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1 | INTRODUCTION

Abstract

Mitochondrial acetoacetyl-CoA thiolase (T2, encoded by the ACAT1 gene) deficiency
is an inherited disorder of ketone body and isoleucine metabolism. It typically
manifests with episodic ketoacidosis. The presence of isoleucine-derived metabolites
is the key marker for biochemical diagnosis. To date, 105 ACAT1 variants have been
reported in 149 T2-deficient patients. The 56 disease-associated missense ACAT1
variants have been mapped onto the crystal structure of T2. Almost all these
missense variants concern residues that are completely or partially buried in the T2
structure. Such variants are expected to cause T2 deficiency by having lower in vivo
T2 activity because of lower folding efficiency and/or stability. Expression and activity
data of 30 disease-associated missense ACAT1 variants have been measured
by expressing them in human SV40-transformed fibroblasts. Only two variants
(p.Cys126Ser and p.Tyr219His) appear to have equal stability as wild-type. For these
variants, which are inactive, the side chains point into the active site. In patients with
T2 deficiency, the genotype does not correlate with the clinical phenotype but exerts
a considerable effect on the biochemical phenotype. This could be related to variable
remaining residual T2 activity in vivo and has important clinical implications

concerning disease management and newborn screening.
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B-ketothiolase deficiency

mitochondrial trifunctional enzyme that catalyzes 3-ketoacyl-CoA
thiolase activity (TFE, EC 2.3.1.16), the peroxisomal 3-ketoacyl-CoA

The mitochondrial acetoacetyl-CoA thiolase (commonly known as
B-ketothiolase [T2]; EC 2.3.1.9; encoded by the ACAT1 gene) is a
ubiquitous and important enzyme for ketone body synthesis and
degradation as well as in isoleucine catabolism (Fukao et al., 2014,
2018). Human tissues have, at least, five other thiolase isoenzymes:
Cytosolic acetoacetyl-CoA thiolase (CT, EC 2.3.1.9), mitochondrial
3-ketoacyl-CoA thiolase (T1, EC 2.3.1.16), the B subunit of the

thiolase (AB-thiolase, EC 2.3.1.16), and the peroxisomal thiolase type-1
(SCP2-thiolase; EC 2.3.1.176). These thiolases (excluding the SCP2-
thiolase) share 35-46% sequence identity and have both synthetic and
degradative functions; the degradative SCP2-thiolase has very low
sequence similarity with any of the other thiolase family members.
These thiolases are either dimers (tight dimers) or tetramers (dimers of
tight dimers) (Fukao, 2002; Harijan et al., 2013; Kiema et al., 2019).
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In the biosynthetic direction, thiolases catalyze the formation of a
carbon-carbon bond through a Claisen condensation mechanism (from
two acetyl-CoA molecules) and in the reverse, degradative direction a
C-C bond is broken through thiolysis (in the presence of CoA),
resulting in chain shortening of the acyl chain by two carbon atoms
(in case the substrate is an unbranched acyl chain) or by three atoms
(in case the substrate is a 2-methyl-branched acyl chain), such as for
example catalyzed by the T2 (Figure 1; Haapalainen, Merildinen, &
Wierenga, 2006; Song et al., 1994). No cofactors are required for the
catalytic activity of thiolases, and each thiolase catalyzes the reaction
in both directions. The crystal structures of several thiolases have been
reported (Haapalainen et al, 2006; Kiema et al, 2019). From this
structural information as well as from extensive sequence alignment, a
classification of thiolases has been proposed (Anbazhagan et al., 2014).
The crystal structure of the wild-type human T2 thiolase tetramer has
been reported in 2007 (Haapalainen et al., 2007). Two cysteines are
important for catalysis. The nucleophilic cysteine (Cys126 in human T2
thiolase) becomes acetylated in the reaction cycle (Figure 1), whereas
the second catalytic cysteine (Cys413) functions as an acid/base
(Figure 2). These cysteines protrude into the catalytic site from two
different catalytic loops, being the CxS loop and the CxG loop (Figure 2
and Figure 3).

Ketone bodies (acetoacetate and 3-hydroxybutyrate) are impor-
tant energy sources for most tissues, particularly the brain. Ketone
body synthesis begins in the liver by f-oxidation of free fatty acids to
output acetyl-CoA and acetoacetyl-CoA. T2 in the liver catalyzes the
Claisen condensation of two acetyl-CoA molecules into acetoacetyl-
CoA. In extrahepatic tissues, T2 is responsible for thiolytic cleavage
of acetoacetyl-CoA into two molecules of acetyl-CoA. T2 deficiency
causes episodic ketoacidosis. This indicates that T2 deficiency
impedes ketolysis to a greater extent than ketogenesis. The abundant

amount of T1 in the liver likely compensates for T2 deficiency in

ketogenesis (Fukao et al., 2014). Potassium ions specifically enhance
the activity of T2 but do not change that of T1 and other thiolases,
therefore the potassium ion-activated acetoacetyl-CoA thiolase
assay remains the gold-standard test for the T2 enzyme assay
(Middleton, 1973).

In isoleucine catabolism, T2 catalyzes the thiolysis of
2-methylacetoacetyl-CoA (2MAA-CoA) to acetyl-CoA and propionyl-
CoA. T2 deficiency is characterized by excessive accumulation of
isoleucine-catabolic intermediates that can be detected in urine as
2-methylacetoacetate (2MAA), 2-methyl-3-hydroxybutyrate (2M3HB),
and tiglyl-glycine (TIG) and in blood as tiglyl-carnitine and 2M3HB-
carnitine; notably, 2MAA is rapidly degraded and, consequently, is
sometimes hardly detected in urine samples, especially in nonfresh
ones (Aramaki et al., 1991). Therefore, T2 deficiency results in
excessive accumulation of not only 2MAA-CoA but also of the two
upstream metabolites, namely 2M3HB-CoA and 2-methyl-2E-bute-
noyl-CoA (tiglyl-CoA) (Fukao et al., 2014).

T2 deficiency (MIM# 203750, 607809) is an autosomal recessive
disease. Deficiencies of T2 and 3-hydroxy-3-methylglutaryl-CoA
lyase (EC 4.1.3.4; MIM# 246450) constitute the most common
inborn errors of ketone body metabolism (Abdelkreem et al., 2016;
Fukao et al., 2014). Since Daum, Lamm, Mamer, and Scriver (1971),
for the first time, characterized T2 deficiency, at least 159 patients
(Supporting Information Table) with the disease have been confirmed
(through enzyme assay and/or genetic analysis) worldwide without
ethnic preference. The incidence of T2 deficiency has been estimated
in some regions, as one per 232,000 newborns in Minnesota, one per
190,000 newborns in northern Vietnam, and one per 111,000
newborns in Hyderabad (India) (Abdelkreem, Akella, et al., 2017;
Nguyen et al., 2017; Sarafoglou et al., 2011).

Herein, we review 105 ACAT1 variants that have been reported in

149 patients with T2 deficiency; we use the term “disease-associated
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FIGURE 1 The reactions catalyzed by the T2 thiolase. (a) The biosynthetic reaction: The substrates are two molecules of acetyl-CoA. (b) The
degradative reaction: The substrates are 2-methylacetoacetyl-CoA (or acetoacetyl-CoA) and CoA. In both directions, the reaction mechanism
proceeds via a covalent intermediate, in which the nucleophilic cysteine, Cys126 in human T2, becomes acetylated in the biosynthetic as well as

in the degradative reactions
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FIGURE 2 Schematic drawing showing the T2 thiolase reaction in the synthetic direction. Two molecules of acetyl-CoA are converted into
CoA and acetoacetyl-CoA. The role of the four catalytic residues (Cys126, Asn353, His385, Cys413 of human T2) is highlighted. These residues
protrude into the catalytic site from the four catalytic loops (the CxS, NEAF, GHP, and CxG loops, respectively, shown in bold). Cys126 is the
nucleophilic cysteine and Cys413 is the acid/base cysteine. The side chains of Asn353 (fixing Wat98) and His385, as well as the main chain
N-atoms of the CxS and CxG loops, contribute to the two oxyanion holes (OAH1 and OAH2, shown as shaded semicircles). These oxyanion holes
stabilize the negative charge that develops during the reaction on the thioester oxygen atom of the reaction intermediates, being therefore also
critically important for catalysis. The short-curved arrows visualize the breaking/forming of bonds

ACAT1 variants” to refer to variants associated with T2 deficiency. A
discussion on non-disease-associated ACAT1 variants is beyond the
scope of this review. We discuss important structural features of
human T2 and the location of the disease-associated missense ACAT1
variants in the context of the crystal structure of human T2. To
increase the understanding of this rare disease, we also discuss its

clinical and laboratory implications.

2 | THE T2 GENE AND DISEASE-ASSOCIATED
VARIANTS

The human ACAT1 gene (NCBI reference sequence: NG_009888.1) is
located on chromosome 11g22.3-q23.1, spanning approximately
27 kb. This gene contains 12 exons interspersed by 11 introns. The
5’-flanking region lacks a classic TATA box, but it contains two CAAT
boxes and is GC rich. These features are characteristic of house-
keeping genes. Human T2 complementary DNA (cDNA; NCBI
reference sequence: NM_000019.3) spans about 1.5 kb. It encodes
a precursor protein (NCBI reference sequence: NP_000010.1)
composed of 427 amino acids, including a leader polypeptide of
33-amino acid (Kano et al,, 1991).

The sequence of human T2 is shown in Figure 3. The available
data on ACAT1 variants associated with T2 deficiency are shown in
three tables. Table 1,2 have the information on the disease-
associated missense variants. These two tables also describe
information on the location of the variant site with respect to the
structure, in particular, whether the side chain of a residue is buried
or whether it is exposed to bulk solvent. Table 1 lists the missense
variants that have also been characterized with respect to (a)
expression efficiency and (b) catalytic activity properties. The
experimental details related to these characterizations are provided
in the Supporting Information. For some variants, this information is
available for expression at three temperatures; 30, 37, and 40°C. As
can be seen in Table 1, there is generally a good correlation between

the results obtained at different temperatures (e.g., whenever the

data of expression at three temperatures are available, then the
expression levels are the highest at 30°C and the lowest at 40°C). In
addition, the activity recovery is generally never higher than the
expression recovery. Table 3 lists other disease-associated variants
(ATG initiation codon, insertions, deletions, duplications, nonsense
and aberrant splicing). Figure 4 depicts the location of the disease-

associated variants with respect to the exons of the ACAT1 gene.

3 | STRUCTURAL FEATURES OF THE T2
THIOLASE

Human T2 is initially synthesized in the cytosol as a 45-kDa
precursor that matures, following mitochondrial entry, to a homo-
tetramer of 41-kDa subunits (Fukao et al., 1990; Middleton, 1973).
The leader peptide is cleaved off on entry into the mitochondria. The
overall structure of the tetramer is shown in Figure 5 and Figure S1.
The active site is located at the interface of the tight dimer, as shown
in Figure 6 and Figure S2. The construct used for the protein
crystallographic studies starts at residue Val34 (which was changed
into an alanine to provide better yields when expressed as a
recombinant protein in Escherichia coli) and the C-terminus is residue
Leud27. In the crystal structure (PDB code 2IBW), residues Pro37 to
Leu427 are well ordered and are included in the final model
(Haapalainen et al., 2007) for each of the four chains of the tetramer.
The N- and C-terminal residues are far away from the catalytic site,
being on the opposite site of the subunit. The built model of each
subunit has the distinct conserved thiolase superfamily fold that can
be subdivided into the N-terminal domain, loop domain, and
C-terminal domain (Haapalainen et al., 2007; Kiema et al., 2014,
2019). The N- and C-terminal domains have the same Bafafafp-
topology and these two domains jointly form a five-layered a-f-a-f-a
structure. The central a-layer consists of the two active site helices:
Noa3 of the N-terminal domain and Ca3 of the C-terminal domain. The
structure of the N-terminal domain of T2 is made by residues
Pro37-Ser155 and Asn287-Leu309, whereas the C-terminal domain
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FIGURE 3 The sequence of the human mitochondrial acetoacetyl-CoA thiolase (T2, UniProt code: P24752) with nomenclature of secondary
structure, sequence fingerprints, and loops. The N-terminal region is the mitochondrial leader sequence, which is cleaved off on entry into the
mitochondria. The secondary structure is obtained from the structure of the human T2 (PDB code: 2IBW) using the ESPript 3.0 server (Robert &
Gouet, 2014) and shown above the sequence. An asterisk (*) above the sequence marks every tenth residue. The mature sequence starts at
Val34, indicated by a black circle (e) above the sequence. Important active site loops that are near the catalytic site are identified below the
sequence with their sequence fingerprint. The nomenclature of the functional regions of the loop domain (residues 156-286) is also given below
the sequence. The structural properties of the latter loop regions are visualized in Figure 7 and Figure S3

is formed by residues Ala310-Leu427. The loop domain (Figure 7,
Figure S3), which is formed by residues Met156-Leu286, covers the
closely associated N- and C-terminal domains of the subunit. The loop
domain has two protruding loops: the tetramerization loop
(Pro160-Asp177), which stabilizes the tetrameric structure of the
enzyme, and the cationic loop (Val232-Asp253). The tip of the

cationic loop has a basic side chain (Lys243), pointing toward the

active site of the opposing dimer. The cationic loop is possibly
important for binding and/or release of the negatively charged CoA
substrate at the active site of the opposing dimer (Haapalainen et al.,
2007).

The functional site of each of the subunits of the T2 tetramer is
very extensive, including not only the catalytic residues but also the

residues that shape the CoA binding site. These residues are part of
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TABLE 3 Other ACAT1 variants associated with T2 deficiency (n=49)

E/I

Nucleotide change®

(A) ATG initiation codon (n=3)

El

E1l

E1l

(B) In-frame deletions/insertions/duplications (n=7)

E3

E4
E8
E10
E11
E11
E12

c1A>G

c2T>A

c2T>C

c.163_167delinsAA

c.254_256del
c.756_758del
¢.947_949dup
¢.1016_1018dup
¢.1035_1037del
c.1241_1245delinsGT

Predicted amino acid change®

Reduced translation efficiency (11%)

Reduced translation efficiency (7.4%)

Reduced translation efficiency (19%)

p.Phe55_Leu56delinsLys

p.Glu85del

p.Glu252del

p.Ala316dup

p.Asp339dup

p.Glu345del
p.Asn414_Gly415delinsSer

(C) Out-of-frame deletions/insertions/duplications, nonsense, aberrant splicing, others (n = 39)

E1l

E2
E2

E2

E2

17-E8

E8
E8

c.52dup

c.79A>T
c.83_84del

c.86_87dup

Cc.99T>A

¢.121-3C>G
¢.121-13T>A

c.149del

c.286C>T

c.334+1G>A
¢.354_355delinsG
c.414_415del
c.435+1G>A

c.446del
c.462_482delinsTCCTC
c.622C>T

¢.730+1G>A

€.731-46_752del

¢.754_755insCT
c.814C>T

p.Leu18Profs*49

p.Arg27*
p.Tyr28Cysfs*38

p.Glu30Trpfs*11

p.Tyr33*

Splice acceptor site (probably exon 3 skipping)

Splice acceptor site (causing exon 3 skipping
in >90% of mRNA)

p.Thr50Asnfs*7

p.GIn96*

splice donor site (probably exon 4 skipping)
p.Cys119Valfs*4

p.Leu140Tyrfs*36

splice donor site (probably exon 5 skipping)
p.Val149Glyfs*14

p.Glu154Aspfs*4

p.Arg208*

Splice donor site (probably exon 7 skipping)

Splice acceptor site (causing exon 8 skipping)

p.Glu252Alafs*17

p.GIn272* (75% of mRNA), affects ESE
sequence causing exon 8 skipping (25% of
mRNA)

WiLEY-L

Reference

Fukao, Matsuo, et al. (2003), Nguyen et al.
(2017)

Fukao et al. (1993), Fukao, Matsuo, et al.
(2003)

Fukao, Zhang, et al. (2003), Fukao, Matsuo,
et al. (2003)

Fukao, Nguyen, et al. (2010), Nguyen et al.
(2015), (2017)

Fukao, Nakamura, et al. (2002)

Sakurai et al. (2007)

Paquay et al. (2017)

Zhang et al. (2004), Paquay et al. (2017)
Sewell et al. (1998), Fukao et al. (2001)

Gibson, Elpeleg, and Bennett (1996), this
paper

Zhang et al. (2004), Sarafoglou et al. (2011),
Paquay et al. (2017)

Paquay et al. (2017)

Fukao et al. (1997), Paquay et al. (2017), Su
et al. (2017)

Al-Shamsi et al. (2014), Al-Jasmi, Al-Shamsi,
Hertecant, Al-Hamad, and Souid (2016)

Fukao, Yamaguchi, et al. (1995), Fukao et al.
(2001)

Su et al. (2017)
Aoyama et al. (2017)

Fukao et al. (1998), (2001), Fukao, Zhang,
et al. (2003), Hori et al. (2015)

Sarafoglou et al. (2011)
Grinert et al. (2017)
Law et al. (2015)
Paquay et al. (2017)
Fukao et al. (1997)
Paquay et al. (2017)
Grinert et al. (2017)

Fukao, Nguyen, et al. (2010), Sarafoglou
et al. (2011), Wen et al. (2016), Nguyen
et al. (2015), (2017), Grunert et al. (2017)

Abdelkreem, Akella, et al. (2017)

Fukao, Song, et al. (1995), Fukao, Yamaguchi,
et al. (1995), (2001)

Fukao et al. (1997), (2001)

Fukao et al. (1994), Sakurai et al. (2007),
Paquay et al. (2017)

(Continues)
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TABLE 3 (Continued)

E/I Nucleotide change®
18 c.826+1G>T

18 c.826+5G>T

18 €.826+5_826+9del
19 c.940+1G>T

19 c.941-9T>A

E10 c.951C>T

110 ¢.1006-2A>C
110 ¢.1006-1G>C
110 ¢.1006-1G>A
E11 ¢.1013_1016dup

E11 ¢.1032dup

E11 €.1033_1034del
E11 ¢.1083dup

111 c.1163+2T>C

E12 €.1223_1226dup
8.20623_29833delinsGTAA
c.(120+1_121-1)_(344+1_345-1)del

c.(72+1_73-1)_(344+1_345-1)del,
c.(72+1_73-1)_(435+1_436-1)del

c.(730+1_731-1)_(940+1_941-1)dup

ABDELKREEM ET AL

Predicted amino acid change®

Splice donor site (causing exon 8 skipping)

Splice donor site (causing exon 8 skipping)
Splice donor site (probably exon 8 skipping)
Splice donor site (probably exon 9 skipping)

Splice acceptor site (causing exon 10 skipping
in 90% of transcripts)

Affects ESE sequence causing exon 10
skipping (= 40% of mRNA)

p.317Asp = (= 60% of mRNA)

Splice acceptor site (causing exon 11 skipping)

Splice acceptor site (causing exon 11 skipping)

Splice acceptor site (probably exon 11
skipping)

p.Asp339Glufs*17

p.Glu345Argfs*10

p.Glu345Argfs*9

p.Ala362Serfs*4

Splice donor site (activates cryptic splice site
causing ¢.1163_1164ins GCAG)

p.Ala410Serfs*51
Probably del exons 6-11
del exons 3-4

del exons 2-4 (= 10% of mRNA), del exons
2-5 (= 90% of mRNA)

Tandem duplication of exons 8-9

Reference

Fukao, Yamaguchi, Orii, Schutgens, et al.
(1992), (2001), Wakazono et al. (1995),
Zhang et al. (2004), Paquay et al. (2017),
Grinert et al. (2017)

Thimmler et al. (2010)
Grinert et al. (2017)
Grinert et al. (2017)
Sasai et al. (2017)

Fukao, Horikawa, et al. (2010), Otsuka et al.
(2016)

Fukao, Yamaguchi, Orii, Schutgens, et al.
(1992), (2001), Wojcik et al. (2018)

Fukao, Yamaguchi, Orii, Osumi, et al. (1992),
(2001), Nguyen et al. (2015), (2017), Su
et al. (2017), Wojcik et al. (2018)

Law et al. (2015)

Abdelkreem, Akella, et al. (2017)
Nguyen et al. (2015), (2017)

Paquay et al. (2017)

Sewell et al. (1998), Fukao et al. (2001)

Fukao et al. (1993), (2001), Grunert et al.
(2017)

Paquay et al. (2017)
Nguyen et al. (2017)
Fukao et al. (2013)
Zhang et al. (2006)

Fukao et al. (2007)

Abbreviations: E, exon; ESE, exonic splicing enhancer; I, intron; T2, mitochondrial acetoacetyl-CoA thiolase
?Description of nucleotide changes, exons/introns, and predicted amino acid change follows the HGVS nomenclature (version 15.11, http://varnomen.
hgvs.org; den Dunnen et al., 2016) using ACAT1 NCBI reference sequences (NM_000019.3, NG_009888.1, and NP_000010.1) with +1 as the number of

the A of the ATG initiation codon.

different loops from the core domains (the catalytic loops, Figures 2
and 3) as well as from the loop domain (the CoA-binding loops,
Figures 7 and 3), In addition, the active site of each subunit is near
the dimer interface and is therefore fully functional only once the
two monomers are assembled correctly at the dimer interface (Figure
6) and also only when loops of each of the two other subunits of the
tetramer complete their shape and geometry (Figure 5) (Janardan,
Harijan, Kiema, Wierenga, & Murthy, 2015; Kiema et al., 2019). The
CoA molecule contains three parts, being the 3-phosphate adeno-
sine, pyrophosphate, and pantetheine moieties. The adenine ring of
CoA is bound in a small cleft, which is lined by the side chains of
Tyr219, Arg258, Val259, Asp260, Lys263, Val264, Leu267, Ala280,
and Ala281. The residues Val259 to Leu267 form the adenine binding
loop (Figure 7). There is a hydrogen bond interaction between OH
(Tyr219) and the amino group of the adenine ring of CoA. In addition,

there is the main chain to adenine hydrogen bonds with the adenine
loop residues, namely Arg258, Val259, and Asp260. Lys263 forms
the only salt bridge between T2 and the 3-phosphate moiety
of CoA. The pantetheine moiety binds in a narrow tunnel lined
by several parts of the loop domain, including the N-terminal end
of La2 (residues Met193-Thr200), the CP2-Ca2-loop (residues
Asn353-Phe356), and the pantetheine-loop (Ala280-Thr285;
Figure 7). The binding mode of the pantetheine moiety is conserved
among different thiolases (Haapalainen et al., 2007).

Four essential catalytic residues project into the catalytic cavity
from the four catalytic loops: Cys126, Asn353, His385, and Cys413.
Cys126 is the nucleophilic cysteine (Figure 1) and Cys413 is the
acid-base cysteine. These four residues are part of the four
respective sequence fingerprints of these loops (Figure 2), being
CxS (NB3-Na3 loop), NEAF (the CB2-Ca2 loop), GHP (CB3-Ca3
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WiLEY-L 1%

¢.1013_1016dup
c.1016_1018dup
c.1032dup
¢.1033_1034del
¢.1035_1037del

¢.354_355delinsG p-Ala201Val p.Thr277Pro p.1le347Thr
p.Lys124Glu p.Arg208* p.Asn282His ¢.1059T>A (p.Asn353Lys)
p.Lys124Arg p-Arg208GlIn p.Ser284Asn ¢.1059T>G (p.Asn353Lys)
p.Cys126Ser p.Ala215Asn p.Thr2851le p.Glu354Val
¢.380C>T (p.Alal27Val) p-Ser218Phe p.Thr297Lys ¢.1083dup
p.Alal132Gly p-Tyr219His p.Thr297Met ¢.1124A>G (p.Asn375Ser)
c.414 415del c.446del p-Ser222Arg p.Ala301Pro p.Gly379Val
p-His144Pro p.Glyl52Ala  p.Ala225Glu pJle312Thr p.Ala380Thr
c.14>G p.GIn145Glu p.Glul54Lys p.1le387Thr
e.2T>A c.149del ¢.462_482delinsTCCTC e €.1163G>A (p.Gly388Glu)
2ToC c IG(yla§;;7dclms.r'\A p.Asnl158Asp “z:j 7/;:';“]( I p-Met3891le
¢.52dup p-Gn73Pro p-Asnl58Ser VNI (§1L p-Ser390Pro
Are2 7 254 256delGAA p.Leul78Phe plGszsst u .947 949dup p.His397Asp
D el p.Asno3Ser p.Gly183Arg D hasnn 949G>A (p.Asp317Asn) 1223 1226dup
. ;‘(;;7;; p.GIn96* p-Asp186Tyr p- Glu25 SA 2 ¢.951C>T (p.317Asp=) p.Ala410Val
B p.Glyl00Glu p-Met193Thr B D e p.lle323Thr c.1241_1245delinsGT
pTyr33 p.GInl01Lys p-Met193Arg e814CT (pGIn272%) p.Ala333Pro p.Gly418Asp
I} 120 121 238 239 344 345 435 436 579 580 730 731 826 827 940 941 1005 1006 11631164 1281
| | El H E2 H E3 H E4 H ES H E6 E7 H E8 H E9 H E10 H Ell H E12 |
€.121-3C>G C334+1G>A  c435+1G>A C730+41G>A  c826+1G>T  C40FIG>T — ( 15060A>C  €.1163+2T>C
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¢.(730+1_731-1)_(940+1_941-1)dup*

.(72+1_73-1)_(435+1_436-1)del*

2.20623_29833delinsGTAA

FIGURE 4 Schematic illustration (not to scale) of human ACAT1 gene showing the location of 105 variants associated with mitochondrial
acetoacetyl-CoA thiolase deficiency. Exons (boxes) and introns (lines) are numbered according to NCBI refseq: NG_009888.1. Shaded boxes denote
the untranslated region. Numbering of complementary DNA (cDNA; above boxes) is according to NCBI refseq: NM_000019.3, with +1 as the
number of A of the ATG initiation codon. Description of variants follows the HGVS nomenclature (version 15.11, http://varnomen.hgvs.org; den
Dunnen et al., 2016). Missense and nonsense variants are mainly described at the protein level (NCBI refseq: NP_000010.1). Exonic variants are
shown above the diagram in black (missense), red (nonsense), and green (others); those associated with aberrant splicing are underlined, and those
affecting the ATG initiation codon, causing reduced translation efficiency, are shown in italics. Intronic and large deletions/insertions/duplications
variants are shown below the diagram. Large deletions/insertions/duplications are shown in bold with a solid line (-) above depicting the
approximate location. A number sign (*) marks variants attributed to Alu-mediated unequal homologous recombination

loop), and CxG (of the CB4-CB5 loop). The CPR4-CR5 loop is
covered by the covering loop (from residues Leu184 to Met193),
which is after the tetramerization loop and before La2. The
catalytic site is (a) completely shielded from bulk solvent and only
reachable via the pantetheine binding tunnel and (b) is narrow being
able to accommodate the acetoacetate or 2-methylacetoacetate
moieties of acyl-CoA, but not larger acyl moieties (Haapalainen
et al., 2007).

Other important structural features of the catalytic cavity are
oxyanion hole 1 (OAH1), which is formed by NE2(His385) and a
catalytic water (Wat98, anchored to Asn353) and oxyanion hole 2
(OAH2), which is formed by N(Cys126) and N(Gly415) (Figure 2).
Residues Phe325-Pro326 (of the DFP-loop, which is part of the C81-
Cal-loop; Figure 3) provide the binding cavity for the 2-methyl
moiety of the 2-methylacetoacetyl-CoA substrate. T2 contains a
unique potassium ion binding site, which does not exist in other
thiolase subfamilies. Residues with atoms that co-ordinate the bound
potassium ion are located in the loop domain, being Tyr219 of the
La3-helix and residues Ala280, Ala281, Ala283, and Thr285 of
the pantetheine loop. The potassium ion stabilizes the structure of
the pantetheine binding loop. T2 also has a unique chloride ion
binding site. The chloride ion is bound near the catalytic site at the
dimer interface and it stabilizes the conformation of the Cg4-Cg5

loop (Haapalainen et al., 2007).

4 | DISEASE-ASSOCIATED ACAT1
VARIANTS

To date, 105 ACAT1 variants associated with T2 deficiency have been
reported in 149 patients from 134 nuclear families (a family group
that consists only of parents and children, Tables 1-3, Figure 4;
Supporting Information Table). Homozygotes are found in 68 (50.8%)
families. Data of ACAT1 genetic analysis are not available for 10
other T2-deficient patients whose diagnoses were based on T2
enzyme assay of their fibroblasts. We assembled these data through
comprehensive literature review (our laboratory work at Gifu
University contributed to a lot of these publications); included in
these data are two novel ACAT1 variants and a new case with T2
deficiency described for the first time here. References for disease-
associated ACAT1 variants are provided in Tables 1-3, and those for
T2-deficient patients are provided in Supporting Information Table.
Description of variants follows the HGVS nomenclature (version
15.11, http://varnomen.hgvs.org; den Dunnen et al., 2016) using
ACAT1 NCBI reference sequences (NM_000019.3, NG_009888.1, and
NP_000010.1). We verified compliance with HGVS nomenclature
using Mutalyzer program (https://mutalyzer.nl/; Wildeman, van
Ophuizen, den Dunnen, & Taschner, 2008). All disease-associated
ACAT1 variants described herein are submitted to ClinVar public

database (https://www.ncbi.nlm.nih.gov/clinvar/).
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FIGURE 5 The structure of the T2 tetramer (PDB entry 2IBW),
complexed with CoA. The bound CoA molecules are shown as stick
models. The two tight dimers (below and above; side view) are
assembled into tetramers via the four tetramerization loops (in the
middle). “cationic” labels one of the cationic loops, which points to
the 3’-phosphate of the CoA bound in the active site of the opposing
dimer. Stereo view is provided in Figure S1

Disease-associated ACAT1 variants are found in every exon
(Figure 4). Exon 11 contains the highest number (n = 15), followed by
exon 6 (n=11), exon 5 (n=9), and exons 7 and 9 (each=8). As
observed in most autosomal recessive diseases, missense ACAT1
variants are the most common type (n = 56). In addition, there are 23
deletions/insertions/duplications. Among the point variants, 21 are
associated with aberrant splicing (one of which is a synonymous
variant), five are nonsense, and three affect the ATG initiation codon.
Of note, certain variants are classified under two categories (e.g.,
c.949G>A results in both aberrant splicing and the p.Asp317Asn
missense variant; Table 1).

Most disease-associated ACAT1 variants are “private”, being
observed in only one family. Seventy-six (72.4%) variants have been
detected only in single T2-deficient families, 24 have been identified
in between two and four families, and only five variants have been
found in five or more families (Supporting Information Table).
c.622C>T (p.Arg208*) is the most frequent variant. It has been

FIGURE 6 The structure of the T2 tight dimer (PDB entry 21BW).
(a) Top view (view approximately down the local two fold axis of the
tight dimer). (b) Side view (rotated by 90° around the horizontal with
respect to the top view, same view as in Figure 5). The bound CoA
molecules are shown as stick models. In the left subunit, the N-
domain, loop domain, and C-domain are colored as purple, blue, and
green ribbons, respectively. In the right subunit, the N-domain, loop
domain, and C-domain are colored as yellow, orange, and cyan
ribbons, respectively. “cationic” and “tetra” identify the cationic and
tetramerization loops, respectively. Stereo views are provided in
Figure S2

detected in 28 families, most of which are Vietnamese. This variant
accounts for 66% of all ACAT1 variant alleles identified in
Vietnamese patients with T2 deficiency (Nguyen et al,, 2017). Recent
evidence indicates that the c.622C>T variant has been introduced by
an ancient common founder to Vietnamese Kinh ethnic population
1900-2500 years ago (Nguyen et al., 2017). This highly conserved
residue is changed into glutamine (c.623G>A, p.Arg208GlIn) in two
other families (Sakurai et al., 2007). The importance of this residue
for the enzymatic function is discussed in subsequent sections.
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FIGURE 7 The structure of the T2 loop domain (residues
156-286; PDB entry 2IBW). (a) Top view (same as Figure 6a). (b)
Side view (same as Figure 6b). The loop domain protrudes out of N4
and ends at NB5 of the N-terminal domain (Figure 3). The covering
loop “cov” is in orange, the cationic loop is in green, the adenine loop
is in red and the pantetheine loop is in purple. “tetra” identifies the
tetramerization loop. The La2 and La3 helices are also labeled. The
bound CoA molecule is shown as a stick model. Stereo views are
provided in Figure S3

The second most common disease-associated ACAT1 variant is
¢.1006-1G>C that has been identified in 13 families, most of which
are Vietnamese. It affects a highly conserved point at the splice
acceptor site of intron 10, altering the Shapiro and Senapathy score
from 67 to 49.5 (Shapiro & Senapathy, 1987). cDNA analysis of
T2-deficient patient’s fibroblasts revealed that c¢.1006-1G>C is
associated with exon 11 skipping (Fukao, Yamaguchi, Orii, Osumi, &
Hashimoto, 1992). Exon 11 skipping causes a frameshift of the coding
sequence, which is predicted to exert drastic effects on the variant
T2 protein, truncating it prematurely with loss of 53 C-terminal
residues. Indeed, the T2 activity and protein were virtually absent in

fibroblasts of a patient homozygous for c.1006-1G>C variant (Fukao,
Yamaguchi, Orii, Osumi, et al, 1992). The third most common
disease-associated ACAT1 variant and the most common missense
variant is ¢.578T>G (p.Met193Arg) that has been detected in eight
families, most of which are from India. This is followed by c.455G>C
(p.Gly152Ala) that was found in six families. Transient expression
analysis of both p.Met193Arg and p.Gly152Ala variant T2 cDNAs
revealed no residual enzyme activity (Abdelkreem, Akella, et al.,
2017; Zhang et al., 2004).

4.1 | Disease-associated missense ACAT1 variants

The disease-associated missense ACAT1 variants (n=56) are not
uniformly distributed across the ACAT1 gene (Figure 4). Exons 6 and
11 contain the highest number of such variants (nine for each),
followed by exon 9 (eight variants), then exons 5 and 7 (seven for
each). The N-terminal part (122 residues, Val34-Ser155), the loop
domain (131 residues, Met156-Leu286), and the C-terminal part
(141 residues, Asn287-Leud27) contain 13, 22, and 21 variants,
respectively (Figure 4).

4.2 | Structure-function relationship of missense
variants whose expression levels are equal or greater
than 25% that of wild-type

The 30 disease-associated missense ACAT1 variants listed in Table 1
concern those variants for which the catalytic and expression
properties have been determined at 37°C. All variants listed in Table
1 have low activities; c.431A>C (p.His144Pro) variant has the highest
activity (25% that of wild-type T2). For only two variants, c.377G>C
(p.Cys126Ser) and c.655T>C (p.Tyr219His), the expression level is
similar to that of wild-type; however, the catalytic activity for these
two variants is 0%. From the structure analysis, it can be seen that
both residues are essential for enzyme function. Tyr219 interacts
both with the potassium ion and with the adenine moiety of CoA and
Cys126 is the nucleophilic cysteine (Figure 1) of the catalytic site.
Apart from p.Cys126Ser and p.Tyr219His, there are six other
variants whose expression levels are equal or greater than 25% that of
wild-type: ¢.278A>G (p.Asn93Ser), p.His144Pro, c.556G>T (p.As-
p186Tyr), p.Arg208GIn, c.844A>C (p.Asn282His), and c.968T>C
(p.le323Thr). The variants p.Asn93Ser (T2 protein level, 60%;
measured activity, 8%) and p.His144Pro (T2 protein level, 50%;
measured activity, 25%) are near the dimer interface. We speculate
that these variants are properly expressed, but that the folded
monomers cannot form stable dimers and therefore the catalytic
activity of these variants is indeed low. Recent studies of the dimeric
zebrafish SCP2-thiolase (Kiema et al., 2019) show that for this thiolase
the folded monomeric form is stable (but predicted to be catalytically
inactive). By extension, T2 monomers may also be stable but
catalytically inactive. Of the remaining four variants whose expression
levels are equal or greater than 25% that of wild-type, three of them
are in the loop domain (Figure 7): p.Asp186Tyr, p.Arg208GlIn, and
p.Asn282His. Furthermore, the p.le323Thr variant is in the Cf1-Cal
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loop that interacts with the loop domain. Each of these four residues is
in a surface loop. From the structure, it is predicted that these four
variants would allow the formation of the tetramers assembly but
nevertheless, the catalytic activity is very low for p.Asp186Tyr,
p.Arg208GIn, and p.Asn282His. Only p.lle323Thr has a catalytic
activity of 20% that of wild-type T2. Further information on the
structure-function relationship of these four variants is given below.
The p.Asp186Tyr variant (T2 protein level, 33%; measured
activity, 0%) is in the covering loop (Figure 8). This loop stabilizes
the conformation of the C81-Cal loop and the Cf4-CB5 loop. The
latter loop provides the acid/base cysteine, Cys413, which is an

essential catalytic residue and this loop also contributes to OAH2.
These two functionalities are essential for the catalytic properties
and therefore it is predicted that this variant inactivates T2 thiolase.

The p.Arg208GIn variant (T2 protein level, 50%; measured
activity, 0%) is in La3. The Arg208 side chain makes a hydrogen
bond interaction with OD2(Asp212) and the backbone oxygen of
Leu267, which is in a loop region immediately after the adenine
binding loop. The latter interaction stabilizes this loop at the correct
position for substrate binding (Figure 8).

The p.Asn282His variant (T2 protein level, 50%; measured
activity, 0%) is in the pantetheine loop, at the end of the loop

FIGURE 8 Missense variants of residues in loops on the surface of the T2 tetramer (PDB entry 2IBW). The visualized loop residues are
either in the loop domain (panels a, b, ) or interact with the loop domain (panel d). Expression of variant T2 cDNAs containing these variants
produces T2 protein levels of 25% or higher compared to wild-type T2, as discussed in the text. These panels are zoomed-in views, of the loop
domain (same view as in Figure 7b). The covering loop (“cov”) and the La2 and La3 helices are labeled in each panel. The bound CoA molecule is
shown as a stick model. (a) The p.Asp186Tyr variant (T2 protein level, 33%; measured activity, 0%). Asp186 (D186) is in the covering loop
(orange) and points to the CB4-CR5 loop (light blue) of the catalytic site. (b) The p.Arg208GlIn variant (T2 protein level, 50%; measured activity,
0%). Arg208 (R208) is at the beginning of helix La3 (cyan). The Arg208 side chain is hydrogen bonded to the loop region just after the adenine
loop (“ade”, shown in red). (c) The p.Asn282His variant (T2 protein level, 50%; measured activity, 0%). Asn282 (N282) is in the pantetheine loop
(purple). (d) The p.lle323Thr variant (T2 protein level, 25%; measured activity, 20%). 11e323 (1323) is in the CR1-Cal loop (light blue) of the
C-terminal domain, just before the DFP sequence fingerprint of the binding pocket for the 2-methyl group of the 2-methylacetoacetyl-CoA

substrate. cDNA, complementary DNA
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domain, shaping the binding pocket of the potassium ion as well as
the pantetheine binding tunnel (Figure 8). The variant residue
distorts the pantetheine loop and therefore the catalytic function
is lost.

The p.lle323Thr variant (T2 protein level, 25%; measured activity,
20%) is in the CR1-Cal loop, which is near the binding pocket of the
2-methyl group of the substrate (Figure 8). The 20% catalytic activity,
as measured with the acetoacetyl-CoA substrate, suggests that the
mature enzyme is fully active. The p.lle323Thr variant changes 11e323
into a threonine, which is much more polar. Although the 11e323 side
chain points into bulk solvent, we speculate that this variant changes
the conformation of the Cg1-Cal loop, disrupting the binding pocket
of the 2-methyl group of the 2-methylacetoacetyl-CoA substrate,
possibly without disrupting the degradation of acetoacetyl-CoA.

4.3 | Structural analysis of all missense variants

For each of the missense variants listed in Table 1, information is
provided in the last column concerning the location of the variant
residue with respect to the structure of T2. Considering the structure
of the tetramer, three residue categories have been defined, being
either (a) completely buried (“buried”), or (b) near the surface, being
partially buried (“surface”) or (c) having a side chain that points
towards the solvent (“exposed side chain”). For some of the latter
residues, the side chain is interacting closely with the rest of the
protein. If the solvent exposed side chain is only loosely interacting
with the rest of the protein, then for variants which do not change
much the side chain properties (e.g., no change in polarity), it is
predicted that the in vivo folding efficiency or stability will be similar
to that of wild-type. This simple prediction scheme is not valid
whenever the variant concerns a proline and/or glycine. In Table 1, it
concerns seven out of the 30 listed variants, which are either buried
or surface residues. Except for p.His144Pro (T2 protein level, 50%;
measured activity, 25%), these variants are poorly expressed (protein
level is equal or less than 10%).

Variants that are predicted not to change the folding or stability
properties, but nevertheless are observed to be disease-associated,
identify residues that are important for the catalytic properties of the
native tetramer assembly. The current set of disease-associated
variants listed in Table 1 includes five such residues, Cys126,
Met193, Arg208, Tyr219, and 11e323. The p.Cys126Ser and
p.Tyr219His variants are both expressed at the same level as that
of wild-type, as discussed in the previous section. The p.Arg208GIn
and the p.lle323Thr variants have also been discussed in the previous
section. The p.Met193Arg variant concerns a residue whose side
chain points toward bulk solvent and is therefore predicted not to
interfere with folding or stability. However, the side chain of Met193
points into the narrow pantetheine binding tunnel. The experimental
data show that the bulkier and more polar arginine side chain does
not allow proper folding of this T2 thiolase variant.

Most of the residues listed in Table 1 (16 out of 30) are
completely buried in the structure. These variants are predicted to

adversely affect the folding and/or stability and therefore are
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predicted to have lower catalytic efficiency. Indeed, the expression
levels of all these variants are less than 25% that of wild-type, except
for p.Asn93Ser, p.Asp186Tyr, and p.Asn282His (Figure 8). The latter
two variants are located in loops near the surface of the tetramer,
which apparently allows for partial folding, but the mature protein
has low catalytic activity, as discussed above. Asn93 is buried at the
dimer interface and the variant residue is predicted to prevent
assembly of the functional tetramer, as also discussed above.

Table 2 also lists missense disease-associated variants, but for
these variants, there are no folding/stability or activity data. These
variants have also been mapped onto the structure, and also for this
set, most of the variants (23 out of 26) concern residues that are
completely or partially buried. These 23 variants are predicted to
produce expression levels less than that of wild-type. Some of these
variants concern residues that are located at the monomer-monomer
interface of the tight dimer. It is possible that these variants may be
expressed in a soluble, monomeric form, but these forms are likely
not active.

It will be particularly interesting to find out the expression and
activity properties of the variants of Table 2, which are classified as
having “exposed side chain”. It concerns the three variants ¢.578T>C
(p.Met193Thr), c.760G>A (p.Glu254Lys), and ¢.1160T>C (p.lle387Thr).
The p.Met193Thr variant concerns a residue which is located at the
beginning of helix La2, and whose side chain is usually a hydrophobic
residue, pointing into the narrow pantetheine binding tunnel. Like for
the p.Met193Arg variant (Table 1), the p.Met193Thr variant replaces a
hydrophobic side chain by a polar side chain, which is then predicted to
interfere with the binding of the pantetheine moiety in its tunnel and
therefore interferes with the catalytic properties. The p.Glu254Lys
variant concerns a residue of which the side chain is hydrogen bonded
to the rest of the protein. It is located far away from the catalytic site,
being in a surface loop just after the cationic loop (Figure 7). The
function of the cationic loop has not been studied experimentally, but
the structure of the tetramer suggests that the cationic side chain at
the tip of the loop (Lys243) might be important for the efficient
capture and/or release of the substrate. The p.Glu254Lys variant could
allow proper folding and/or stability of the T2 tetramer but it might
subsequently interfere with the functional properties of the cationic
loop and therefore causes loss of optimal function. The p.1le387Thr
variant is near the active site, being at the beginning of the Ca3-helix.
It points into the catalytic site and is therefore predicted to interfere

with proper catalytic function.

4.4 | Disease-associated splice variants

Most aberrant splicing-associated variants affect splice donor (n=9)
and acceptor (n = 6) sites in the ACAT1 gene (Figure 4; Table 3). These
variants generally reside at the highly conserved sequences: last
nucleotide of exon, position +1/+2/+5 at the splice donor site, and
position -1/-2 at the splice acceptor site. Nevertheless, two of these
variants, ¢.121-13T>A and c.941-9T>A, are located at the poly-
pyrimidine tract of the splice acceptor site. Although in silico tools

failed to predict the pathogenic effect of the latter two variants
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on splicing, minigene splicing experiments recently proved that
c.121-13T>A and c.941-9T>A variants induce skipping of exons
3 and 10, respectively, in greater than 90% of transcripts (Aoyama
et al, 2017; Sasai et al,, 2017).

On the other hand, there are five exonic variants that cause
aberrant splicing through one of two mechanisms. First, an exonic
variant activates a cryptic splice site within an exon. ¢.380C>T
(p.Alal27Val) activates a cryptic splice acceptor site located five
bases downstream from the c.380 position in exon 5. This causes
aberrant splicing with a ¢.336-386 (51 bp) deletion in approximately
94% of transcripts, removing the catalytically essential residue
Cys126 (Nakamura et al., 2001). Likewise, c.1124A>G (p.Asn375Ser)
activates a cryptic splice donor site located five bases upstream from
the c.1124 position in exon 11. This results in a c.1120-1163 (44 bp)
deletion in approximately 89% of the T2 messenger RNA (mRNA).
The resulting frameshift replaces the last 54 amino acid residues,
including the catalytically essential residues His385 and Cys413, with
69 different C-terminal residues (Fukao, Boneh, Aoki, & Kondo,
2008). In the second mechanism, an exonic variant alters the
consensus sequence of an exonic splicing enhancer (ESE) site.
c.814C>T (p.GIn272*) is located within an ESE sequence for SRSF2
(c.BOBGTTTTCCA; nucleotides number 78-85 of exon 8), which is a
potential binding site for serine/arginine-rich splicing factor 2 (ESE
finder version 3.0; http://krainerO1.cshl.edu/cgi-bin/tools/ESE3/
esefinder.cgi?process=home; Cartegni, Wang, Zhu, Zhang, & Krainer,
2003). In fact, a minigene splicing experiment demonstrated that
c.814C>T results in skipping of exon 8 in 25% of transcripts (Fukao
et al.,, 1994). Likewise, both c.949G>A (p.Asp317Asn) and ¢.951C>T
(p.=) are located in an ESE sequence for SF2/ASF (c.”*’CTGACGC;
nucleotides number 7-13 of exon 10). Minigene splicing experiments
also demonstrated that c.949G>A and c.951C>T variants cause
skipping of exon 10 in 80% and 40% of transcripts, respectively
(Fukao, Horikawa, et al., 2010, Otsuka et al., 2016). Without this
information, c.951C>T might wrongly be regarded only as a benign
synonymous variant. Of note, RNA sequencing is a useful technology
to reveal abnormally spliced transcripts.

4.5 | Disease-associated deletion/insertion/
duplication variants

These variants are also listed in Table 3. It is difficult to predict how
such variants would affect the folding and/or stability of the T2
protein. In such cases, expression analysis of variant cDNAs has not
been routinely performed.

Furthermore, five large deletions/insertions/duplications have been
reported in the ACAT1 gene. g20623 29833delinsGTAA includes
deletion of exons 6-11 (Nguyen et al., 2017). ¢.731-46_752del (a 68-
bp deletion) involves the splice acceptor site of intron 7, causing exon 8
skipping (Fukao, Song, et al., 1995). The other three variants could be
attributed to Alu elements-mediated unequal homologous recombination
(Fukao et al., 2007, 2013; Zhang et al., 2006). We established multiplex
ligation-dependent probe amplification (MLPA) analysis for ACATI,

which is useful to identify these large gene rearrangements (Fukao

et al, 2013). Of note, a recent ACAT1 minigene experiment demon-
strated that insertion of AluY-partial AluSz6-AluSx in an antisense
direction within intron 9 has a negative effect on exon 10 inclusion. This
effect is (a) distance dependent—the shorter the distance between the
antisense Alu element and exon 10, the greater the skipping of exon 10;
(b) additive with that of an ESE variant (c.951C>T) in exon 10; and (c)
canceled by the c.941C>G substitution at the first nucleotide of exon 10,
which optimizes the splice acceptor site of intron 9. Accordingly, intronic
antisense Alu elements have a negative splicing effect on close
downstream exons, particularly when splice acceptor sites are sub-
optimal (Nakama et al., 2018).

4.6 | Other disease-associated variants

Five nonsense ACAT1 variants have been reported (Table 3; Figure
4). mRNAs with premature termination are mostly subjected to
nonsense-mediated decay. In the case of ¢.814C>T (p.GIn272%), this
also causes skipping of exon 8 in 25% of transcripts. This
phenomenon was previously termed as nonsense-associated alter-
native splicing (Fukao et al., 1994) and recently designed as exon
skipping caused by a variant at an ESE sequence (discussed above).
On the other hand, c.1A>G, c.2T>A, and c.2T>C variants affect the
ATG initiation codon with reduced translation efficiency of 11, 7, and
22%, respectively (Fukao, Matsuo, et al., 2003).

4.7 | Biochemical and laboratory significance

The genotype exerts a considerable effect on the biochemical
phenotype of patients with T2 deficiency. Based on the T2 enzymatic
activity detected on expression of variant cDNAs, patients with T2
deficiency can be divided into two categories: Those with “mild”
variants, in whom at last one of the two variant alleles retains some
residual T2 activity, and those with “severe” variants, in whom none
of the two variant alleles has any residual T2 activity (Fukao et al.,
2001). Patients with mild variants can develop episodic ketoacidosis
as severe and frequent as those with severe variants; however, the
above mentioned isoleucine-catabolic intermediates, essentially TIG,
tend to be more subtle in the former patients not only in stable states
but also during acute ketoacidosis (Fukao et al., 2001, Fukao, Zhang,
et al., 2003, Fukao et al., 2012). This has important practical
implications. First, critical samples (serum, blood, urine) have to be
collected from acutely presented patients at once before starting
treatment. Second, subtle/atypical abnormalities in urinary organic
acids or blood acylcarnitine analyses do not absolutely exclude a
diagnosis of T2 deficiency in patients with a consistent presentation.
Third, newborn screening by tandem mass spectrometry may miss
more T2-deficient patients in regions where mild variants predomi-
nate, such as in Japan, rather than in regions with a preponderance of
severe variants, such as in Vietnam. In general, a normal newborn
screening result does not absolutely exclude a diagnosis of T2
deficiency (Abdelkreem et al., 2016; Fukao et al., 2012; Sarafoglou
et al,, 2011).


http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home

ABDELKREEM ET AL

Diagnosis of T2 deficiency can be confirmed in a suspected
patient by the T2 enzyme assay, preferably using fibroblasts, or by
detecting biallelic disease-associated variants in the ACAT1 gene.
This highlights the importance of the characterization of ACAT1
variants detected in T2-deficient patients along with available
functional studies. On the other hand, conventional sequence
analysis of genomic DNA cannot properly identify copy number
variants and certain splicing abnormalities. Detection of copy number
variants requires other techniques, such as MLPA or real-time
polymerase chain reaction. cDNA and minigene splicing studies are
useful for revealing the impact of certain variants on splicing (see
above). ldentifying disease-associated ACAT1 variants does not only
confirm the diagnosis of T2 deficiency in the proband but also
enables screening of other family members for finding yet asympto-
matic patients and for providing proper genetic counseling. Imple-
menting preventive measures for asymptomatic patients could
protect them against potentially lethal ketoacidotic episodes. Pre-
natal diagnosis becomes also applicable; however, it is not necessarily
superior to timely postnatal diagnosis, given that T2 deficiency rarely
manifests during the neonatal period (Abdelkreem et al., 2016; Fukao
et al,, 2014).

5 | CLINICAL SIGNIFICANCE

Patients with T2 deficiency typically manifest between 6 and 18
months of age with episodic ketoacidosis. A history of ketogenic
triggers, such as prolonged fasting or febrile illness, is usually present.
Severity and frequency of episodes vary among patients. A
considerable proportion of patients suffer from severe ketoacidotic
episode/s, sometimes with encephalopathy and/or hemodynamic
collapse. Death or permanent neurological abnormalities (e.g., gait
disturbances, movement disorders, hypotonia, and mental retarda-
tion) are well documented potential complications. On the other
hand, some patients remain asymptomatic (Abdelkreem et al., 2016;
Fukao et al., 2014, 2018). Of note, secondary carnitine deficiency is
rare in T2 deficiency but if present, it may suppress -oxidation and
modify the clinical manifestation of T2 deficiency from ketoacidotic
to hypoketotic hypoglycemic events (Alijanpour et al., 2019).

Patients with T2 deficiency had been thought to be asymptomatic
between episodes unless a previous severe episode of ketoacidosis
causes irreversible neurological damage. However, an increasing
body of evidence indicates that chronic neurological impairment,
mainly extrapyramidal manifestations, can exist independent of frank
ketoacidosis even in patients with T2 deficiency confirmed at the
molecular level (Buhas et al., 2013; Fukao et al., 2018; Paquay et al.,
2017). In vitro studies indicate that 2MAA and 2M3HB exert
neurotoxic effects (Leipnitz et al., 2010; Rosa et al., 2005).

Given the large number of private (occurring only in one family)
disease-associated ACAT1 variants, T2 deficiency lacks an obvious
correlation between the genotype and the clinical phenotype,
including the age at onset, severity and frequency of ketoacidotic

episodes, and eventual outcome. This is evident from the provided
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comprehensive list of patients with T2 deficiency reported in the
literature (Supporting Information Table). Environmental/acquired
factors, such as ketogenic triggers, considerably contribute to the
clinical presentation (Thiimmler, Dupont, Acquaviva, Fukao & De
Ricaud, 2010). However, several reports show that T2 deficiency has
variable clinical phenotypes even among patients who share not only
identical genotype but also similar environmental factors (Abdelk-
reem, Alobaidy, et al., 2017; Fukao et al,, 2012; Kése et al., 2016;
Nguyen et al, 2017; Thimmler et al., 2010). Proper acute and
preventive treatment seems crucial for a favorable outcome (Hori
et al., 2015; Nguyen et al., 2017).

6 | CONCLUDING REMARKS

Functional studies of 30 disease-associated missense T2 variants
have been performed in vitro, using the potassium ion-activated
acetoacetyl-CoA degradation assay and for all these variants low
activity (equal or less than 25% that of wild-type T2) is observed
(Table 1). From the available information, patients with T2 deficiency
can be divided into those with “mild” variants, in whom at least one of
the two variant alleles retains some residual T2 activity, and those
with “severe” variants, in whom none of the two variant alleles has
any residual T2 activity. However, patients with mild variants can
develop episodic ketoacidosis as severe and frequent as those with
severe variants (Fukao et al., 2001). This raises questions whether
the T2 activity measured in vitro using acetoacetyl-CoA as a
substrate fully reflects the in vivo T2 deficiency, and whether it is
better to use 2-methylacetoacetyl-CoA (or both acetoacetyl-CoA and
2-methylacetoacetyl-CoA) as specific substrates. Indeed, 2-methyla-
cetoacetyl-CoA thiolase assay is more sensitive for detecting
isoleucine catabolism deficiencies (Middleton & Bartlett, 1983). This
substrate is not currently commercially available but can be prepared
by published protocols. For one disease-associated variant
(p.1le323Thr; 25% expression, 20% remaining activity) the variant
could affect the structure of the loop that shapes the binding pocket
of the 2-methyl group. The experimental data suggest that the
mature enzyme variant is fully active, but from the structural analysis
it is predicted that the activity for the 2-methylacetoacetyl-CoA
substrate could be much more affected. In the latter case, the
isoleucine catabolism is much more affected than the ketone body
metabolism. In any case, the analysis of the structural context of the
missense variants shows that they concern also residues that are not
near the active site, and it suggests that in almost all cases the
identified disease-associated ACAT1 variants concern residues that
are buried in the mature protein (Table 1) and therefore are
predicted to deteriorate the stability and/or folding properties of the
respective T2 variants, thereby decreasing the capacity to efficiently
degrade 2-methylacetoacetyl-CoA as well as acetoacetyl-CoA.
Several patients with T2 deficiency developed chronic neurolo-
gical impairment, mainly extrapyramidal, independent of frank
ketoacidosis (Buhas et al., 2013; Fukao et al., 2018; Paquay et al.,
2017). In vitro studies indicate that 2MAA and 2M3HB exert
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neurotoxic effects (Leipnitz et al., 2010; Rosa et al., 2005). Therefore,
accumulated isoleucine-catabolic metabolites may contribute to
neurological impairment in patients with T2 deficiency (Fukao
et al., 2018; Paquay et al., 2017). Accordingly, T2 deficiency should
be considered not only as a ketolytic defect but also as a defect in
isoleucine catabolism with the potential for insidious cerebral
toxicity. However, it is likely that other genetic or environmental
factors contribute to the neurotoxic effect of isoleucine metabolites,
explaining why only a minority of T2-deficient patients have such
neurological manifestations independent of the occurrence of severe
metabolic crises. This is an important topic for future research.
Another unresolved issue is the therapeutic implications; the
effectiveness of carnitine supplementation and protein, particularly
isoleucine, restriction in preventing chronic neurological impairment
remains to be determined (Fukao et al., 2018).

Finally, many reported ACAT1 variants in patients diagnosed with
T2 deficiency lack the experimental proof of decreased T2 activity
(Tables 2 and 3). Structural analysis and in silico tools are useful to
predict the pathogenic effect, but such predictions are not always
true (see Table 1 and Section 4.4). In these cases, further laboratory
studies to demonstrate the decreased T2 activity of such variants are

required to confirm the diagnosis.
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