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Abstract
Multimorbidity is common among older people and presents a major challenge to health systems worldwide. Metrics of
multimorbidity are, however, crude: focusing on measuring comorbid conditions at single time-points rather than reflecting the
longitudinal and additive nature of chronic conditions. In this paper, we explore longitudinal comorbidity metrics and their value in
predicting mortality.
Using linked primary and secondary care data, we conducted a retrospective cohort study on adults in Salford, UK from 2005 to

2014 (n=287,459). We measured multimorbidity with the Charlson Comorbidity Index (CCI) and quantified its changes in various
time windows. We used survival models to assess the relationship between CCI changes and mortality, controlling for gender, age,
baseline CCI, and time-dependent CCI. Goodness-of-fit was assessed with the Akaike Information Criterion and discrimination with
the c-statistic.
Overall, 15.9% patients experienced a change in CCI after 10 years, with a mortality rate of 19.8%. Themodel that included gender

and time-dependent age, CCI, and CCI change across consecutive time windows had the best fit to the data but equivalent
discrimination to the other time-dependent models. The absolute CCI score gave a constant hazard ratio (HR) of around 1.3 per unit
increase, while CCI change afforded greater prognostic impact, particularly when it occurred in shorter time windows (maximum HR
value for the 3-month time window, with 1.63 and 95% confidence interval 1.59–1.66).
Change over time in comorbidity is an important but overlooked predictor of mortality, which should be considered in research and

care quality management.

Abbreviations: AIC = Akaike Information Criterion, AIDS = acquired immunodeficiency syndrome, CCI = Charlson Comorbidity
Index, CI = confidence interval, EHRs = electronic health records, HIV = human immunodeficiency virus, IDI = Integrated
Discrimination Improvement, NRI = Net Reclassification Improvement, QOF = Quality and Outcome Framework, SD = standard
deviation, SIR = Salford Integrated Record, VIF = Variance Inflation Factors.
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1. Introduction

In “ageing” populations the prevalence of patients with multiple
conditions increases[1,2] placing extra demands on healthcare
systems.[3,4] Population-based studieshave revealed thepresenceof
at least one long-term condition in over a third of patients,[2,5] with
two-thirds of those aged over 65 years and three-quarters of those
aged over 85 years having at least 2 concurring conditions.[6]

Linked electronic health records (EHRs) may offer new
information about multimorbidity.[7] Some EHRs hold comor-
bidity scores,[8] ranging from simple summation of the number of
conditions to more complex scores that assign different weights
to diseases in respect of their prognoses.[9–13] Although EHRs
can provide rich longitudinal information most studies use the
data available at a single time-point to measure comorbidity,
which treats it as a static phenomenon when it is logically
dynamic.[14–16] Similarly in prognostic studies, only those
comorbid conditions present at baseline are commonly consid-
ered, while new conditions arising may affect the outcome of
interest.[14–16] While it is reasonable to hypothesize that those
with rising comorbidity over time may have worse health
outcomes[15] this group of patients are poorly characterized in the
literature.
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This study aimed to characterize the distribution, and changes
over time, of comorbidities, as measured by the Charlson
Comorbidity Index (CCI),[13] in a UK population with high-
quality EHRs. We also sought to investigate different ways to
account for longitudinal patterns of comorbidity in survival
analyses and see if this enhanced the prediction of mortality.
2. Methods

2.1. Data source

Data were extracted from the Salford Integrated Record (SIR)—
an anonymized extract of linked data from all 53 primary care
providers and 1 secondary care provider in the UKCity of Salford
(population in Census 2011 of ∼235k[17]). The data in SIR
includes all primary care and secondary care records (i.e., focused
on long-term conditions management) as well as all results from
biochemical testing across primary and secondary care. Data are
stored as Read codes v2 and v3.[18]

Salford is a relatively deprived area, with almost a third of
neighborhoods in the most deprived tenth for England.[19] In
terms of multimorbidity burden, Salford is in the 61st centile, as
measured by England’s primary care Quality and Outcome
Framework (QOF).[20]

2.2. Study period and population

The study period was from April 1, 2005 to December 31, 2014.
As QOF has been proven to influence general practitioners data
recording behaviors and improve data quality on included
clinical conditions,[21–24] we focused on the period after QOFwas
introduced and used its financial years (1 April to 31March). We
used an open cohort design and included all patients aged 18
years or older, registered in one of the SIR primary care practices.
Patients were considered as participating in the study until death
or migration out of the area.

2.3. Comorbidity burden measurement: Charlson
Comorbidity Index calculation

Wemeasured comorbidity burden by using the CCI[13]—a widely
used score,[8] which has different weights for 22 clinical
conditions in relation to their impact on prognosis. Although
originally developed to predict mortality risk after hospitaliza-
tion, it has been shown to independently predict adverse
outcomes across a broad spectrum of conditions.[25–35]

We calculated the CCI on the basis of the work of Khan
et al,[36] who provided a list of validated Read diagnostic codes
for calculating it in UK primary care. Every time a relevant Read
diagnostic code was found for a patient, the CCI was updated
using the weights for the related disease category. Age was
modeled separately and not included in the CCI calculation.
Because of privacy restrictions on access to data about

sexual or mental health we were not able to include human
immunodeficiency virus (HIV)/acquired immunodeficiency syn-
drome (AIDS) and dementia in our study.
In addition to theoriginalCCI definition,we stratified thedisease

categories into cardiovascular (i.e., myocardial infarction, conges-
tive heart failure, peripheral vascular disease, cerebrovascular
disease, diabetes mellitus, renal disease) and noncardiovascular
(i.e., peptic ulcer disease, cancer, metastatic disease, hemiplegia,
liver disease, chronic pulmonary disease) diseases. We then
repeated the process explained above and obtained 2 individual
scores (cardiovascular CCI and noncardiovascular CCI).
2

2.4. Data analysis

To investigate the proportion of patients experiencing changes in
comorbidities during follow-up, we calculated the difference
between patient CCI values at baseline, then at 1, 5, and 10 years.
For each follow-up period, we next calculated the overall
proportion of patients that had a CCI change and their mortality
rates. We repeated this analysis by stratifying for the CCI value at
baseline (i.e., 0, 1, 2, ≥3) and reported separately proportion of
change and crudemortality rate for CCI changes of 0, 1, 2, and≥3.
To evaluate the prognostic importance of comorbidity burden

changes over time and the time period over which changes occur,
we performed survival analyses using Cox regression models[37]

with time to death from any cause as the outcome. We built three
different datasets by discretizing time into 3-, 6-, and 12-month
time windows (see Supplementary Figure 1 and Table 1, http://
links.lww.com/MD/B354) and implemented different models by
increasing the level of model’s complexity. Themodels considered:
(1)
(2)
Age, gender, and CCI at baseline (model 1).
Gender and time-dependent age and CCI (model 2).
(3)
 Gender andCCI at baseline as well as time-dependent age and

CCI (model 3).
Gender and baseline CCI value in addition to time-dependent
(4)

age and cumulative CCI change from baseline (model 4).
Gender and time-dependent age, CCI and CCI change over
(5)

consecutive time windows (model 5).

For both the nonstratified and cardiovascular stratified
analyses, time-dependent covariates were modeled by updating
their values at the beginning of each time window (see
Supplementary Table 1, http://links.lww.com/MD/B354).
We used the Akaike Information Criterion (AIC) to assess

model goodness-of-fit.[38] For each model, we also assessed
discrimination with 95% confidence intervals (CIs) for the c-
statistic by calculating c-index over 100 bootstrap iterations.
Finally, we calculated models’ Variance Inflation Factors (VIF),
which assesses collinearity between covariates, and checked the
proportional hazards assumption.

2.5. Sensitivity analyses

We performed several sensitivity analyses. First, we evaluated
possible clustering effects related to the different primary care
practices fromwhich the data arose by repeating ourmain analysis
with the addition of a random intercept at practice level. Second,
since the currency of the original CCI disease weights is under
debate, we repeated all analyses with an updated version of the
CCI.[39] Third, we only considered the patients that experienced a
change in CCI during the follow-up. Fourth, we repeated all
analyses by categorizing both CCI and CCI change as 0, 1, 2, ≥3
and assessing interaction terms between CCI value and CCI
change. Finally, as c-statistic to compare different prediction
models has been criticized,[40,41] we also compared the simplest
(model 1) and most complex (model 5) of the models we tested in
terms of Net Reclassification Improvement (NRI) and Integrated
Discrimination Improvement (IDI)[40,41] to quantify differences in
predictive ability. We based our analysis on Wong et al[42] who
calculated IDI and NRI to compare a time-fixed and time-
dependent model in a survival analysis. Particularly, we calculated
IDI as the difference between the mean predicted risk in patients
who died and patients who did not die for both models. As in the
context of our analysis there are no clear risk categories to which
patients are assigned, we implemented a category-less NRI and
calculated the proportion of the correct (i.e., model 5 predicted
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Table 1

Patient characteristics at baseline.

Parameters
Values at entry date

Missing

Included patients 287,459 None
Patients dead during study period 16,452 (5.7) None
Follow-up (mean, SD) 7.9 (2.8) None
Patients with increase in CCI during
study period (%)

45,779 (15.9) None

Age (mean, SD) 38.3 (18.8) None
Female (%) 141,794 (49.3) None
Townsend index (mean, SD) 1.9 (3.4) None
Ethnicity
White 144,011 (85.8) 119,665 (41.6)
Indian 2698 (1.6)
Pakistani 1775 (1.1)
Bangladeshi 379 (0.2)
Other Asian 2152 (1.3)
Black Caribbean 318 (0.2)
Black African 5461 (3.3)
Chinese 2180 (1.3)
Other 8820 (5.3)

Smoking
Nonsmoker 99,303 (55.4) 108,285 (37.7)
Ex-smoker 32,378 (18.1)
Light smoker (1–9cg/d) 13,938 (7.8)
Moderate smoker (10–19cg/d) 19,458 (10.9)
Heavy smoker (≥20cg/d) 14,097 (7.9)

BMI (kg/m2) (mean, SD) 25.8 (5.7) 137,931 (48)
Cancer (%) 5878 (2) N/A
Cerebrovascular disease (%) 4449 (1.5) N/A
Chronic pulmonary disease (%) 37,842 (13.2) N/A
Congestive heart disease (%) 2311 (0.8) N/A
Diabetes (%) 9152 (3.2) N/A
Diabetes with complications (%) 1116 (0.4) N/A
Hemiplegia (%) 473 (0.2) N/A
Metastatic tumor (%) 122 (0) N/A
Mild liver disease (%) 370 (0.1) N/A
Mod liver disease (%) 149 (0.1) N/A
Myocardial infarction (%) 4277 (1.5) N/A
Peptic ulcer disease (%) 3449 (1.2) N/A
Peripheral vascular disease (%) 2126 (0.7) N/A
Renal disease (%) 1827 (0.6) N/A
Rheumatological disease (%) 2886 (1) N/A

BMI=body mass index, CCI=Charlson Comorbidity Index, N/A=not available, SD= standard
deviation.

Fraccaro et al. Medicine (2016) 95:43 www.md-journal.com
higher risk than model 1 for patients who died) minus incorrect
predictions in the events plus the proportions of correct (i.e., model
5 predicted lower risk than model 1 for patients who did not die)
minus incorrect predictions for nonevents. For both IDI and NRI
values above 0 indicate better performance. We calculated 95%
CIs for both IDI and NRI for each time point over 100 bootstrap
iterations.

3. Results

3.1. Study population characteristics

A total of 357,829 patients were recorded in the SIR database
during the study period. We excluded 65,182 patients because
they were under the age of 18 years and 5188 patients because of
conflicting registration data (such as temporary residents). A total
of 287,459 patients were included in the analysis, with a
mortality rate of 5.7% (N=16,452) recorded during the study
period. Table 1 shows patient characteristics at baseline. The
proportion of women was 49.3% and mean age at baseline was
38.3 years (standard deviation [SD] 18.8), with a mean follow-up
time of 7.9 years (SD 2.8). Mean deprivation as measured by the
Townsend score[43] which incorporates four variables (i.e.,
unemployment, noncar ownership, nonhome ownership, and
household overcrowding) to calculate material deprivation
within a population, was 1.9 (SD 3.4). The majority of patients
were Caucasian (85.8%). Mean body mass index (BMI) at
baseline was 25.8kg/m2 (SD 5.7). The prevalence of CCI disease
categories at baseline varied from 0.1% to 13.2%, with chronic
pulmonary disease having the highest prevalence, followed by
diabetes (3.5%). Prevalence rates for cancer, cerebrovascular
disease, myocardial infarction, peptic ulcer disease, and muscu-
loskeletal disease varied between 1% and 2%, whilst for all other
comorbidities prevalence rates were below 1%.
Table 2 reports trends over time of prevalence of the CCI

diseases categories (see Supplementary Figure 2 for graphical
representation, http://links.lww.com/MD/B354). Prevalence rates
for cancer, chronic pulmonary disease, and diabetes increased
during the study period, while they decreased for myocardial
infarction, peptic ulcer, andmusculoskeletal disease. Renal disease
prevalence peaked in financial years 2009/10 and 2010/11 and
then slightly decreased. All the other disease categories remained
stable.

3.2. Comorbidities change and mortality

Over the study period, we observed a change in CCI at 1 year for
5533 (1.9%) patients, with a crude mortality rate documented
within this group of 3.1%. The number of patients for whom we
observed CCI changes after 5 and 10 years were 30,025 (10.4%)
and 45,096 (15.9%), with a respective crude mortality rate of
10.0% and 19.8%.When comparing mortality between the group
ofpatients thathada change inCCIand those thatdidnotwe found
odds ratios of 8.8 (95%CI: 7.5–10.4), 6.6 (95%CI: 6.3–6.9), and
7.8 (95% CI: 7.5–8.0) at the 3 time points, respectively.
Table 3 reports the mortality odds ratios associated with a

change in CCI of 1, 2, and equal or more than 3units, respectively
(see Supplementary Figures 3–5 for details about prevalence of
CCI change and related mortality, http://links.lww.com/MD/
B354). Overall, the odds ratios increased for bigger CCI changes
and decreased for longer follow-up times and higher baseline CCI
values. All comparisons were statistically significant (P values
lower than 0.05), with the exception of some analyses for baseline
CCI 2 and 3.
3

3.3. Regression analyses

Table 4 summarizes covariates prognostic impact (per unit
increase), AIC, and c-statistic for the 6-month time window
analysis. These are reported separately for the nonstratified and
cardiovascular-stratified analyses.
We observed the same prognostic impact (HR 1.50, 95% CI:

1.49–1.51) in model 3 for the time-dependent CCI value and
model 4 for the CCI cumulative change over study period, which
in both cases was much greater than the baseline CCI value (HR
0.81, 95% CI: 0.80–0.82 in model 3 and HR 1.21, 95% CI:
1.20–1.22 in model 4). In addition, it can be seen that
longitudinal changes in CCI provide additional prognostic
information (HR 1.51, 95% CI: 1.48–1.54) to that provided
by the absolute CCI score (HR 1.30, 95% CI: 1.29–1.31) also
when looking at changes across different time windows (i.e.,
model 5). Interestingly, longitudinal changes in the noncardio-
vascular components of CCI provide a much greater hazard for
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http://links.lww.com/MD/B354
http://links.lww.com/MD/B354
http://www.md-journal.com


T
a
b
le

2

C
ha

rl
so

n
C
o
m
o
rb
id
it
y
In
d
ex

d
is
ea

se
ca

te
g
o
ri
es

tr
en

d
o
ve

rt
he

st
ud

y
p
er
io
d
(o
n
Q
O
F
fi
na

nc
ia
ly
ea

rs
,s
uc

h
as

1s
to

fA
p
ri
lt
o
31

st
M
ar
ch

o
ft
he

ne
xt

ye
ar
)i
n
te
rm

s
o
fn

um
b
er

o
fp

at
ie
nt
s
af
fe
ct
ed

an
d
p
re
va

le
nc

e.

Di
se
as
es

Ye
ar

20
05

(N
=
19
9,
04
3)

Ye
ar

20
06

(N
=
20
6,
39
2)

Ye
ar

20
07

(N
=
21
4,
91
1)

Ye
ar

20
08

(N
=
22
6,
00
1)

Ye
ar

20
09

(N
=
23
4,
90
4)

Ye
ar

20
10

(N
=
24
3,
10
4)

Ye
ar

20
11

(N
=
25
0,
95
8)

Ye
ar

20
12

(N
=
25
7,
77
7)

Ye
ar

20
13

(N
=
26
4,
36
9)

Ye
ar

20
14

(N
=
27
1,
00
7)

Ca
nc
er

(%
)

62
89

(3
.2
)

68
68

(3
.3
)

75
25

(3
.5
)

84
16

(3
.7
)

89
23

(3
.8
)

93
96

(3
.9
)

98
13

(3
.9
)

10
,1
94

(4
)

10
,4
79

(4
)

10
,6
82

(3
.9
)

Ce
re
br
ov
as
cu
la
r
di
se
as
e
(%
)

46
12

(2
.3
)

48
17

(2
.3
)

50
59

(2
.4
)

53
61

(2
.4
)

56
15

(2
.4
)

58
23

(2
.4
)

59
66

(2
.4
)

60
28

(2
.3
)

60
46

(2
.3
)

61
31

(2
.3
)

Ch
ro
ni
c
pu
lm
on
ar
y
di
se
as
e
(%
)

29
,3
19

(1
4.
7)

31
,0
69

(1
5.
1)

32
,8
27

(1
5.
3)

34
,9
29

(1
5.
5)

36
,6
18

(1
5.
6)

38
,1
64

(1
5.
7)

39
,5
20

(1
5.
7)

40
,7
66

(1
5.
8)

41
,6
85

(1
5.
8)

42
,5
44

(1
5.
7)

Co
ng
es
tiv
e
he
ar
t
di
se
as
e
(%
)

24
66

(1
.2
)

25
26

(1
.2
)

27
48

(1
.3
)

30
97

(1
.4
)

31
92

(1
.4
)

33
31

(1
.4
)

34
15

(1
.4
)

34
48

(1
.3
)

34
73

(1
.3
)

34
96

(1
.3
)

Di
ab
et
es

(%
)

90
95

(4
.6
)

96
69

(4
.7
)

10
,3
76

(4
.8
)

11
,3
76

(5
)

12
,0
24

(5
.1
)

12
,6
52

(5
.2
)

13
,1
33

(5
.2
)

13
,6
00

(5
.3
)

14
,0
46

(5
.3
)

14
,2
44

(5
.3
)

Di
ab
et
es

w
ith

co
m
pl
ic
at
io
ns

(%
)

12
77

(0
.6
)

14
72

(0
.7
)

16
23

(0
.8
)

17
59

(0
.8
)

18
97

(0
.8
)

21
23

(0
.9
)

23
96

(1
)

25
13

(1
)

26
80

(1
)

27
72

(1
)

He
m
ip
le
gi
a
(%
)

43
2
(0
.2
)

45
9
(0
.2
)

47
2
(0
.2
)

48
8
(0
.2
)

49
9
(0
.2
)

51
6
(0
.2
)

53
0
(0
.2
)

55
5
(0
.2
)

56
3
(0
.2
)

57
1
(0
.2
)

M
et
as
ta
tic

tu
m
or

(%
)

13
3
(0
.1
)

15
0
(0
.1
)

17
0
(0
.1
)

20
4
(0
.1
)

23
3
(0
.1
)

24
7
(0
.1
)

27
3
(0
.1
)

30
4
(0
.1
)

30
3
(0
.1
)

30
5
(0
.1
)

M
ild

liv
er

di
se
as
e
(%
)

36
2
(0
.2
)

39
4
(0
.2
)

43
0
(0
.2
)

49
7
(0
.2
)

55
2
(0
.2
)

62
4
(0
.3
)

68
4
(0
.3
)

75
8
(0
.3
)

81
1
(0
.3
)

86
5
(0
.3
)

M
od

liv
er

di
se
as
e
(%
)

15
9
(0
.1
)

16
6
(0
.1
)

19
1
(0
.1
)

22
1
(0
.1
)

23
4
(0
.1
)

26
2
(0
.1
)

27
9
(0
.1
)

30
4
(0
.1
)

31
3
(0
.1
)

31
9
(0
.1
)

M
yo
ca
rd
ia
li
nf
ar
ct
io
n
(%
)

44
10

(2
.2
)

45
33

(2
.2
)

46
91

(2
.2
)

49
28

(2
.2
)

49
86

(2
.1
)

50
47

(2
.1
)

51
02

(2
)

51
45

(2
)

51
70

(2
)

52
18

(1
.9
)

Pe
pt
ic
ul
ce
r
di
se
as
e
(%
)

34
90

(1
.8
)

36
01

(1
.7
)

37
37

(1
.7
)

38
91

(1
.7
)

39
40

(1
.7
)

39
49

(1
.6
)

39
57

(1
.6
)

39
59

(1
.5
)

39
13

(1
.5
)

38
83

(1
.4
)

Pe
rip
he
ra
lv
as
cu
la
r
di
se
as
e
(%
)

22
59

(1
.1
)

23
64

(1
.1
)

25
17

(1
.2
)

26
73

(1
.2
)

27
49

(1
.2
)

2,
79
0
(1
.1
)

28
82

(1
.1
)

29
54

(1
.1
)

30
48

(1
.2
)

30
76

(1
.1
)

Re
na
ld
is
ea
se

(%
)

30
05

(1
.5
)

89
76

(4
.3
)

10
,9
83

(5
.1
)

11
,7
14

(5
.2
)

12
,3
06

(5
.2
)

12
,3
88

(5
.1
)

12
,3
40

(4
.9
)

12
,3
18

(4
.8
)

11
,9
65

(4
.5
)

11
,7
81

(4
.3
)

Rh
eu
m
at
ol
og
ic
al
di
se
as
e
(%
)

29
06

(1
.5
)

29
72

(1
.4
)

30
43

(1
.4
)

31
97

(1
.4
)

32
73

(1
.4
)

33
40

(1
.4
)

34
01

(1
.4
)

34
35

(1
.3
)

34
56

(1
.3
)

34
98

(1
.3
)

QO
F=

Qu
al
ity

an
d
Ou
tc
om

e
Fr
am

ew
or
k.

Fraccaro et al. Medicine (2016) 95:43 Medicine

4

mortality (HR 1.66, 95%CI: 1.62–1.70) than the cardiovascular
components (HR 1.17, 95% CI: 1.12–1.22).
Increasing the model complexity from model 1 to model 5 led

to a better fit of the models to the data, as witnessed by a decrease
in AIC, but not a substantial improvement in the c-statistic.
Model 3 and model 4 were equivalent in terms of goodness-of-fit
(i.e., same AIC value). VIF values were lower than 2 for all
included variables across all models, showing no indication of
collinearity between the covariates. Finally, there was no evidence
to reject the hypothesis of proportional hazards.
Results from the analyses with 3- and 12-month time windows

showed similar findings to those undertaken with 6-month time
windows.
Table 5 shows hazard ratios formodel 5, such as themodel that

obtained the best AIC values, across all the three different time
windows (i.e., 12-, 6-, and 3-month time windows). Looking at
the nonstratified analysis, CCI (per unit increase) had similar
prognostic impact across all analyses, whilst longitudinal changes
in CCI hazard ratio (per unit increase) augmented with shorter
time windows. The cardiovascular-stratified analysis showed
similar figures, whilst the noncardiovascular CCI score had
bigger prognostic impact in shorter time periods.
The sensitivity analysis that focused only on patients that

experienced CCI changes gave comparable results to the main
analysis, with the exception of an increased difference in c-
statistic, for which we observed values for the 95% CI ranging
from 0.79 to 0.79 for model 1 to 0.83 to 0.84 for model 5 in the 6-
month time window analysis. The sensitivity analysis that
compared model 1 and 5 in terms of IDI and NRI showed that for
most time points the 2 models had the same predictive ability (see
Supplementary Figure 6, http://links.lww.com/MD/B354), with
model 5 that was slightly better in IDI and model 1 in NRI.
Sensitivity analyses, exploring variations by care provider,
disease weighting schemes and score categorizations, showed
similar results to our main analysis.
4. Discussion

Our population-based analysis in over a quarter of a million
people with detailed primary care records suggests that
comorbidity is a dynamic process, with 1 in 10 patients showing
a change in CCI over 5 years. This longitudinal pattern of
comorbidity was associated with increased mortality risk, where
change over time in CCI was a stronger predictor than CCI at
baseline. In addition, the more rapid changes in CCI posed a
greater mortality risk.
This study confirms that as populations “age,” a significant

proportion of patients will experience comorbidity changes over
time, and that longitudinal uses ofmetrics like CCI hold important
prognostic information. Specifically, using Cox regression models
with time-dependent CCI and including CCI-change provides
additional prognostic information that should be consideredwhen
studying long-term outcomes in EHRs.
Regarding the choice of variables and how they are included in

a regression model, we did not observe much variation in terms
of discriminatory ability, with models 2 to 5 being almost
equivalent. To increase the contrasts between models we
restricted the discrimination comparison to the 15.9% of the
population with comorbidity changes, however, the differences
did not greatly increase. Similar predictive performance between
models was also found in the IDI and NRI sensitivity analysis.
Since many of the comorbidities comprising the CCI score are

heterogeneous, we stratified our analysis by 2 broad condition

http://links.lww.com/MD/B354


Table 3

Odds ratio of mortality for group of patients that had a change in Charlson Comorbidity Index (CCI) and the patients that did not have it for
different baseline CCI values across the study.

Baseline CCI CCI change
1-y follow-up,

odds ratio [95% CI]
5-y follow-up,

odds ratio [95% CI]
10-y follow-up,

odds ratio [95% CI]

0 1 6.35 [4.33, 9.32] 3.58 [3.16, 4.05] 3.68 [3.41, 3.97]
2 18.18 [13.09, 25.25] 10.34 [9.42, 11.34] 11.31 [10.64, 12.02]
≥3 70.12 [36.98, 132.95] 17.58 [15.45, 20.01] 19.33 [17.98, 20.78]

1 1 7.59 [4.95, 11.65] 2.88 [2.43, 3.42] 3.24 [2.91, 3.61]
2 10.68 [7.1, 16.07] 5.82 [5.17, 6.55] 7.26 [6.67, 7.91]
≥3 12.73 [3.94, 41.18] 8.42 [7.24, 9.78] 9.34 [8.51, 10.25]

2 1 0.59
∗
[0.19, 1.87] 1.12

∗
[0.89, 1.39] 1.24 [1.07, 1.44]

2 1.91 [0.96, 3.77] 1.69 [1.44, 1.98] 2.19 [1.94, 2.48]
≥3 7.93 [2.75, 22.86] 2.24 [1.83, 2.74] 2.85 [2.5, 3.24]

≥3 1 1.69
∗
[0.92, 3.08] 1.09

∗
[0.86, 1.37] 1.29 [1.09, 1.54]

2 1.27
∗
[0.62, 2.63] 1.22 [1.03, 1.45] 1.96 [1.7, 2.27]

≥3 5.54 [1.87, 16.4] 1.37 [1.08, 1.74] 1.88 [1.6, 2.21]

CI= confidence interval.
∗
Value nonstatistically significant at a 0.05 level.
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groups: with separate cardiovascular and noncardiovascular
variables. In predicting mortality: for the cardiovascular CCI,
absolute score had a greater impact than its change over time,
whilst for the noncardiovascular CCI change over time was more
predictive than absolute value. A possible explanation is that
cardiovascular diseases are yoked in common pathophysiological
mechanisms with similar progression over time and share
overlapping treatment strategies, hence longitudinal changes in
the burden of these conditions is less likely to be as important
when one already has an existing cardiovascular disorder. In
contrast, noncardiovascular CCI encompasses a heterogeneous
group of diseases such as cancer, peptic ulcers, pulmonary
pathology, or liver diseases with separate pathophysiological
mechanisms and treatment strategies whose prognostic impact is
likely to be additive hence why dynamic changes in non-
cardiovascular CCI has such important prognostic implications.
Although multimorbidity is often considered a static

process,[14–16] studies have analyzed 3 main aspects of longitu-
dinal changes in comorbidities[14–16,44–46]: finding trajectories of
comorbidity evolution over time[16,44,46]; investigating the best
way of longitudinally modeling comorbidities when making
predictions[14,15]; and assessing if prognostic impact of comor-
bidities is temporary or persistent.[45] Comorbidities were mostly
defined as counts of diseases,[16,44–46] with CCI used in just 2
studies[14,15] and no comparisons made between the cardiovas-
cular and noncardiovascular components of CCI. Whilst CCI
“weights” clinical conditions by their prognostic impact, a simple
count of comorbidities would be confounded by the fact that
different clinical conditions will impact on prognosis differently.
Therefore, a change in the number of comorbid conditions will
have very different prognostic implications depending on which
conditions have changed.
To date, the studies of Aarts et al[45] and Strauss et al[16] are the

only ones to report the number of patients experiencing change in
comorbidities over time.Aarts et al[45] followed1184patients aged
24 to 81 for 6 years in a Dutch prospective study and reported that
16.4% with changes in comorbidities. Strauss et al[16] studied
24,641 people aged >50 for 3 years in a UK primary care setting
and reported 60% of these older patients had changes in
comorbidities. Our study was most comparable with that of
Aarts et al[45] as we considered similar age groups, and our results
for overall change over time in comorbidity were very similar.
5

Four studies have related advancing multimorbidity to worse
health outcomes,[14–16,45] and we extended the methodologies
used. Aarts et al[45] and Strauss et al,[16] used latent class analysis
to identify different multimorbid trajectories in primary care
data, and found worse self-reported health among patients with
greater (especially steeper) changes in comorbidities. Zeng
et al[15] associated steeper CCI yearly change with worse general
health in older (>65 years) patients with at least 3 comorbidities
(N=∼15,000) over a 10-year period. Finally, Wang et al[14]

reported much greater prognostic impact for time-dependent CCI
levels compared to CCI values at baseline amongst a population
of United States Medicare patients older than 65 years (N=
50,000). Our model 3 reflected that ofWang et al and we found it
fitted less well than the model that explicitly considered CCI
changes over different time windows, and identified baseline CCI
value as a protective factor, which is counterintuitive. These
results suggest that the explicit inclusion of CCI changes allowed
us to better capture and describe the complexity of comorbidity
burden evolution over time.
Strauss et al,[16] Lappenschaar et al,[44] and Quiñones et al[46]

have also looked at defining longitudinal trajectories of
comorbidity burden. Lappenschaar et al[44] used a Bayesian
network to find associations between diseases and health risks to
predict evolution of comorbidities over time (e.g., diabetic
retinopathy and hypertension). Quiñones et al[46] estimated
ethnicity-specific comorbidity trajectories for white Americans,
black Americans and Mexicans. These studies did not consider
the association between longitudinal comorbidity burden and
outcome, they focused on deriving trajectories that predict how
quickly patients encounter new comorbidities, which is similarly
important.
To our knowledge, this is the first study to report the

prognostic impact of comorbidity burden evolution, as measured
by CCI, in a natural/geographical population, and to consider the
discrete contributions of cardiovascular versus noncardiovascu-
lar conditions.
Yet our analysis has several limitations. First, the SIR database

relies on clinicians’ observations and entry of relevant codes into
EHRs, which may be an incomplete or inaccurate representation
of patients’ health. Most of the conditions in CCI, however, are
recorded well in English primary care because they are part of
the QOF pay-for-performance scheme. We observed a direct
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Table 4

Results for the 6-month time windows in terms of AIC and hazard ratios.

Model AIC c-statistic 95% CI Variable Hazard ratio [95% CI]

Nonstratified analysis
1 362,230 0.90–0.90 Baseline age (per year) 1.08 [1.08, 1.09]

Gender (M vs F) 1.26 [1.22, 1.30]
Baseline CCI (per unit) 1.23 [1.21, 1.24]

2 358,054 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.21 [1.18, 1.25]
CCI (per unit) 1.35 [1.34, 1.36]

3 357,290 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.24 [1.20, 1.28]
Baseline CCI (per unit) 0.81 [0.80, 0.82]
CCI (per unit) 1.50 [1.49, 1.51]

4 357,290 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.24 [1.20, 1.28]
Baseline CCI (per unit) 1.21 [1.20, 1.22]
CCI cumulative change (per unit) 1.50 [1.49, 1.51]

5 357,000 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.22 [1.20, 1.26]
CCI (per unit) 1.30 [1.29, 1.31]
CCI change (per unit) 1.51 [1.48, 1.54]

Cardiovascular stratified analysis
1 362,169 0.90–0.90 Baseline age (per year) 1.08 [1.08, 1.09]

Gender (M vs F) 1.25 [1.21, 1.29]
Baseline cardiovascular CCI (per unit) 1.29 [1.27, 1.31]
Baseline noncardiovascular CCI (per unit) 1.16 [1.15, 1.18]

2 357,952 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.22 [1.18, 1.26]
Cardiovascular CCI (per unit) 1.30 [1.29, 1.31]
Noncardiovascular CCI (per unit) 1.42 [1.40, 1.43]

3 356,818 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.22 [1.180, 1.26]
Baseline cardiovascular CCI (per unit) 0.93 [0.91, 0.95]
Cardiovascular CCI (per unit) 1.34 [1.32, 1.36]
Baseline noncardiovascular CCI (per unit) 0.71 [0.70, 0.72]
Noncardiovascular CCI (per unit) 1.69 [1.66, 1.71]

4 356,818 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.22 [1.18, 1.26]
Baseline cardiovascular CCI (per unit) 1.24 [1.22, 1.26]
Cardiovascular CCI cumulative change (per unit) 1.33 [1.32, 1.36]
Baseline noncardiovascular CCI index (per unit) 1.20 [1.18, 1.22]
Noncardiovascular CCI cumulative change (per unit) 1.69 [1.67, 1.71]

5 356,735 0.91–0.91 Age (per year) 1.08 [1.08, 1.08]
Gender (M vs F) 1.22 [1.18, 1.26]
Cardiovascular CCI (per unit) 1.29 [1.27, 1.30]
Cardiovascular CCI change (per unit) 1.17 [1.12, 1.22]
Noncardiovascular CCI index (per unit) 1.32 [1.30, 1.34]
Noncardiovascular CCI change (per unit) 1.66 [1.62, 1.70]

AIC=Akaike Information Criterion, CCI=Charlson Comorbidity Index, CI= confidence interval.
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example of the effect of QOF in our dataset for renal disease.
Particularly, prevalence in the Salford population raised from
1.5% in 2005 to 4.3% in 2006, and this is likely to be related to
the introduction of renal disease in QOF during that year. Some
cases will remain undiagnosed but this would be unusual given
the serious nature of the CCI conditions, also dissent rates (i.e.,
refusal of assessment or treatment by the patient) in this context
are low.[47] Second, like most other investigators we considered
CCI as a “rolling”measure, cumulating comorbidity burden until
death. However, a limited number of the CCI disease categories
(i.e., peptic ulcer or cancer) might be cured (a state not recorded in
our EHR). Third, due to data-reuse restrictions, we did not have
information about 2 CCI disease categories: sexual and mental
health. We note, however, that HIV and dementia prevalence in
our population is 4 in 1000[48] and less than 1%, respectively.[49]
6

Given that the included data cover most of the disease burden of
the population and the principal determinants of their outcomes
we do not feel that the inclusion of sexual and mental health data
would lead to substantially different findings. Fourth, general
practices in Salford use 2 different EHRs, which can have a small
influence over the data captured,[50] but this is unlikely to be
substantial for given the incentivized data capture for the CCI
conditions. Finally, although our analyses focused only on the
city of Salford, our cohort was composed of ∼280,000 patients
and the data were collected from all 53 primary care practices in
Salford. It is true that almost a third of neighborhoods in Salford
are in the most deprived tenth of England. However, in terms of
multimorbidity Salford is in the 61st centile. Therefore we expect
that our results would be generalizable to other areas in England
and UK.



[12] Von Korff M, Wagner EH, Saunders K. A chronic disease score from

Table 5

Hazard ratios for model 5 across the different time windows analyses.

Variable

Model 5

12-mo time windows,
hazard ratio

[95% confidence interval]

6-mo time windows,
hazard ratio

[95% confidence interval]

3-mo time windows,
hazard ratio

[95% confidence interval]

Nonstratified analysis
Age (per year) 1.08 [1.08, 1.08] 1.08 [1.08, 1.08] 1.08 [1.08, 1.08]
Gender (M vs F) 1.22 [1.20, 1.26] 1.22 [1.20, 1.26] 1.21 [1.18, 1.25]
CCI (per unit) 1.28 [1.26, 1.29] 1.30 [1.30, 1.31] 1.33 [1.32, 1.34]
CCI change (per unit) 1.41 [1.38, 1.44] 1.51 [1.48, 1.54] 1.63 [1.59, 1.66]

Cardiovascular stratified analysis
Age (per year) 1.08 [1.08, 1.08] 1.08 [1.08, 1.08] 1.08 [1.08, 1.08]
Gender (M vs F) 1.21 [1.17, 1.25] 1.22 [1.18, 1.26] 1.21 [1.17, 1.25]
Cardiovascular CCI (per unit) 1.28 [1.270, 1.30] 1.29 [1.28, 1.30] 1.29 [1.28, 1.30]
Cardiovascular CCI change (per unit) 1.12 [1.09, 1.16] 1.18 [1.12, 1.22] 1.32 [1.25, 1.39]
Noncardiovascular CCI (per unit) 1.26 [1.24, 1.28] 1.32 [1.30, 1.34] 1.38 [1.36, 1.40]
Noncardiovascular CCI change (per unit) 1.60 [1.56, 1.63] 1.66 [1.62, 1.70] 1.68 [1.64, 1.72]

CCI=Charlson Comorbidity Index.

Fraccaro et al. Medicine (2016) 95:43 www.md-journal.com
Comorbidity burden is a dynamic process, with 1 in 10 patients
in our study of British adults experiencing at least 1 change in
comorbidity as measured by the CCI over a period of 5 years.
Longitudinal models that include time-dependent CCI level and
CCI change appear to be the most successful in capturing the
effect of comorbidity burden on mortality and should be
considered in survival analyses using EHR data—for research
or for care quality management.
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