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Abstract: Numerous microorganisms, pathogenic for mammals, come from the environment where
they encounter predators such as free-living amoebae (FLA). The selective pressure due to this
interaction could have generated virulence traits that are deleterious for amoebae and represents a
weapon against mammals. Toxins are one of these powerful tools that are essential for bacteria or
fungi to survive. Which amoebae are used as a model to study the effects of toxins? What amoeba
functions have been reported to be disrupted by toxins and bacterial secreted factors? Do bacteria
and fungi effectors affect eukaryotic cells similarly? Here, we review some studies allowing to answer
these questions, highlighting the necessity to extend investigations of microbial pathogenicity, from
mammals to the environmental reservoir that are amoebae.

Keywords: amoeba; effectors; pathogens; toxins

Key Contribution: We review the action of toxins, produced by pathogenic bacteria and fungi; on an
environmental host often forgotten.

1. Introduction

The pathogenicity of several microorganisms can be directly linked to the toxins
they produce. For example, most people know of historical diseases such as Cholera and
Tetanus for which the role of toxins is essential. These diseases caused, respectively, by
Vibrio cholerae and Clostridium tetani result from the action of virulence factors such as the
cholera toxin [1] and tetanus neurotoxins [2].

Toxins are toxic molecules produced and released by microorganisms to target other
organisms. They are also powerful tools used by bacteria and fungi to promote infection.
Depending on the mode of action of toxins or their targets, microorganisms expressing
these molecules can damage their hosts. Effects of toxins also depend on the hosting
organism. For example, the Escherichia coli O157:H7 Shiga toxin (Stx) induces diarrhea,
hemorrhagic colitis and hemolytic uremic syndrome in humans, whereas cattle that lack
the vascular receptors of Stx are tolerant to the E. coli O157:H7 infection [3].

Despite the high frequency of infectious diseases, humans and animals constitute
accidental hosts for numerous bacteria and fungi. The two latter are mainly found free or
associated to vectors in the environment defining nearby microorganisms as primary tar-
gets of bacterial or fungal toxins. During the last decades, several laboratories have focused
their interest on environmental reservoir of pathogenic microorganisms. Protozoa, such
as FLA, have emerged as important environmental reservoirs of pathogenic bacteria [4,5].
FLA are phagocytic cells widely distributed in the environment that feed on bacteria, fungi,
and viruses [6]. Some ingested microorganisms, such as Legionella pneumophila, are able to
resist amoeba digestion and multiply within FLA [5]. Because of the similarities between
amoebae phagocytosis and the digestion by macrophages [7,8], amoeba-resistant microor-
ganisms become resistant to macrophages and potential human/animal pathogens [5].
Worryingly, some bacteria have been shown to become more virulent and more resistant to
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antimicrobials after their passage through amoebae [9,10]. FLA are also considered to be a
melting pot as they allow genetic exchanges between intracellular microorganisms [11].
FLA constitute reservoirs and training grounds of pathogenic microorganisms such as
L. pneumophila and Mycobacterium avium [12,13].

FLA life cycle can exhibit at least two forms: trophozoite and cyst. Being biochemically
active, the trophozoite form allows feeding and division. Under adverse environmental
conditions, the trophozoite differentiates into a cyst, the resting form [14]. This process,
called encystment, is reversible under favorable conditions. In genera such as Acanthamoeba,
cysts are highly resistant due to a wall containing cellulose and/or chitin [15]. During en-
cystment, bacteria that are trapped within cysts become protected from antimicrobials [16].
For instance, amoeba cysts were theorized to act as survival niches and protective shelters
for foodborne pathogenic bacteria such as E. coli, Listeria monocytogenes, Salmonella enterica,
and Yersinia enterocolitica [17]. Because FLA host, protect, and allow the dissemination
of numerous microorganisms in the environment, they could be considered primary tar-
gets for toxins. Microorganisms and amoebae interactions could result in environmental
selective pressure, thus potentially maintaining or inducing microbial virulence factors
and pathogenicity [18]. Virulence factors such as toxins that are selected could then be
used against mammalian cells, once the producing microorganisms encounter humans
or animals.

Since numerous reviews address interactions between FLA and prokaryotic and
eukaryotic microorganisms [5,6,11], this short review will focus on the action of some
toxins, effectors or factors, secreted by mammalian pathogens, toward FLA. Molecules
of interest that are described here were picked up from well-studied bacteria and fungi.
Thus, important parts of the manuscript will be dedicated to the molecules released by the
bacterium L. pneumophila, which naturally resides in FLA. Effects of toxins and effectors
from other airborne pathogens such as the bacterium Pseudomonas aeruginosa and the
fungus Aspergillus fumigatus will be also discussed. The activity of hemolysins produced
by foodborne and waterborne pathogens such as L. monocytogenes and V. cholerae will be
addressed. The review will first present the two amoeba models commonly used to study
the interaction with bacteria or fungi. Then, the description of microbial secreted molecules
that affect amoebae through the inhibition of engulfment and the disturbance of amoeba
functions leading to cell death will be elaborated. Finally, the various eukaryotic responses
induced by these microbial factors will be addressed.

2. Free-Living Amoebae Represent a Relevant Model to Study Bacterial Effectors

At present, studies of crosstalk between bacteria, fungi and environmental amoebae
are carried out predominantly with two models from Dictyostelium and Acanthamoeba
genera [19–21].

Acanthamoeba species are ubiquitously distributed in the environment including soil,
water, and air. They are opportunistic pathogens as they are responsible for human
diseases such as granulomatous amoebic encephalitis and amoebic keratitis [22]. Most
Acanthamoeba have two stages during their life cycle: a trophozoite stage, which is the active
metabolic form, and a cyst stage, which is the resting and resistant form. The trophozoite
presents on its surface spine-like structures named acanthopodia that allow adhesion
to surfaces, movement, and prey catching [23]. Acanthamoeba feed on microorganisms
such as bacteria and fungi [12]. However, some of the organisms ingested resist amoeba
digestion. Thus, Acanthamoeba spp. represent an important reservoir and vector for various
pathogenic bacteria, fungi and viruses [12]. Astonishingly, many pathogens possess the
ability to replicate inside Acanthamoeba in vitro [13]. Although Acanthamoeba spp. are easy
to cultivate, genetic manipulations remain challenging. Some genomes of Acanthamoeba
spp. are available but the polyploidy of this organism is a barrier rendering gene knockouts
difficult, even for molecular and cellular biology in general [24,25]. Indeed, only two
plasmids seem efficient to transfect Acanthamoeba castellanii [26]. Despite these impediments,
Acanthamoeba spp. remain one of the most commonly used models to study microbial
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interactions. Numerous publications, that will be presented hereafter, have reported effects
of bacterial and fungal products on Acanthamoeba.

Dictyostelium discoideum is a social amoeba that lives in the soil and feeds on bacteria
through phagocytosis. D. discoideum has the advantage to be easily grown and geneti-
cally tractable with an ease to generate mutants. This amoeba is single-celled but, under
starvation, it aggregates with thousands of other solitary cells to become a multicellu-
lar moving slug-like organism. This form then produces a fruiting body consisting of a
stalk and sorus containing spores. These spores are released and germinate into growing
cells thus completing the life cycle [27]. D. discoideum interacts with bacteria either at the
single-celled or multicellular stage. At the single cell stage, D. discoideum adapts its re-
sponse depending on bacteria in association. Indeed, it was reported as a non-overlapping
specificity of the transcriptional response of D. discoideum to different bacteria such as
Bacillus subtilis, Klebsiella pneumoniae, Mycobacterium marinum and Micrococcus luteus [28].
In its aggregative state, to protect the moving slug from toxins or bacterial pathogens, the
D. discoideum slug has sentinel cells that can engulf bacteria and sequester toxins [29]. These
sentinel cells have been shown to clear the bacterium L. pneumophila from the slug using
a Toll/interleukin-1 receptor (Tir) domain protein, TirA signaling [29]. However, about
one-third of the wild D. discoideum clones, called farmers, rather than consuming all the
available bacteria, keep some and incorporate them into the fruiting body instead. [30].
Arriving in a new area, theses clones are able to seed the stored bacteria as a food source.
Farmers have less sentinel cells compared to non-farmers but they also carry non-food
bacteria such as Burkholderia spp. that renders sentinel cell functionality more efficient [31].
The presence of farmer-associated bacteria prevents farmers from being harmed by toxic
molecules, for example, ethidium bromide that is a polycyclic, aromatic compound with a
phenanthridine core, which displays toxicity to D. discoideum [32]. Interestingly, by mixing
farmers and non-farmers of D. discoideum, a reduction of spore production in non-farmers
has been observed due to chromene, a polycyclic aromatic compound broadly similar to
ethidium bromide secreted by Pseudomonas fluorescens hosted by non-farmers [33]. Despite
the presence of sentinels, the sampling of environmental D. discoideum fruiting bodies has
revealed important permanent and transient associations with bacteria, underlying a very
unique relationship between bacteria and D. discoideum far from the simplistic view of
predator/prey [34]. As D. discoideum is genetically tractable, it offers important potential in
elucidating the mode of action of bacterial-secreted toxin on host cells.

Other FLA can be used to study the interaction with other microorganisms. For
instance, Vermamoeba vermiformis (formerly Hartmannella vermiformis) is a ubiquitous ther-
motolerant amoeba recovered in natural and in man-made water systems. The growing
interest in this amoeba lies in the fact that V. vermiformis is highly abundant in hospital
water systems. Similarly to Acanthamoeba, V. vermiformis present a two-stage life and were
also shown to host numerous microorganisms including bacteria and fungi [35].

FLA of the Naegleria genus are also used as a model to study interactions between
FLA and microorganisms. Naegleria spp. are commonly found in soils and freshwa-
ter. This genus is composed of more than 40 species among which the amoeboflagel-
late Naegleria fowleri, responsible for the human primary amoebic encephalitis, can be
found [36]. Most of Naegleria exist in three distinct stages: a trophozoite active form, a
swimming flagellate state, and a resting cyst form. This model is highly used in association
with the bacterium L. pneumophila [37].

3. Bacteria and Fungi Can Secrete Surface Molecules That Prevent
Amoeba Engulfment

In the environment, bacterial communities are regulated by FLA [6]. To prevent
physical interactions, certain microorganisms produce anti-amoeba molecules on their
membrane. Thus, the surface exposure of the green pigment 1,8-dihydroxynaphthalene-
melanin protects the fungi A. fumigatus from phagocytic uptake and intracellular killing
by the amoeba, Protostelium aurantium, and delays its exocytosis from D. discoideum [38].
Similar effects were observed with the bacterium V. cholerae for which production of the
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pyomelanin pigment allows resistance to predation by A. castellanii [39]. The protective role
for pigments comes as a supplement to the bacterial surface structures such as lipopolysac-
charide (LPS) and outer membrane proteins. In the case of K. pneumoniae, the LPS and
the outer membrane proteins, OmpA and OmpK36, seem critical to counteract predation
by D. discoideum [40]. If PagP-dependent lipid A palmitoylation contributes to reducing
Klebsiella engulfment by D. discoideum, the homologous gene (pagP-like) in L. pneumophila
promotes the intracellular infection in the amoeba V. vermiformis [41]. A. castellanii was
reported to bind the E. coli LPS carbohydrate using mannose-binding protein located on
their surface. Recognition of E. coli by A. castellanii seems inhibited by O1 and not O157
O-antigen types [42]. Interestingly, the mannose binding protein sequence from A. castel-
lanii has no similarity with other metazoan mannose binding proteins [42]. Chlamydiae
represent a group of bacteria containing human pathogenic organisms and several en-
dosymbionts in amoebae. Chlamydiae such as the abortigenic Waddlia chondrophila, can
resist predation by A. castellanii using effectors secreted by the Type 3 Secretion System such
as Wimp1 (Wcw_1131). This putative Ras guanine-nucleotide exchange factor, expressed
early during the course of a replication cycle, localizes to the inclusion membrane of W.
chondrophila [43]. These Chlamydial Inclusion membrane proteins (Incs) are suggested to
induce the formation of the inclusion membrane, important for the chlamydial develop-
mental cycle [44]. The presence of Incs was also reported during the multiplication of the
endosymbiont Protochlamydia amoebophila in A. castellanii [45].

4. Pathogenic Bacteria Use Toxins or Secreted Factors to Disturb Amoeba Functions
to Survive

Bacteria have evolved various anti-predator defense strategies to resist and sur-
vive [46]. The bacterium L. pneumophila uses the Legionella collagen-like protein (Lcl)
to induce an autoaggregation that favors Legionella attachment and invasion of A. castellanii
and V. vermiformis [47]. The activity of the putative adenylate cyclase LadC is important in
the ability of L. pneumophila to infect A. castellanii [48]. The aminopeptidase LapA and the
acyltransferase PlaC, two effectors from the type II secretion system (T2SS), are involved in
nutrient acquisition during L. pneumophila infection in A. castellanii [49]. Legionella also uses
the type IV secretion system effector Ankyrin B (AnkB) to generate nutrients. AnkB is a
F-box-containing protein that interacts with the host SCF1 ubiquitin ligase complex. It is the
only known Dot/Icm-translocated nutritional virulence effector of L. pneumophila essential
for acquisition of Lys48-linked polyubiquitinated proteins by the Legionella-containing
vacuole (LCV) within D. discoideum and Acanthamoeba polyphaga [50]. Anchorage of AnkB to
the cytosolic face of LCV is mediated by the host farnesylation machinery. The proteasomal
degradation of AnkB-assembled polyubiquitinated proteins generates amino acids essential
for the robust intra-vacuolar proliferation of L. pneumophila [51]. Legionella interferes with
ubiquitination through multiple processes. The Legionella effectors belonging to the SidE
family are required for virulence of L. pneumophila within A. castellanii and D. discoideum by
catalyzing the phosphoribosyl-linked serine ubiquitination of Rab33b [52]. SidJ was shown
to be essential for Legionella growth in D. discoideum [53,54]. If SidE proteins function as
toxins during early stages of infection, it has been shown that the effector SidJ inactivates
them by mediating their removal from the surface of Legionella-containing vacuoles [54].
SidJ is a calmodulin-dependent glutamylase that mediates both glutamylation of several
host proteins and antagonizes the Ubiquitin ligase activity of the Legionella effector SdeA by
modifying the SdeA catalytic glutamate in the mono-ADP ribosyl transferase domain [55].
Other effectors from Legionella contribute to the bacterial replication within amoebae. The
Sel1 Repeat Protein LpnE is required for L. pneumophila to infect A. castellanii [56]. LpnE
might bind or stabilize the Oculocerebrorenal syndrome of Lowe (OCRL1) on Legionella-
containing vacuoles (LCV) to promote the restriction of the intracellular growth of L.
pneumophila. It was suggested that the interaction between LpnE and OCRL1 could repre-
sent a bacterial mechanism to downregulate intracellular replication in order to sustain
the protective niche and to avoid rapid killing of the host cell [57]. Indeed, OCRL1 is an
Inositol polyphosphate 5-phosphatase that regulates retrograde vesicle trafficking between
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endosomes and the Trans-Golgi network. The effector ProA likely acts after the onset of
replication to promote intracellular replication of Legionella [58]. This effector is translocated
out of the LCV into the host cytoplasm where it likely acts on a wide range of targets [59],
as well as cleaving and activating other T2SS-dependent exoenzymes [49]. By cleaving and
activating effectors such as LapA and PlaC, ProA contributes to the acquisition of amino
acids by L. pneumophila. In order to obtain nucleotides and phosphate, the T2SS effector
SrnA that exhibits ribonuclease activity is involved in the degradation of RNA from V.
vermiformis and Naegleria lovaniensis [60]. Effectors LepA and LepB were shown to allow
nonlytic release of L. pneumophila from A. castellanii [61].

Similarly to Legionella, Salmonella and Pseudomonas express toxins with ADP-ribosylation
activities. Regarding Salmonella, the pathogenicity island (SPI) 1 and 2-encoded type III
secretion systems are essential for the survival of S. enterica within Acanthamoeba rhysodes
and A. polyphaga [62,63]. A. rhysodes infected with S. enterica displayed a modification of
morphology and a loss of adherence. These effects could result from the ADP-ribosylation
of actin by the Salmonella enzyme SpvB [64]. As found with the Clostridium perfringens Iota
toxin, ADP-ribosylation by SpvB activates actin degradation in A. rhysodes [64]. P. aeruginosa
is protected against protozoan grazing through quorum sensing mediated gene expression
by promoting the formation of microcolonies and production of alginate [65]. Pseudomonas
has been shown to inject several type III effectors into eukaryotes, among which ExoU,
a phospholipase A2 activator [66]; ExoS and ExoT enzymes that can disrupt the actin
cytoskeleton and inhibit host autophagy through their N-terminal small GTPase-activating
protein (GAP) domain and C-terminal ADP-ribosyltransferase (ADPRT) domain [67].

The bacterium Yersinia also translocates a Yersinia outer protein (Yop), with GTPase
activating protein (GAP) activity, into the host cell via a type III secretion system. YopE is a
GAP for RhoA, Rac1, Cdc42 and RhoG [68,69]. In D. discoideum, the ectopic expression of
YopE impairs Rac1 and possibly also RacH activation suggesting that GTPases might be
affected by YopE in very wide models [70].

The bacterium M. marinum secretes tyrosine phosphatases PtpA, PtpB, and the se-
cretory acid phosphatase SapM that promotes formation of the Mycobacterium-containing
vacuole (MCV) and then the vacuolar escape in D. discoideum and A. castellanii [71]. These
phosphatases hydrolyse the phosphatidylinositol 3-monophosphate and the PtpA pre-
vents acidification of MCV by restricting the accumulation of the V-ATPase proton pump
on MCV.

5. The Host Cell Death Is a Common Read-Out Induced by Toxins

Although E. coli O157 can be recognized by Acanthamoeba, it was reported to survive
and replicate in A. polyphaga [72]. E. coli O157:H7 expressing the Shiga toxin Stx was shown
to induce A. castellanii cell death [73,74]. It was reported that E. coli producing the Shiga
toxin that were isolated from infected cows compared to strains isolated from humans were
more efficient at killing A. castellanii, highlighting the importance of the Stx isoforms [73]. A
study shows that the carriage of the Stx-encoding prophage increases the survival of E. coli
in the food vacuoles of protozoa such as Tetrahymena pyriformis, whereas other publications
did not find any protective effect of Stx [75,76]. The role of Stx in protozoan predation
requires further investigation.

The P. aeruginosa effectors ExoS, ExoT and ExoU contribute to A. castellanii killing [77,78].
Cytotoxicity of ExoU was also observed in D. discoideum [79]. Rhamnolipids secreted by
P. aeruginosa also contributes to the fast lysis of D. discoideum [80].

In the case of L. monocytogenes, this bacterium was reported to be ingested by and
survive within protozoa such as Acanthamoeba spp. or Tetrahymena pyriformis [81]. The
expression of pore-forming toxin Listeriolysin O (LLO) by Listeria was shown to cause a
decrease in the Amoeba proteus population [82]. Similarly to mammalian cells, LLO seemed
to induce perforation of the phagosomal membrane in A. proteus [82,83]. Although LLO
was reported to favor Listeria growth and encystment of the ciliate T. pyriformis [82], these
effects could be dependent on the experimental conditions. Indeed, bacteria could grow
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saprophytically on materials released from amoebae extracellularly, [84] and some studies
reported that L. monocytogenes does not actively kill A. castellanii with weak evidence
that LLO can contribute to improved Listeria survival after ingestion by A. castellanii [85].
L. monocytogenes seem unable to survive within A. polyphaga and A. lenticulata irrespective
of the presence of LLO (hly) coding gene [86–88].

Infection of A. castellanii by M. marinum results in lysis of the amoeba host in an
exporter ESX-1-dependent manner [89]. This virulence is associated with the export of
EsxA (ESAT-6) and EsxB (CFP-10) to the surface of the bacterium [90]. In both M. marinum
and M. tuberculosis, EsxA exhibits acidic pH-dependent membrane-permeabilizing activity
contributing to the mycobacterial intracellular survival [91].

Once stressed, FLA differentiate to their cyst form, which is highly resistant to various
adverse conditions. The bacterium V. cholerae was shown to use a lecithinase enzyme to
permeabilize A. castellanii plasma membrane thus inducing lysis of cysts [92].

Similarly to bacteria, fungi are also able to induce amoeba lysis. The pathogenic fungus
A. fumigatus is able to induce D. discoideium lysis through secretion of the non-ribosomal
immunosuppressive epipolythiodioxopiperazine gliotoxin [93]. The latter was shown,
in human polymorphonuclear leukocytes, to abrogate p47phox phosphorylation that is
important in assembling an active NADPH oxidase complex [94]. Aspergillus was also
found to produce fumagillin (H-3), a toxin with antiphage activity that has amoebicidal
properties toward N. fowleri and Entamoeba histolytica [95,96].

6. Toxins and Microbial Secreted Factors Induce Various Responses That Depends on
the Host

Toxins modulate host-specific processes. For example, Diphteria toxin (DT) is a protein
from Corynebacterium diphtheriae that was shown to cross the endosomal membrane, to
catalyze the NAD+-dependent ADP-ribosylation of elongation factor 2 and to inhibit
protein synthesis [97]. Although the DT causes a cytotoxic effect on mammalian cells, it did
not inhibit Acanthamoeba. The lack of anti-amoeba toxicity could be attributed to a weak
binding to the Acanthamoeba membrane or to a defective transport mechanism [98].

In the case of Legionella, this bacterium modulates mammalian-specific processes
that are absent from amoebae, such as programmed cell death, or phosphorylation and
activation of NF- κB by LnaB and LegK1 in mammalian hosts [99–103]. The action of the
Legionella SidE effector could also be host specific. Indeed, Sde proteins target host reticulon
4 (Rtn4) to control tubular ER dynamics [104]. Although Rtn4 and Rab33b homologs
can be found in the available genomes of D. discoideum, Tetrahymena thermophila, and
Naegleria gruberi, they seem absent in other Tetrahymena spp., Naegleria spp., and Vermamoeba
spp. [105]. Several other effectors were reported to be specific to a wide-range of hosts.
PlaC is a glycerophospholipid:cholesterol acyltransferase that has phospholipase A and
lysophospholipase activities [106]. It was suggested that PlaC alters ergosterol-containing
membranes of V. vermiformis and N. lovaniensis but not A. castellanii [107]. It is possible that
the fatty acid profile and position of fatty acids in glycerophospholipids may be different
in the different amoebae. The role of ProA effector in V. vermiformis infection, not with N.
lovaniensis, could be to activate PlaC. The effector NttA promotes Legionella growth in A.
castellanii and Willaertia magna but not in V. vermiformis, N. lovaniensis or macrophages [58].
SrnA and PlaC effectors were shown to be necessary for optimal intracellular multiplication
in V. vermiformis but not A. castellanii [108]. SrnA was not essential for bacteria growth in
macrophages [60]. NttC was required for infection of V. vermiformis and W. magna but not for
infection of N. lovaniensis or A. castellanii [109]. The effector NttD was required for infection
of A. castellanii but not in human macrophages, Naegleria and V. vermiformis [49]. A recent
study has shown that L. pneumophila is able to inject an amylase (LamA), into the cytosol
of both human macrophages and A. polyphaga to both degrade glycogen and generate
cytosolic hyper-glucose. LamA-mediated glycogenolysis deprives Acanthamoeba of the
main building blocks for the synthesis of the carbohydrates-rich cyst wall. This activity
prevents the encystment of A. polyphaga and promotes a permissive host. Interestingly,
LamA induces a shift in macrophage metabolism to aerobic glycolysis, which triggers
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an M1-like pro-inflammatory differentiation that restricts Legionella proliferation ex and
in vivo [110]. Regarding host cell death, it seems that L. pneumophila genes related to
pyroptosis (flaA and sdhA) and apoptosis (vipD and sidF) are differently regulated between
THP1 monocytes and A. castellanii [111]. Authors suggested that Legionella is better adapted
to A. castellanii than to macrophages and it more readily induces cell death in A. castellanii
compared to monocytes.

The P. aeruginosa toxin L-2-amino4-methoxy-trans-3-butenoic acid inhibits the growth
of A. castellanii. The putative stress induced by this toxin activates encystment in A. castel-
lanii. This effect could depend on the context or the presence of other virulence factors as
the L-2-amino4-methoxy-trans-3-butenoic acid production by P. aeruginosa does not alter
grazing resistance toward A. castellanii [112].

Using the secreted hemolysin HlyA, V. cholerae disturbs A. castellanii functions with
aberrant amoeba morphology and impairment of encystment. This effect was shown to
be counteracted by the Vibrio HapA protease which probably cleaves HlyA to protect
the host Vibrio-colonized Contractile Vacuole from premature lysis. Interestingly, in the
same conditions, neither the RTX and VasX pore-forming toxins nor the T6SS contribute
to V. cholerae’s interaction with A. castellanii [92]. Differing from A. castellanii, the T6SS
is involved in the cytotoxicity of V. cholerae toward D. discoideum and macrophages [113].
V. cholerae requires the putative lipase TseL and the phospholipid-interacting protein VasX
to kill D. discoideum by a mechanism that depends on actin cross-linking [114–116].

M. marinum produces siderophores such as a lipid-bound mycobactin (MBT) and a
water-soluble variant carboxymycobactin (cMBT). Purified cMBT promotes the bacterial
growth in macrophages but not in A. castellanii [117]. Mycobacterium abscessus expresses
a Phospholipase C within A. castellanii [118]. This expression was necessary for the intra-
amoebal growth of M. abscessus. While PLC induces membrane phospholipid degradation
and DAG production, its activity did not confer a supplementary advantage to M. abscessus
within macrophages [118].

The non-germinating spores of A. fumigatus can also produce diffusates which inhibit
the growth of N. gruberi, an effect that was not observed on A. castellanii [119].

Beyond toxins, the set of bacterial genes involved in interactions with amoebae or
macrophages could differ. Hence, in contrast to MDCK epithelial cells, the key regulator in
the expression of the invasion-associated SPI-1, hilA, is dispensable for Salmonella uptake
by A. rhysodes [63]. Another example, the SPI-1 gene, sipC, is induced during A. polyphaga
infection while it is downregulated in murine macrophage-like cells [62]. Regarding
Bordetella, the master virulence regulatory system BvgAS senses environmental cues and
controls the expression of virulence factors [120]. Genes expressed in the Bvg positive
(Bvg+) phase are essential for the infection of the mammalian respiratory tract [121],
while those associated with the Bvg-phase are important for B. bronchiseptica growth
and dissemination via the fruiting body sori of D. discoideum [122]. Yersinia pestis can be
phagocytized by A. castellanii trophozoites. However, induction of the T3SS was shown to
prevent the phagocytic uptake of Y. pestis by A. castellanii [123]. Thus, in the environment,
the absence of T3SS induction due to low temperature would serve to enhance phagocytosis
of Y. pestis, while, in mammalian cells, the T3SS induced by a temperature of 37 ◦C allows
inhibition of macrophage phagocytosis [124]. Amoebae, A. castellanii and V. vermiformis,
favor the growth of spores from the Bacillus anthracis. Unlike macrophages, germination
and growth of B. anthracis does not depend on the germination receptor gerX gene [125,126].

7. Conclusions

Amoebae can be considered primary targets of bacterial and fungal toxins. In the
environment, amoeba phagocytosis imposes major selection pressure on bacteria and
fungi toward the acquisition of virulence factors that are used to escape phagocytosis
or elimination by mammalian phagocytes. Phenotypes or activities induced by toxins
in amoebae cannot always be translated to mammalian host cells. There are differences
between mammalian cells and protozoan responses to bacteria and toxins which depend on



Toxins 2021, 13, 526 8 of 13

a multitude of factors such as host surface receptors and various intracellular machineries.
Regarding mammalian pathogens, the various responses induced by the toxins they express
should push us to extend our investigations beyond mammalian cells toward their natural
predators, which are free-living amoebae. Indeed, many questions such as “how do the
toxins subverting the host immune response affect FLA?” or “through which mechanisms
can bacteria or fungi produce distinct toxins or effectors depending their host?” remain
under-investigated.
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