five models (DEGREE, DMNC, MNC, MCC, and EPC) with the 
Cytoscape (version 3.7.2) plugin cytoHubba based on their connectivity degree. Red represented high degree value and yellow represented low 
degree value. F A Venn diagram showed an overlap of 16 genes
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Fig. 5  Hub gene expression associations with PDAC prognosis based on the TCGA PAAD datasets (n = 177). OS curves of 16 hub genes in TCGA 
PAAD patients obtained using the Kaplan–Meier method. The patients classified into high- (n = 88) or low-expression (n = 89) groups for these 16 
genes, respectively, and the two groups compared with log-rank test. P < 0.05 was considered statistically significant
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1; the expression level of TPM1 was higher in grade 3 
(P = 0.043) than that in grade 4 (Fig. S2, Table S3).

To further validate our results, we compared the expres-
sion of SPARC and TPM1 between metastasis and 

non-metastasis PDAC patients in TCGA dataset. The 
results showed that SPARC had higher expression in the 
metastasis group than that in the non-metastasis group. 
(P = 0.041) (Fig. S3).

Fig. 6  Expression boxplots for SPARC and TPM1 in Oncomine database. A-B SPARC and TPM1 expression in Badea pancreas (n = 78) grouped by 
normal pancreas (1: n = 39) and PDAC (2: n = 39). C-D The expression of SPARC and TPM1 in Harada pancreas (n = 28) grouped by cancer sample 
site (1: primary site, n = 2; 2: primary site-body of the pancreas, n = 4; 3: primary site-head of the pancreas, n = 14; 4: primary site-tail of the pancreas, 
n = 2; 5: lymph node metastasis, n = 4; 6: distant metastasis-liver, n = 2)
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SPARC and TPM1 relevance to immune cell infiltration in PDAC
To ascertain if correlations existed between tumor infil-
trating immune cells and metastasis-associated gene 
levels, we examined associations using TIMER. SPARC 
expression was positively correlated with infiltrating 
CD8 + T cells (P = 9.23e-18), macrophages (P = 1.73e-
18), neutrophil (P = 3.96e-17), and myeloid dendritic cells 
(P = 3.83e-25). Similarly, TPM1 was also positively corre-
lated with infiltrating CD8 + T cells (P = 1.06e-07), mac-
rophages (P = 1.11e-06), neutrophil (P = 2.63e-10), and 
myeloid dendritic cells (P = 1.34e-09) (Fig. 7). As current 
immunotherapy strategies rely on immunological check-
point inhibitors [32, 33], we used TIMER to investigate 
co-expression relationship of both genes with immune 
checkpoint-related genes. SPARC displayed strong co-
expression relationships with CD274, CTLA4, PDCD1, 
and PDCD1LG2, whereas TPM1 had co-expression rela-
tionships with CD274, CTLA4, and PDCD1LG2 (Fig. 8).

Discussion
Liver metastasis is a critical issue during PDAC and 
adversely affects patient survival and prognosis. There-
fore, metastasis mechanisms must be unraveled and 
new candidate biomarkers identified to comprehensively 
monitor this harmful pathophysiology.

Here, mRNA expression levels in M and T tissue were 
compared and showed that 102 DEGs were specifi-
cally associated with liver metastasis. Our GO enrich-
ment analyses indicated that DEGs were implicated 
in regulating cell migration, motility, cell component 
movement, and locomotion. Our KEGG analyses also 
determined that DEGs were mostly enriched for the 
phagosome, CAMs, and Epstein-Barr virus infection. 
Cell migration, including single cell and collective cell 
models, is a key step in mediating carcinoma cell meta-
static dissemination [34]. CAMs through multifaceted 
roles as signaling molecules, mechanotransducers and 
key components of the cell migration machinery are 
involved in almost every step of cancer progression 
from primary tumor development to metastasis[35, 36]. 
Based on these studies, we hypothesize DEGs may pro-
mote liver metastasis during PDAC by regulating cell 
adhesion, movement, and invasion processes.

Next, we examined the prognostic relevance of the 
identified 16 hub genes. These data suggested elevated 

Fig. 7  Analysis of immune cell infiltration. SPARC (A) and TPM1 (B) 
expression correlations with tumor purity and infiltrating levels of 
B cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils, and 
dendritic cells in TIMER database. The scatter plots displayed the 
purity-adjusted spearman’s rho value and statistical significance
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Fig. 8  Association between SPARC (A) and TPM1 (B) expression level and immune checkpoints genes (CD274, CTLA4, PDCD1, and PDCD1LG2) 
using TIMER (n = 368)
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SPARC and TPM1 expression levels were highly asso-
ciated with a poor PDAC prognosis, indicating their 
putative value as prognostic PDAC indicators. Since the 
overview of Table S2 shows "NA" for most of pathological 
data, we could not analyze the correlation of survival and 
prognosis with the clinical data of patients in this manu-
script. Subsequently, clinical samples are needed to be 
collected to verify the correlation between prognosis and 
clinical parameters.

The immune system, particularly participating tumor 
infiltrating immune cells, is involved in tumor metas-
tasis [6, 37], therefore we predicted gene-immune cell 
interactions with identified hub genes. Both SPARC and 
TPM1 expression levels were significantly associated 
with infiltrating CD8 + T cells, macrophages, neutro-
phils, and dendritic cells. Also, both genes demonstrated 
strong co-expression relationships with immunological 
checkpoint genes. Combined, SPARC and TPM1 may be 
involved in recruiting and regulating immune-infiltrating 
cells during liver metastasis in PDAC. However, SPARC 
and TPM1 roles in tumor-infiltrating require further 
investigation.

Functioning as an extracellular protein, SPARC has 
essential functions in cancer cell proliferation, migration, 
angiogenesis, matrix cell adhesion, and tissue remodeling 
[38, 39]. The protein is found in tumor stroma and is ele-
vated in several cancers, including breast [40], lung [41, 
42], and melanoma [43]. Furthermore, elevated SPARC 
expression at the stoma is present in approximately 40% 
of patients with PDAC having received resection surgery, 
and critically, SPARC levels appear to be an independent 
prognostic factor [44]. A previous study also indicated 
that polymorphisms in SPARC could predict outcomes 
for patients with locally advanced and metastatic pan-
creatic cancer [45]. In another study, SPARC had a dual 
functional role as a prognosis predictor and poten-
tial marker for lymph node metastasis in patients with 
resected lesions [46]. In our study, SPARC was found to 
be have higher expression in the metastasis group than 
that in the non-metastasis group in PDAC patients, and 
high expression indicated shorter OS. This suggested 
that SPARC could be use as biomarker of PDAC liver 
metastasis. However, precise SPARC functions in PDAC 
related liver metastasis remain unclear.

As a member of the tropomyosin (TM) family, TPM1 
encodes high molecular weight TM isoforms which regu-
late the proliferation, motility, invasion, and metastasis 
of tumor cells [47]. Studies have shown TPM1 expres-
sion is dysregulated across several carcinomas, includ-
ing gastric [48], bladder [49] and osteosarcoma[50]. Low 
TPM1 expression predicted reduced survival in gastric 
cancer[48]. Tang et  al. reported that TPM1 was ele-
vated in renal cell carcinoma cell line, where tumor cell 

apoptosis was induced via p53-mediated mitochondrial 
signaling [51]. In this study, we found that elevated TPM1 
expression was associated with poor prognosis in PDAC 
patients and TPM1 involved in recruiting and regulating 
immune-infiltrating cells during PDAC metastasis, but 
the expression of TPM1 was not statistically significant 
between metastatic and non-metastatic PDAC patients. 
TPM1 seems to not be a biomarker of PDAC live metas-
tasis. However, TPM1 functions in pancreatic cancer and 
correlations with PDAC mediated liver metastasis need 
further study.

While our study still has some limitations, first, due to 
the lack of the clinicopathological parameters of patients 
in the GEO database, we could not collect enough data 
for effective analysis. Second, only the analysis of bioin-
formatics, we believe more cytological experiments, ani-
mal experiments and clinical studies must be conducted 
to experimentally verify our observations.

Conclusions
Using an integrated bioinformatics analysis approach, 
sixteen hub genes associated with liver metastasis PDAC 
were identified and their functions and pathways investi-
gated. Our data suggested the two hub genes, SPARC and 
TPM1 may have key roles in the PDCA tumor micro-
environment by regulating tumor-infiltrating immune 
cells. Further studies will be required to comprehensively 
explore SPARC and TPM1 functions and mechanisms in 
PDAC liver metastatic processes.
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