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Abstract. On the basis of immunological results, it is not in 
doubt that the immune system is able to recognize and eliminate 
transformed cells. A plethora of studies have investigated the 
immune system of patients with cancer and how it is prone to 
immunosuppression, due in part to the decrease in lymphocyte 
proliferation and cytotoxic activity. The series of experi-
ments published following the demonstration by Dr Allison's 
group of the potential effect of anti-cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) paved the way for a new 
perception in cancer immunotherapy: Immune checkpoints. 
Several T cell-co-stimulatory molecules including cluster of 
differentiation (CD)28, inducible T cell co-stimulatory, 4-1BB, 
OX40, glucocorticoid-induced tumor necrosis factor receptor-
related gene and CD27, and inhibitory molecules including 
T cell immunoglobulin and mucin domain-containing-3, 
programmed cell death-1 (PD-1), programmed cell death 
ligand-1 (PD-L1), V-domain immunoglobulin suppressor 
of T cells activation, T cell immunoglobulin and immuno-
receptor tyrosine-based inhibitory motif domain, and B and 
T lymphocyte attenuator have been described in regulating 
T cell functions, and have been demonstrated to be essential 
targets in immunotherapy. In preclinical studies, glioblastoma 
multiforme, a high-grade glioma, the monotherapy targeting 
PD-1/PD-L1 and CTLA-4 resulted in increased survival times. 
An improved understanding of the pharmacodynamics and 
immune monitoring on glioma cancers, particularly in diffuse 
intrinsic pontine glioma (DIPG), an orphan type of cancer, 
is expected to have a major contribution to the development 
of novel therapeutic approaches. On the basis of the recent 
preclinical and clinical studies of glioma, but not of DIPG, 

the present review makes a claim for the importance of inves-
tigating the tumor microenvironment, the immune response 
and the use of immune checkpoints (agonists or antagonists) 
in preclinical/clinical DIPG samples by immune monitoring 
approaches and high-dimensional analysis. Evaluating the 
potential predictive and correlative biomarkers in preclinical 
and clinical studies may assist in answering certain crucial 
questions that may be useful to improve the clinical response 
in patients with DIPG.
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1. Introduction

Cancer exhibits a range of symptoms of differing severity, from 
mild ailments including headaches to complete organ failure; 
therefore, it is no surprise that cancer has been described as 
‘The Emperor of All Maladies’ (1). Cancer has become so 
pervasive in the USA that, for many, a diagnosis of the disease 
is almost synonymous with a death sentence, and the statistics 
illustrate why. The American Cancer Society reported that, 
in 2016, there were ~1.7 million novel diagnoses of the disease 
and ~600,000 associated mortalities (2). For years, cancer 
therapy has been relatively unchanged, with surgery, radio-
therapy and chemotherapy the three primary methods used to 
treat patients with cancer. Surgery offers a great chance for 
a cure for many types of cancer, principally those that have 
not metastasized. Radiotherapy is involved in many treatments 
of cancer; however, severe side effects can occur months to 
years following treatment. Additionally, certain tumor cells 
are resistant enough to tolerate, and recover from, the damage 
to their DNA caused by radiation therapy (3,4). Although 
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chemotherapy remains an effective treatment for many types 
of cancer, it typically leads to side effects including fatigue, 
pain, diarrhea, nausea and vomiting, and blood and nervous 
system disorders (5). Resistance to several chemotherapeutic 
agents and molecularly targeted therapies, including vemu-
rafenib, imatinib, nilotinib, erlotinib and trastuzumab, is 
the primary issue regarding current cancer research. These 
drugs are designed to discern molecularly transformed cells 
that may express, for instance, high levels of BRAF mutant, 
breakpoint cluster region-Abelson, epidermal growth factor 
receptor (EGFR) and human epidermal growth factor 
receptor 2 (HER2), from non-transformed cells. Through 
natural selection, transformed cells submitted to molecularly 
targeted therapies have also developed to escape from these 
therapies. Alterations in the drug target, activation of pro-
survival pathways and ineffective induction of cell death are 
examples (6,7).

Hanahan and Weinberg (8,9) proposed a hypothesis in 
their observations defining critical aspects of cancer patho-
physiology: Forms of symptomatic neoplastic disease and 
their association with acquired biological capabilities enable 
cancer cells to proliferate. They proposed to call this set of 
biological capabilities ‘hallmarks of cancer’. Currently, in 
their conceptualization, there are eight hallmark capabilities 
that are common to a number, if not the majority, of forms 
of human cancer: Sustaining proliferative signaling, evading 
growth suppressors, resisting cell death, enabling replicative 
immortality, inducing angiogenesis, activating invasion and 
metastasis, deregulation of cellular energetics and metabolism, 
and avoiding immune destruction (8,9). Somehow, all these 
aspects impair the effectiveness of the therapy against cancer 
cells. Certain strategies, including cytokines (10), signal trans-
duction inhibitors (11), oncolytic viruses (12) and angiogenesis 
inhibitors (13), have been attempted, generally with low rates 
of positive response. Thus, there is an urgent requirement to 
develop novel therapies for treating cancer.

A rapid increase in comprehending the mechanistic pathway 
of these principles, particularly avoiding immune destruction, 
has led to clinical success in the treatment of cancer. Robert 
Schreiber and Lloyd J. Old (the ‘father of tumor immunology’) 
demonstrated that T lymphocytes and interferon-γ (IFN-γ) 
assisted in inhibiting the development of spontaneous cancer 
in mice lacking the expression of recombination-activating 2, 
a gene which encodes a protein involved in the V(D)J recom-
bination during T and B cell development (14). They also 
contributed in describing immunoediting and how cancer 
cells became less immunogenic than the starting popula-
tion (15-19). Immunoediting is discussed in the present review. 
Currently, the function of the immune system in the recogni-
tion and elimination of cancer cells is beyond any doubt. The 
potential use of immunotherapy is to restore the immune 
system of patients in the attempt to stimulate it to reject and 
destroy tumors (20,24). Strategies including dendritic cell-
based immunotherapy, T cell adoptive transfer, autologous 
immune enhancement therapy and genetically engineered 
T cells are being, with positive results, developed to improve 
the quality of life and increase the survival rates of patients 
with cancer (21,23-25). Recently, T cells have been genetically 
engineered to create specialized receptors on their surfaces 
known as chimeric antigen receptors (CARs), a personalized 

treatment that involves genetically modifying a patient's 
T cells to make them a target (24,26,27). Furthermore, there 
are several approaches for cancer immunotherapy already 
approved by the US Food and Drug Administration (FDA) 
or remain under investigation: Adjuvant therapy (recombi-
nant Listeria, stimulator of IFN genes and Toll-like receptor 
agonist); adoptive T-cell therapy [autologous T cells, CAR-T 
cells and T cell receptor (TCR) transgenic T cells]; cytokine 
therapy [interleukin-2 (IL)-2, IFN-γ, IL-15, IL-18 and tumor 
necrosis factor-α (TNF-α)]; macrophage activation [cluster 
of differentiation (CD)40 agonists and CD47 antagonists]; 
natural killer (NK) cell therapy (ex vivo expanded NK cells); 
oncolytic virus therapy (engineered herpes simplex virus, 
measles virus and poliovirus); and vaccines (human papillo-
mavirus vaccines and sipuleucel-T vaccine for prostate cancer) 
are class types and examples of cancer immunotherapy (25). 
However, in recent years, a novel and surprisingly effective 
method of immunotherapy has arisen: The immune checkpoint 
blockade. This novel form of therapy does not target cancer 
cells and also does not involve cytokines or vaccines to turn 
on the immune response; rather, it works by blocking inhibi-
tory pathways (26). The best characterized of these immune 
checkpoints are cytotoxic T-lymphocyte-associated protein 
antigen-4 (CTLA-4) and programmed cell death-1 (PD-1). 
Immune checkpoint inhibitors blocking CTLA-4 and PD-1 
molecules were approved by the FDA in 2011 and 2014, 
respectively. The present review makes a claim for the impor-
tance of investigating the tumor microenvironment (TME), the 
immune response and the use of immune checkpoint (agonists 
or antagonists) in preclinical/clinical diffuse intrinsic pontine 
glioma (DIPG) samples by immune monitoring approaches. 
The potential predictive biomarkers of tumor-associated cells 
and the TME in preclinical and clinical studies may assist 
in answering certain crucial questions that may be useful to 
improve the clinical response in patients developing DIPG, 
an orphan type of cancer representing the principal cause of 
mortality from pediatric brain tumors.

2. Immune checkpoint blockade as a potential approach to 
treat patients with cancer

Cancer immunotherapy was declared as the ‘Breakthrough of 
the Year’ in 2013 (28). The ecstasy is primarily grounded on a 
number of clinical successes of antibodies that modulate immune 
checkpoints mainly by targeting CTLA-4 and PD-1 (29). The 
idea of checkpoint blockade and consequently the renaissance 
of cancer immunotherapy, emerged when Dr James Allison's 
group interrogated why T cells were not being fully activated 
to attack cancer cells (30). The answer to the initial question 
led to the identification of a molecule called CTLA-4. This 
molecule exhibited a marked structural homology with CD28, 
but its function in stimulating or in dampening T cell activa-
tion was not completely understood. However, data provided 
by Tivol et al (31) and Waterhouse et al (32), using knockout 
mice, definitively revealed the inhibitory function of CTLA-4. 
The sequence of experiments in these studies paved the way 
to a new perception in cancer immunotherapy: Immune 
checkpoint blockade. In a preclinical study, the combination 
of anti-CTLA-4 and anti-PD-1 was more than twice as effi-
cient as either therapy alone in generating an effector immune 
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response against murine melanoma and colon adenocarci-
noma (33,34). The approval of immune checkpoint blockade 
targeting the CTLA-4 and PD-1 pathway motivated the interest 
in exploiting antibodies which also induce T cell activation. 
Immune responses are tightly regulated by a system of check-
points that control positively or negatively the magnitude of the 
immune response in a wide range. Besides CTLA-4 and PD-1, 
the presence of several inhibitory immune checkpoints that 
block T cell responses including T cell immunoglobulin mucin 
domain-3 (TIM-3), lymphocyte-activation gene-3 (LAG-3), 
T cell immunoglobulin and immunoreceptor tyrosine-based 
inhibitory motif domain (TIGIT), V-domain immunoglobulin 
suppressor of T cell activation (VISTA), B and T lympho-
cyte attenuator (BTLA), B7-H3 and B7-H4 have emerged 
as novel targets for immune checkpoint blockade strategies. 
Conversely, stimulating T cells directed to molecules including 
CD27, CD28, OX-40 (CD134), glucocorticoid-induced TNF 
receptor-related protein (GITR) and inducible T cell co-stimu-
lator (ICOS) has been used for mobilizing the immune system 
to attack cancer cells (35-42). Immunotherapeutic approaches 
to treat patients with cancer have been evaluated in the last 
few decades and, currently, immune checkpoints are the new 
paradigm for treatment of cancer. The FDA approved the anti-
body against CTLA-4 (ipilimumab) in 2011 for the treatment 
of metastatic melanoma (43). Clinical trials for the treatment 
of non-small cell lung carcinoma, small cell lung cancer, 
bladder and metastatic hormone refractory prostate cancer 
are being implemented (44-48). Antibodies against PD-1 
(pembrolizumab and nivolumab) were approved in 2014 by 
the FDA for the treatment of patients with melanoma that did 
not respond to prior treatment. Antibodies against CTLA-4, 
PD-1 and programmed cell death ligand-1 (PD-L1) have 
exhibited an objective response against several types of cancer 
in clinical trials with rates of ~25% (49-52). This effect repre-
sents a particular challenge for immunotherapy, since certain 
types of cancer presented low mutation rates and high immune 
regulatory molecules, including VISTA, TIM-3, LAG-3 and 
TIGIT (53,54).

Tumor growth and development is associated with immu-
nomodulation of T cell responses through the enhancement 
of co-inhibitory molecules. As expected, different types of 
immune cell exert different effects on tumor progression. In 
the vast majority of solid cancer types, tumor infiltration by 
cytotoxic lymphocytes, Th1 profile and mature dendritic cells 
are associated with a good clinical outcome (55). Nonetheless, 
studies have indicated that the increase in CD8+ T cell infiltra-
tion is not always associated with a good prognosis in cancer, 
as could be observed in Hodgkin's lymphoma, diffuse large 
B-cell lymphoma, renal cell carcinoma, lung metastases 
from clear cell renal cell carcinoma and non-small cell 
lung cancer (56-60). These effects may be explained by the 
expression of immune checkpoints on infiltrating T cells or 
its ligands on tumor cells that are fundamental to immune 
escape in cancer. For instance, the anti-CTLA-4 (ipilimumab) 
therapy, which improved median overall survival in patients 
with metastatic melanoma (61), resulted in significant survival 
benefit in only 20% of patients. There is evidently a require-
ment to improve the therapeutic benefit of this treatment to 
more patients and also apply this approach, even if with only 
minimal success, to types of cancer with low survival rates, 

including DIPG. The immune monitoring studies of immune 
responses of patients to agents targeting immune checkpoints 
would be the best way to investigate the reasons for only a 
small proportion of patients with cancer responding to the 
treatment. The essential cause of resistance to immune check-
point blockade may be explained through the failure of the 
effector T cells in becoming activated, mainly due to the low 
mutational neoantigen rates, the TME and the increase in 
co-inhibitory molecules which dampen T cell activity (62-64).

3. Glioma and DIPG

Brain cancer is rare for people of any age, but it may develop 
in children as well as in adults. When the supportive cells 
are transformed, and induced to proliferate by several muta-
tion patterns, glial cancer known as glioma arises. The 
World Health Organization classifies glioma into low grade 
(grade I, pilocytic; grade II, fibrillary) or high grade [grade III, 
anaplastic; grade IV, glioblastoma multiforme (GBM)] (65). 
The capacity of gliomas to induce local and systemic immu-
nosuppression restricts the immune response against tumor 
growth, development and progression, and it may impair the 
efficacy of immunotherapy (66). In this case, immune check-
point agonists targeting GITR, ICOS, 4-1BB, OX40, CD27 and 
CD28 on the T cells may be a good strategy to improve clinical 
responses rates and also overcome the resistance to immuno-
therapeutic approaches in glioma. Accumulating evidence in 
clinical responses in a diverse group of advanced-stage cancer 
suggest that the combination with standard approaches and 
immunotherapy on the basis of immune checkpoints may also 
be beneficial. Brainstem glioma may be described by a diverse 
biological performance, and the prognosis and treatment 
depend on clinical symptoms, and their duration, location and 
mutational profile (67). The majority of pediatric brainstem 
gliomas begin within the pons, whereas the remaining 20% 
occur in the medulla, midbrain or cervicomedullary junc-
tion (68-72). Pontine cancer is a diffuse intrinsic brainstem 
glioma which behaves in an infiltrative manner and has a 
consistently poor prognosis (73).

DIPG is the pediatric malignancy with the poorest prog-
nosis. It is defined as a high-grade glioma occurring in the 
ventral pons and accounts for between 10 and 15% of pediatric 
tumors of the brain, affecting an estimated 200-400 children 
of between 4 and 9 years of age in the USA annually (74). 
Conventional focal radiotherapy is the standard treatment for 
patients with DIPG; however, transient effects and minimal 
survival has been observed (75). Mutations in H3F3A or 
HIST3BHI which encode the histone H3.3 variant and H3.1, 
respectively, appear to be present in all DIPG cells (76-78). As 
a result of these mutations, a substitution of methionine for 
Lys27 (K27M) occurs, causing an altered binding of mutant 
H3 to Polycomb repressive complex 2, an essential develop-
mental regulator of gene expression and it appears to be the 
main event of DIPG oncogenesis (79,80). Despite these muta-
tions, the genomic landscape of DIPG cancer cells appear to 
have variations in activin A receptor type I, tumor protein 53, 
platelet-derived growth factor receptor A, phosphoinositide 
3-kinase catalytic subunit α and c-Myc (81). Unfortunately, 
DIPG is not well understood, partly because of its low inci-
dence, low biopsy and autopsy rates (82).
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In order to solve this issue and to contribute to DIPG 
research, the international DIPG Registry (dipgregistry.org), a 
central resource of clinical information combines co-operative 
efforts throughout physicians and researchers from North 
America, Europe and Australia to consolidate and standardize 
the collection of clinical data and tumor samples from patients 
with DIPG. The aim of this effort is to support innovative 
research and ultimately find a cure for DIPG.

Currently, DIPG is the primary cause of brain tumor-
associated mortality among children, with a median survival 
time of <1 year and with a 5-year survival rate of <1% (81). 
Their location within the brain and diffuse nature render 
them unfit for resection, and biopsies have rarely been 
conducted (83). The distribution of chemotherapeutic agents 
to the tumor has been prevented by the existence of the 
blood-brain barrier (BBB) and, even using the convection-
enhanced delivery technique (CED), the effective dose has not 
been achieved (84). Doses of drugs that result in significant 
systemic toxicity have to be administered to obtain minuscule 
decreases in tumor growth (85). There have been >250 clinical 
trials designed at targeting several biological capabilities of 
DIPG and, despite numerous efforts, DIPGs have no effec-
tive treatment and no significant improvement has been made 
during the last 30 years (86). As aforementioned, DIPG is a 
type of cancer with epigenetic features that comprise histone 
modifications including methylation and acetylation. Certain 
agents targeting epigenetic factors including histone deacety-
lase inhibitors (HDACi; including panobinostat, vorinostat, 
belinostat, romidepsin and valproate) histone methylase and 
demethylase inhibitors, DNA methylation inhibitor and 
bromodomain and extra-terminal motif protein inhibitors 
are of importance in treating DIPG (87). Comprehending the 
epigenetic landscape of DIPG opened up the possibility for 
epigenetic modifiers, which may lead to regulation of this 
lethal cancer. Recently, several studies have demonstrated 
that HDACi including panobinostat or MS-275 (entinostat) are 
able to restore the aberrant gene expression associated with 
the K27M mutation, the dominant variation in genes encoding 
histones H3.3 and H3.1. Furthermore, HDACi are also able to 
enhance the immune response by increasing tumor-associated 
antigens (88), major histocompatibility complex (MHC) 
class I, II, CD40 (89) and NK cell-activating ligands (90). The 
effects of HDACi on immune cells have been reviewed previ-
ously (91). However, the potential molecular mechanism by 
which these agents upregulate or downregulate tumor ligands, 
T or NK cell molecules is unknown.

4. Immune system, gliomas and neoantigens

For a long time, the brain was believed to be devoid of a 
lymphatic system. However, this was idea was challenged 
in 2016 when Schläger et al (92) revealed that this system is 
part of the meninges (arachnoid and dura) and, even in physi-
ological conditions, T cells do not cross the BBB; they are 
able to traffic between the leptomeninges and cerebrospinal 
fluid (CSF) through blood vessels (93). Furthermore, owing to 
the assumption that brain cancer is merely immunogenic, it was 
not considered that there was a function for the immune system 
in glioma. Immunotherapeutic strategies have altered this way 
of thinking, therefore important clinical trials in malignant 

glioma have been performed. At first, it was possible to realize, 
in principle, that tumor-associated antigens should be discern-
able to the immune system in the deep cervical lymph nodes 
and those immune cells would have access to brain cancer via 
the CSF and choroid plexus paths (94). Finally, as long as these 
barriers restrict access of immunotherapeutic approaches to 
the brain, certain strategies including direct infusion of anti-
bodies, dendritic cells, T cells and other drugs by CED afford 
a possible opportunity for immediate delivery, decreasing the 
efflux of cells or molecules (95).

The lack of available and valuable cytotoxic therapies 
associated with prolonged poor clinical outcomes and the 
unmanageable landscape profile of DIPG warrant novel 
approaches that target DIPG cancer cells (96). Immunotherapy 
is being progressively considered as a 'weapon' for use in 
combination therapy or as a complementary approach to 
conventional treatments (97-100), particularly those that 
target glioma-associated antigens (GAAs). The function of the 
immune system and its importance in conferring protection 
against glioma development has been extensively investigated 
in the last 5 years. The genetic landscape of certain glioma 
antigens that allow the immune system to discriminate between 
cancer cells and non-transformed cells remains unclear. In the 
search for a source of antigens that are able to elicit specific 
T cell responses against melanoma, the Wölfel, and Rosenberg 
and Robbins groups initiated interest in tumor neoantigen as 
therapeutic targets in 2005 (101,102). Using expression-cloning 
approaches and ex vivo expanded tumor-infiltrating lympho-
cytes (TILs), the authors described antitumor T cell responses 
against melanoma antigens that were formed by somatic muta-
tions: Neoantigens. The characterization of neoantigens has 
made an important contribution to cancer immunology and 
immunotherapy (103,104) and its understanding in DIPG, for 
example, may allow a better understanding of the innate and 
adaptive immune response to markedly improve novel immu-
notherapies strategies, clinical response rates and, eventually, 
patient survival. As a result of non-synonymous mutations, 
neoantigens may be identified using several tools which 
allow the comparison of DNA isolated from cancer samples 
with that of normal tissues. cDNA libraries, whole exome 
sequencing, transcriptome sequencing and MHC-binding 
prediction are examples (104). A comprehensive list of 
neoantigens is available at the Immune Epitope Database and 
Analysis Resource (www.iedb.org). Identifying driver and 
passenger mutations in GBM using genomic approaches was 
one of the first studies to be depicted by The Cancer Genome 
Atlas (cancergenome.nih.gov); however, studies in DIPG are 
required. These novel tumor-specific antigens may be the key 
to developing successful cancer therapies (105). An approach 
known as the cancer exome-based method has been used to 
determine the T cell reactivity against neoantigens (106). The 
success of immune checkpoint blockade, particularly using 
anti-CTLA-4 and anti-PD-1 in patients with melanoma and 
lung cancer may be explained by their potential formation of a 
neoantigen repertoire (107). In fact, it has been demonstrated 
that melanoma and lung cancer cells have increased mutation 
rates compared with glioma (108).

Pollack et al (109) evaluated the first clinical vaccination 
using human leukocyte antigen (HLA)-A2-restricted peptides 
from Eph receptor A2 (EphA2, a receptor tyrosine kinase 
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which in healthy cells regulates the cell growth negatively), 
IL-13 receptor subunit α2 [IL-13Ra2, a membrane glyco-
protein that mediates activation of the transforming growth 
factor-β1 (TGF-β1) promoter upon stimulation by IL-13 or 
IL-4 and TNF-α] and survivin (an apoptosis inhibitor protein) 
for childhood brain cancer. The GAA peptide vaccina-
tion was well-tolerated, and exhibited initial evidence of an 
immunological and clinical response (109). Pollack et al (110) 
investigated the protein expression of three glioma-associated 
antigens in pediatric brain stem glioma and non-brain stem 
glioma; their results suggested that EphA2, IL-13Ra2 and 
survivin are reasonable targets for developing vaccines 
methods for pediatric glioma. Chheda et al (111) provided 
solid evidence to developing T cell-based therapy targeting 
neoantigens in DIPG. The authors identified and investigated 
a novel HLA-A*02:01-restricted neoantigen (10-mer peptide) 
containing the H3.3K27M mutation in DIPG neurospheres, 
NSC mice bearing intracranial U87H3.3K27M luciferase and 
donor-derived peripheral blood mononuclear cells (PBMCs). 
As a result, it was demonstrated: i) that the novel neoantigen 
was restricted to binding specifically and with a high affinity 
for HLA-A*02:01, but not for HLA-A*02:02, HLA-A*02:03, 
HLA-A*02:06, HLA-A*02:07 and HLA-A*02:17; ii) that the 
neoantigen induced specific T cell responses in DIPG-derived 
PBMCs, but not in healthy donors; iii) neoantigen-specific 
CTL reactivity; and iv) TCR transduction encoding the 
neoantigen inhibited progression of DIPG in xenograft 
mice. Ochs et al (112) demonstrated that the vaccination of 
neoantigen (27-mer peptide) encompassing the H3.3K27M 
mutation induced a marked Th1 immune response in transgenic 
mice (112). It has been demonstrated in preclinical models that 
a potent antitumor immune response, primarily by cytotoxic 
lymphocytes, is achieved when the combination of immune 
checkpoint inhibitors including anti-CTLA-4 (ipilimumab) 
and anti-PD-1 (nivolumab) are administered to markedly 
mutated types of cancer, including melanoma and lung cancer 
(113,114). Such evidence together with assumptions about the 
immunogenic profile of gliomas, the TME, the expression of 
negative immune checkpoints that lead to inappropriate T cell 
activity and the novel neoantigen candidates afford a rationale 
for improving the immune response by combining immune 
checkpoint inhibitors and peptide vaccines. In conclusion, 
this approach may lead the way to personalized immuno-
therapy. Gubin et al (115) identified that certain tumors are 
vulnerable to cancer immunotherapy. Using whole exome 
sequencing/RNA-sequencing and epitope prediction, the 
authors could identify specific tumor-specific mutations that 
work as tumor neoantigens (115). Neoantigens are privileged 
targets for T cells activated by checkpoint monoclonal anti-
bodies; furthermore, neoantigens may be used in therapeutically 
effective and personalized cancer vaccines (115). By taking 
advantage of neoantigen discernments, Ott et al (116) estab-
lished the feasibility, safety and immunogenicity of a vaccine 
that targeted 20 predicted personal tumor neoantigens. The 
vaccination induced marked multi-functional T cell responses 
in patients with melanoma; additionally, the vaccine-induced 
T cells discriminated mutated from wild-type antigens (116). 
Of six patients monitored, four had no recurrence at 25 months 
after vaccination, whereas two with recurrent melanoma were 
subsequently treated with anti-PD-1 therapy which led to 

complete tumor regression with neoantigen-specific T cells. 
Mutant neoantigens remaining in tumors are favored targets 
of T cells reinvigorated by checkpoint blockade therapy. These 
data offered a strong rationale for further development of this 
approach, alone and in combination with checkpoint blockade 
or other immunotherapies (116). The association between 
neoantigens and DIPG immune response remains unknown.

Zhou et al (117) demonstrated that B7-H3 (CD276), a 
type I transmembrane glycoprotein, is overexpressed in DIPG 
samples and the rates of B7-H3 expression were associated with 
malignancy grade in brainstem gliomas. There is currently 
no consensus on its biological function in DIPG; however, in 
several types of cancer, including prostate (118), colon (119), 
pancreatic (120), renal (121), ovarian (122) and bladder (123) 
cancer, B7-H3 appears to be responsible for promoting tumor 
invasion and metastasis.

The ability of immune cells to respond to several tumor 
antigens and traffic also boosts their attractiveness for the treat-
ment of metastatic cancer. Medulloblastoma, a high-grade (IV) 
brain cancer, appears to have an immunosuppressive and 
hostile TME, mainly due to an immunosuppressive profile 
conferred by M2 macrophages (124). Increased expression of 
CD1d in a Sonic hedgehog-overexpressing mouse model of 
medulloblastoma has been demonstrated to be a therapeutic 
target and may be an exciting alternative for other types of 
glioma as well (125). The use of CAR-T cells specific to 
HER2 displayed efficacy against medulloblastoma in a murine 
model (126).

The antitumor immune reactivity within GBM, but not 
DIPG, has been investigated and, although there are quantita-
tive antitumor effector cells present within the glioblastoma, 
these immune cells are non-reactive (127). This fact may 
be associated with an increased expression of co-inhibitory 
molecules on T cells or due to the immunosuppressive micro-
environment.

In preclinical studies of GBM, the monotherapy 
targeting PD-1/PD-L1 and CTLA-4 resulted in long-term 
survival (128,129). The impact of immune checkpoint on 
gliomas is currently unmapped, and a better understanding 
of the pharmacodynamics and immune monitoring effect of 
immunotherapy on glioma, particularly DIPG, is expected to 
contribute to the development of this therapeutic approach in 
children with DIPG. A study by Berghoff et al (130) demon-
strated PD-L1 expression in 88% (103/117) of patients with 
GBM. The expression of PD-L1 or other inhibitory molecules 
required to induce marked tumor-induced immune suppression 
or the level of expression that is associated with a therapeutic 
response is unknown.

Currently, according to clinicaltrials.org, there are 30 
cancer immunotherapy clinical trials ongoing that are 
targeting GBM (compared with seven clinical trials for DIPG) 
which may be divided into five major categories: i) Vaccines 
[cytomegalovirus (CMV) antigen pp65-lysosome-associated 
membrane protein, mRNA-pulsed dendritic cells, autologous 
Wilms' tumor 1 (WT1) mRNA-loaded dendritic cells (DCs), 
tumor lysate-loaded DCs, brain tumor stem cell mRNA-loaded 
DCs, epitope enhanced peptides corresponding to IL-32Ra2, 
polyinosinic-polycytidylic acid stabilized with poly-l-lysine 
and carboxymethylcellulose (poly-ICLC) peptide vaccine, 
attenuated Listeria monocytogenes encoding EGFR variant III 
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(EGFRvIII) and NY-ESO, personalized peptide vaccine 
plus poly-ICLC/granulocyte/macrophage colony-stimulating 
factor (GM-CSF) and isocitrate dehydrogenase 1 (IDH1) 
peptide vaccine]; ii) checkpoint inhibitors (anti-PD-1, 
anti-LAG-3, anti-IL-15 and anti-CTLA-4); iii) combinations 
(DC plus T cell adoptive transfer, DC plus anti-PD-1, TGF-β 
receptor I inhibitor plus anti-PD-1, anti-CD27 plus anti-PD-1, 
anti-PD-L1 plus radiation therapy and anti-PD-1 plus oncolytic 
adenovirus); iv) adoptive T cell (CAR-T EGFRvIII, CAR-T 
IL-13Ra2, CAR-T CD133, CMV CAR-T HER2, CMLV CTL 
T cells, PD-1:CD28 switch receptor); and v) NK donor cells. 
The knowledge about epitope spreading and further T cell 
activation in autoimmune diseases are well-established; 
however, in brain cancer, these mechanisms require improved 
elucidation (96). Chongsathidkiet et al (62) suggested in a 
glioblastoma model that tumor cells present in the central 
nervous system inhibit T cell migration and induce seques-
tration of T cells in the bone marrow. Furthermore, GBM 
cells are able to stimulate IL-10, arginase-1, indoleamine 
2,3-dioxygenase and tryptophan 2,3-dioxygenase responsible 
for converting monocytes into myeloid-derived suppressor 
cells (MDSCs) and regulatory T cells (Tregs), and inducing an 
immunosuppressive microenvironment (63,96,131). Immune 
checkpoint approaches (antagonists or agonists) may be useful 
to revert this phenotype in glioma. Regarding DIPG, there 
are 50 clinical trials ongoing (Table I), but only seven are 
concerned with immunotherapy approaches: Use of autologous 
dendritic cells (NCT02840123), H3.3K27M peptide vaccine 
(NCT02960230), Toll-like receptor agonist (NCT01400672), 
PegIntron® (PEGylated IFN-α2b; NCT00036569), anti-PD-1 
(NCT01952769 and NCT02359565) and WT1 protein-derived 
peptide (NCT02750891). Except for NCT00036569, no results 
for these clinical trials have yet been released. The subsequent 
Phase II clinical trial tested the cytotoxicity and the efficacy of 
PegIntron. The study was sponsored by National Cancer Institute 
and has had 32 patients enrolled (median age, 6.28 years). The 
primary goal of the study was to evaluate whether there is a 
difference in the 2-year survival rate of patients treated with 
radiation alone compared with those patients treated with radi-
ation and followed by PegIntron (132). The 2-year survival rate 
was not significantly different compared with the other group; 
however, the time for progression was increased to 7.8 months 
compared with 5 months in a similar population (132). As a 
monotherapy, the treatment was not satisfactory, but its use in 
combination with immune checkpoint blockade or other types 
of immunotherapy may be effective. Preclinical and immune 
monitoring studies are required to support the hypothesis that 
combining immunotherapy and standard treatment or their 
use as a monotherapy may benefit patients developing DIPG, 
an orphan type of cancer. Also, analyses involving TME and 
their ligands, T cell immune checkpoint profiles (stimula-
tory/inhibitory) and neoantigens may indicate which patients 
may respond to a certain type of immunotherapy and may 
also be used for the rational design of novel immunotherapy 
approaches. A thorough understanding of the molecular signa-
tures and immunoprofiling as a predictor of patient response 
to cancer therapy and the use of several tools comprising the 
next generation of sequencing technologies which allow the 
understanding of, for example, a range of genes from different 
immune cell types, the epigenetic changes, the B and T cell 

receptor repertoire. The NanoString approach, whole exome 
sequencing, protein array, flow cytometry, mass cytometry by 
time-of-flight (CyTOF), immunohistochemistry (IHC), multi-
plexed ion beam imaging and systematic evolution of ligands 
by exponential enrichment have been used to pursue potential 
biomarkers and contribute to the future of cancer immuno-
therapy. There is therefore a requirement for studies aimed 
at DIPG, neoantigens and the TME. Preclinical studies using 
an orthotopic model or clinical studies, for example, would 
answer how certain standard therapies including radiotherapy 
or targeted therapy including HDACi or even combinations 
with immunotherapy may affect the immune response and the 
clinical outcomes.

5. Cancer immunoediting in glioma

Cancer cells exhibit several mechanisms of avoiding or 
suppressing the immune response in an attempt to prevent their 
destruction and consequently providing for their development 
and progression (15). This process is known as cancer immu-
noediting and comprises a well-established and co-ordinated 
subsequent process known as elimination, equilibrium and 
escape (16,17). In the last phase, transformed variant cells 
selected in the equilibrium phase undergo clonal growth in an 
immunologically regulated environment characterized mainly 
by the decrease in co-stimulatory molecules (18), antigen loss 
due to the downregulation of MHC molecules (133), resis-
tance to apoptosis (19,134), the augmentation of CD4+CD25+ 
forkhead box P3 (FoxP3)+ Tregs (135), IL-10-secreting 
T cells (136), M2 macrophages (137), MDSCs (138) and the 
increase in the expression of T cell-inhibitory molecules 
(immune exhaustion markers) including PD-1, PD-L1, PD-L2, 
CTLA-4, LAG-3, TIM-3, VISTA and galectin-9 (141,142).

The presence of several inhibitory immune checkpoints 
that block T cell responses and stimulate T cell responses 
offers particular strategies for mobilizing the immune system 
to attack cancer cells (139). CTLA-4 and PD-1 are strategic 
receptors on activated T cells that mediate immunosuppres-
sion in cancer. In the first case, CTLA-4 on the T cells binds 
to two ligands on antigen-presenting cells (CD80 and CD86), 
the same ligands required for CD28 activation. Owing to 
the higher affinity for both ligands, CTLA-4 is a competi-
tive inhibitor for T cell activation (140). In the second case, 
PD-L1 and PD-L2, present on cancer cells or stromal cells 
interact with PD-1 receptor causing a downregulation of T cell 
responses (141). The immune checkpoint blockade mediated by 
anti-CTLA-4 and anti-PD-1 monoclonal antibodies remains to 
be elucidated (142). Immunotherapy with immune checkpoint 
inhibitors in certain types of cancer has revealed significant 
success in the last decade (143-146). Despite the accomplish-
ments of these therapies, not every patient responds to immune 
checkpoint blockade and even the responders often experience 
toxic effects. Furthermore, there is an increasing requirement 
to identify potential biomarkers, primarily in immune cells, 
which may predict whether the patient with cancer may or may 
not respond to a particular immunotherapy, including immune 
checkpoint blockade or immune checkpoint agonist. Several 
clinical trials regarding immune checkpoint blockade are 
ongoing in glioblastoma and other types of brain cancer, but 
are required to be performed in DIPG.
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Table I. Ongoing clinical trials in patients with diffuse intrinsic pontine glioma according to clincialtrials.gov.

Identifier Status Study results Phase Study type

NCT03101813 Recruiting None available NA Observational
NCT01688401 Suspended None available Phase I Interventional
NCT02420613 Recruiting None available Phase I Interventional
NCT02233049 Recruiting None available Phase II Interventional
NCT02992015 Recruiting None available Early Phase I Interventional
NCT01182350 Active, not recruiting None available Phase II Interventional
NCT01165333 Completed None available Phase I Interventional
NCT00996723 Completed None available Phase I Interventional
NCT01777633 Completed None available Phase I/Phase II Interventional
NCT01400672 Completed None available Phase I Interventional
NCT01106794 Recruiting None available NA Observational
NCT01393912 Completed None available Phase I Interventional
NCT00890786 Active, not recruiting None available Early Phase I Interventional
NCT03086616 Recruiting None available Phase I Interventional
NCT02840123 Recruiting None available Phase I Interventional
NCT01222754 Active, not recruiting None available Phase I Interventional
NCT03126266 Not yet recruiting None available NA Interventional
NCT00036569 Completed Available Phase II Interventional
NCT02960230 Recruiting None available Phase I Interventional
NCT02717455 Recruiting None available Phase I Interventional
NCT03178032 Recruiting None available Phase I Interventional
NCT00600054 Completed None available Phase II Interventional
NCT01922076 Recruiting None available Phase I Interventional
NCT01517776 Terminated None available Phase II Interventional
NCT02274987 Recruiting None available NA Interventional
NCT01952769 Active, not recruiting None available Phase I/Phase II Interventional
NCT02758366 Recruiting None available Phase II Interventional
NCT01644773 Recruiting None available Phase I Interventional
NCT01058850 Terminated None available Phase I Interventional
NCT01189266 Active, not recruiting None available Phase I/Phase II Interventional
NCT02750891 Active, not recruiting None available Phase I/Phase II Interventional
NCT02359565 Recruiting None available Phase I Interventional
NCT03243461 Not yet recruiting None available Phase III Interventional
NCT02607124 Recruiting None available Phase I/Phase II Interventional
NCT01469247 Active, not recruiting None available Phase I/Phase II Interventional
NCT02644460 Recruiting None available Phase I Interventional
NCT00879437 Active, not recruiting None available Phase II Interventional
NCT00028795 Completed None available Phase II Interventional
NCT00278278 Unknown None available Phase III Interventional
NCT01836549 Completed None available Phase II Interventional
NCT02742883 Active, not recruiting None available Phase II Interventional
NCT01445288 Recruiting None available NA Observational
NCT01837862 Recruiting None available Phase I/Phase II Interventional
NCT01884740 Recruiting None available Phase I/Phase II Interventional
NCT02444546 Recruiting None available Phase I Interventional
NCT00561691 Completed None available Phase III Observational
NCT01878266 Recruiting None available Phase III Interventional
NCT02644291 Recruiting None available Phase I Interventional
NCT01502917 Recruiting None available Phase I Interventional
NCT02343406 Recruiting None available Phase II Interventional
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The concept of cancer immunoediting has been explored 
in many types of tumor, but only recently has attention turned 
to glioma. Efforts have been made to understand how the 
immune system is able to support the glioma cancer cells 
to develop and grow, and at the same time dampen an anti-
tumor immune response. Numerous antigens from glioma 
have been described, including IL-13Ra2 (109,111,147,148), 
N-acetyl-β-glucosamine (149), sex-determining region Y 
box (SOX)2 (150,151), EGFRvIII (152), SOX6 (153), glioma-
expressed antigen 1/2 (154), paired helical filament 3 (154), 
NK group 2D (NKG2D), NKp30, MHC class I polypeptide-
related sequence A/B (MICA/B) (155,156), UL16-binding 
protein 1 (157), EphA2 (109,110), EphB6 (158), antigen 
isolated from immunoselected melanoma-2 (159), squamous 
cell carcinoma antigen recognized by T cells 1/3 (160,161), 
HER2 (162), tyrosinase-related protein 2 (163,164), glycopro-
tein 100 (165), melanoma antigen-1 (166) and NY-ESO1 (167). 
Potential mechanisms in glioma immunoediting include 
evasion of adaptive T cell responses by altering the MHC 
class I antigen processing/presentation and a decrease 
in levels of cell-surface MHC I (168), antigen loss (169), 
a decrease in β2-microglobulin (170), latent membrane 
protein 2, transporter associated with antigen processing 1 
and B7 expression (171), upregulation of B7-H3, impairing 
NK cell recognition by releasing NKG2D ligands (172,173) 
and increasing the expression of HLA-E and HLA-G, and, in 
certain cases, MHC class I expression (172,174) and increasing 
the immunosuppressive profile conferred by TGF-β, IL-10, 
prostaglandin E2 and Treg promotion (175-178). Understanding 
the glioma immunoediting process will assist in unraveling 
the mechanisms in DIPG which abrogate an effector immune 
response. Unfortunately, all these mechanisms in DIPG are 
currently unknown.

Cancer immunoediting decreases the immunogenicity 
of developing tumors and supports tumor development. 
Therefore, immune monitoring studies have the potential to 
reveal the immunological machinery of antitumor responses, 
evaluate disease progression, assess the therapeutic effect, 
describe and identify novel candidates for immunotherapy, and 
act as predictive and correlative markers of clinical outcome.

6. Immune monitoring approaches to DIPG

To obtain an improved understanding of the DIPG micro-
environment and the use of immune checkpoint approaches 
which may benefit a robust immune response against DIPG 
cancer cells, it would be interesting to conduct immune moni-
toring studies in patients with cancer, or an orthotopic mouse 
model for developing DIPG (Table II). As aforementioned, the 
immune checkpoint blockade is minimal in those tumors that 
have few somatic mutations and consequently poor neoantigen 
repertoire. Several studies have demonstrated that even by 
using immune checkpoint blockade including anti-CTLA-4 
and anti-PD-1, several negative immune checkpoint molecules 
on T cells (TIM-3, LAG-3, VISTA, TIGIT and BTLA) are 
overexpressed, acting to dampen the immune activation in an 
attempt to achieve the immune homeostasis (179-190). These 
results were only possible due to the design of several immune 
monitoring approaches in the genomics and proteomics 
field. In a number of types of human cancer, the expression 
of immune checkpoints has been associated with a good or 
poor outcome. However, given the lack of clarity, the present 
review endorses the importance of immune monitoring studies 
in DIPG. Studies regarding immune monitoring approaches to 
DIPG have the potential to elucidate immunological mecha-
nisms of antitumor responses, evaluate the therapeutic effect, 

Table II. Selected markers and approaches which may be used in cancer or peripheral blood mononuclear cells for immunomoni-
toring in diffuse intrinsic pontine glioma.

   Imaging mass
Mass cytometry Flow cytometry Immunohistochemistry cytometry NanoString

CD68, PD-L1, VISTA,  CD4, CD8, ICOS, FoxP3, H3K27M mutant,  CD31, CD68, CD3, CSAG2, MAGEA3,
CD70, CD73, FoxP3,  PD-1, 4-1BB, OX40,  GFAP, human nestin,   CD4, CD8, CD45, MAGEC2, IL13RA2,
BTLA, 4-1BBL, ICOSL,  CTLA-4, CD14, CD16,  Olig2, Ki67 actin, β-catenin, PRAME, CSPG4
CD80, B7-H4, CTLA-4,  CD56, CD69, NKp44, human vimentin,  nestin, PDGFRA,  and SOX10,
CD3, TIM-3, CD27, CD86,  NKp30, NKG2A, NKG2C, CD4, CD8,  ACVR1, FGFR1,  CD45RO, CD20,
PD-1, CD28, KI67, 4-1BB,  NKG2D, PD-L1, Eomes, CD45RO, GrB,   α-SMA, histone H3, CD57, FoxP3
TIGIT, CD4, CD8, OX40,  T-bet, Blimp-1, Bcl-6, ICOS, CD68,   histone K27M mutant, and granzyme B
CD326, ICOS, LAG-3,  c-Myc, CCR7, CD45RA, PD-L1, PD-1,  CD44, c-Myc, VISTA,
CD11c, CD11b, CD44,  CD45RO, ROR-y arginase-1, iNOS vimentin, EGFRvIII,
CD62L, galectin-9,  and VISTA and VISTA CD133, galectin 1,
galectin-1,galectin-3,    galectin 3, FoxP3,
NY-ESO1, HVEM,    CD25, PD-1,
B7-H3, CD45, GITR,    PD-L1, p53
PD-L2, OX40L,    and SHP2
HLA-DR and CD56

Data taken from (103,191-215,217-226).
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monitor disease progression, serve as a prognostic marker of 
clinical and outcome and also identify potential candidates 
for cancer immunotherapy. Immunological responses may be 
determined by alterations in T cell infiltrate and the quality of 
T cells regarding co-stimulatory/co-inhibitory molecules, the 
ratio of CD8+/CD4+ Tregs, cytokine production (inflammatory 
or immunosuppressive profile), the presence and macrophage 
differentiation (type 1 or type 2 macrophages), the expression 
of certain trivial tumor ligands including PD-L1, PD-L2, 
B7-H3, B7-H4, MICA/B and myeloid C-type lectin receptors. 
Blood and tissue samples may be analyzed to evaluate specific 
types of neoantigen or gene that may activate a robust immune 
response in DIPG. Furthermore, neoantigen-specific T cells 
may be assessed for immunogenicity using enzyme-linked 
immunospot (ELISPOT) and tetramer analysis. Overall, the 
immune monitoring profile from preclinical/clinical blood 
and tissue samples is the best way to assess and characterize 
the quality of immune response from those patients who are 
undergoing several therapeutic approaches. Studies which aim 
to estimate the impact of several therapies on T cell responses 
to DIPG neoantigens in tumor samples and to investigate the 
association between T cell neoantigen responses and other 
immunological parameters to drug-associated toxicity and 
radiographical responses would be interesting to investigate 
certain biomarker candidates in patients developing DIPG.

The increased availability of tissue samples for preclinical 
investigation, the development of novel experimental model 
systems, the advent of next-generation sequencing, IHC, 
flow cytometry and CyTOF provide useful tools to monitor 
the future of immunotherapy. Immune monitoring studies as 
proposed in the present study would benefit a better under-
standing of whether several types of immunotherapy and 
combinations are able to restore the quality of antitumor 
responses in DIPG. Serum cytokines, angiogenic factors and 
chemokines should also be evaluated using ELISPOT, ELISA 
or other relevant multiplex-based protein assay methods. 
Comprehensive analysis in immune profiles may lead to the 
identification of immune-based biomarkers.

The preclinical approaches may provide the opportunity to 
investigate in depth the effects of cancer immunotherapy and 
its possible use of adoptive transfer strategies including CD8+, 
CAR-T cells, NK cells, immune checkpoints and drug delivery 
on gliomas. So, the primary goal of performing immune 
monitoring studies in DIPG specimens is to determine an 
immunological profile in PBMCs and the potential changes 
in tumor samples (tumor ligands and TME) in an attempt to 
understand the TME and also the systemic immune response. 
The establishment of immunological biomarkers may promote 
the development of practical immunotherapeutic approaches. 
To determine the adaptive immune signatures in the TME at 
the baseline and during the course of the treatment using the 
immune checkpoint blockade combination (anti-CTLA-4 and 
anti-PD-1), Chen et al (66) performed, using melanoma tissue 
samples, an immune profiling study by analyzing a 12-marker 
IHC panel and gene expression pertaining to common cancer 
signaling pathways using the NanoString approach. By 
comparing responders and non-responders during the CTLA-4 
and anti-PD-1 blockade, it was demonstrated that, at baseline, 
no change was observed in any of the biomarkers measured, 
including CD45RO, CD20, CD57, CD68, FoxP3, granzyme B, 

PD-1, LAG-3, CD14, CD33, CD163 and CD206. However, 
there was a significantly increased density of CD8+ T cells in 
responders compared with in non-responders during the treat-
ment. Additionally, increased expression of CD45RO, CD20, 
CD57, FoxP3 and granzyme B was detected in responders 
compared with in non-responders. Together, these results 
are relevant in the prediction of biomarkers of response and 
resistance to the immune checkpoint blockade, while offering 
a mechanistic understanding of immune checkpoint blockade 
as associated with enhanced cytotoxic activity, antigen 
processing and the IFN-γ signaling pathway. In another study 
using the NanoString approach, Beard et al (191) investigated 
the potential candidates for immunotherapy by comparing 
the gene signatures between melanoma and healthy tissue. 
In melanoma samples, chondrosarcoma-associated gene 
2/3 protein, melanoma-associated antigen A3 (MAGEA3), 
melanoma-associated antigen C2 (MAGEC2), IL-13Ra2, 
preferentially expressed antigen in melanoma, chondroitin 
sulfate proteoglycan 4 and SOX10 were overexpressed when 
compared with the healthy tissue (169).

In glioma cancer, the NanoString approach has been used 
extensively to identify driver genes as potential therapeutic 
targets and also to predict signature disease specific-survival 
and recurrence-free survival times (192-206). However, there 
is an evident lack of studies involving patients with DIPG.

The significance of an integral immune surveillance in 
controlling cancer progression and development has been 
known for a number of years. Several studies have demonstrated 
a marked association between TILs in cancer tissue and favor-
able prognosis in numerous malignancies (85,207-209). CD8+ 
T cells and the ratio of CD8+ effector/FoxP3+ Tregs appears to 
be associated with improved prognosis and long-term survival 
in a number of solid tumors. CyTOF has been used to define 
immune cell populations, to identify potential biomarkers 
and in drug development (210). By measuring 34 parameters 
simultaneously in single cells, Bendall et al (211) defined the 
hematopoietic hierarchy from healthy human bone marrow. 
Spitzer et al (212) analyzed the immune responses in several 
tissues following anti-PD-1 and PD-L1 immunotherapy by 
developing intuitive models (Scaffold map) to visualize single 
cell data with statistical implication (212). In their study, the 
authors were able to demonstrate the crucial involvement of the 
systemic immune response in cancer rejection. Wei et al (213) 
performed a comprehensive profile on the effects of checkpoint 
blockade (anti-CTLA-4 and anti-PD-1) on the tumor immune 
infiltrate in humans and mice. It was demonstrated that the 
tumor-infiltrating T cells were markedly similar between tumor 
models, but there were differences in the subsets of tumor-
infiltrating T cell populations; whereas the anti-PD-1 therapy 
induced the expansion of exhausted CD8+ T cells, anti-CTLA-4 
induced the expansion of the Th1-like CD4+ effector cell 
population. In a phase II clinical trial designed to determine the 
efficacy of metronomic temozolomide in recurrent glioblastoma 
patients, Omuro et al (214) determined, using mass spectrometry 
genotyping/iPLEX®, tissue from 38 patients (28 glioblastomas 
and 10 grade III), the presence of certain mutations previ-
ously described in glioma. Mutations were identified in EGFR 
(EGFR_P596L, EGFR_C620Y, EGFR_G598V, EGFR_I91L, 
EGFR_T263P and EGFR_V651M), IDH1 (IDH1_R132L_H 
and R_132C_G_S) and ERBB2 (ERBB2_L49H) (214). 
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Together, these results provided substantial insights that CyTOF 
and the tools available for high-dimensional analysis, including 
Scaffold, SPADE, viSNE and CITRUS, offer a feasible way of 
correlating and predicting immune biomarkers, which has not 
yet not been performed in DIPG.

7. Conclusions

The present review makes a claim for the importance of 
immune monitoring studies in DIPG, an incurable brain cancer 
representing the principal cause of mortality from pediatric 
brain tumors. Growing diffusely in the ventral pons, the tumor 
causes disabling neurological symptoms that gradually abolish 
the co-ordination of the face, pharynx and body. Unfortunately, 
surgical resection is not a feasible option, radiation therapy 
results only in temporary stabilization of symptoms, and 
several chemotherapy trials developed for adult glioma have 
not demonstrated satisfactory results to date (215). Novel and 
useful therapies are urgently required, and immunotherapy 
may be an excellent strategy to modulate the immune response 
to this devastating disease. Several immune checkpoint mole-
cules have been proposed in the present review as having an 
involvement in a potential strategy for mobilizing the immune 
system for the treatment of DIPG. Also, by sharing the recent 
achievements in other types of cancer, the present review may 
serve to stimulate the scientific community in developing 
preclinical and clinical immune monitoring studies in DIPG. 
An improved understanding regarding TME, cancer immu-
noediting and neoantigens is required.

Randomized clinical trials have allowed the advance of a 
consistent evidence-based medicine. Currently, several tools 
may be used to characterize the biology of several types of 
cancer, and the present review highlights the requirement for 
designing more descriptive clinical trials which are expected to 
result in more marked treatment effects for a more significant 
portion of treated patients. In the present review, certain immu-
nological landscape approaches including flow cytometry, 
CyTOF, IHC and imaging mass cytometry, as well as certain 
biomarker candidates, were proposed as potential approaches 
that may be useful to perform immune monitoring studies in 
tissue and PBMCs from patients developing DIPG. It is there-
fore clear that molecular tools which allow the identification 
of i) alterations at the genomic level (DNA/RNA) including 
single-nucleotide variations, insertion/deletion, loss of hetero-
zygosity and translocation; ii) epigenomic modifications 
including DNA methylation (CpG islands), DNA methylation 
(non-CpG islands) and histone modification (acetylation or 
methylation); and iii) protein expression, post-translational 
modification, and protein complexes and interactions (whole 
exosome sequencing, whole genome sequencing and bisulfite 
sequencing), as well as targeted identification (multiple reac-
tion monitoring) are essential to detect, diagnose, monitor, 
estimate and predict therapeutic interventions likely to benefit 
the patient (216). As the immune system is a multifaceted 
cellular system that is not entirely understood, particularly in 
the cancer microenvironment, the importance of monitoring 
the immune responses from those patients undergoing several 
treatment approaches has become crucial for understanding the 
cancer biology and potential biomarkers and also for designing 
new drugs. Several activating receptors on T cells including 

CD27, CD28, OX40, 4-1BB, CD40 ligand, DNAX-accessory 
molecule 1, transmembrane activator and calcium modulator 
and cyclophilin ligand-interactor, B cell maturation antigen, 
ICOS, GITR, B cell-activating factor belonging to the TNF 
family receptor, and inhibitory receptors including CTLA-4, 
PD-1, PD-L1, CD160, CD200 receptor, LAG-3, 2B4, TNF 
superfamily member 14, BTLA, VISTA, TIGIT, B7-H3, B7-H4 
and killer cell lectin-like receptor subfamily G member 1 have 
been used to design agonists or antagonists, respectively, as 
immune checkpoint targets to improve immune responses 
against several types of cancer. The robust clinical responses, 
but not universally, in a diverse group of advanced cancer 
suggest that immune checkpoint immunotherapy may be 
also be beneficial in the treatment of DIPG. Assuming that 
in the glioblastoma, numerous infiltrating Tregs and high 
levels of immune-suppressive cytokines dictate the immune 
suppression, the T cell exhaustion profile and also the poten-
tial neoantigens in DIPG should be considered. In the present 
review, the idea of immune monitoring approaches has been 
discussed, and the use of antagonists or agonists as immune 
checkpoint approaches for the treatment of DIPG are also 
supported. The recognition that the immune response is 
dysfunctional in patients with cancer and also the current 
immune checkpoint strategies including agonists/antagonists 
have prompted certain questions regarding why only certain 
patients with cancer exhibit marked responses or how the 
efficacy, specificity and safety of cancer immunotherapy 
strategies may be increased, or what would be the best model 
system and biomarkers to address these questions. Monoclonal 
antibodies that block PD-1 and CTLA-4 proteins further exem-
plified the power of cytotoxic T lymphocytes in the control 
of tumor development by reversing cancer-induced immu-
nosuppression and inducing durable therapeutic responses 
in certain patients with cancer. Immune checkpoint therapy 
targeting co-inhibitory or co-stimulatory molecules on T cells 
is a new paradigm for cancer treatment. Rather than targeting 
the tumor cell, this approach targets molecules on immune 
cells that regulate their activity to sustain immune responses 
to cancer and achieve elimination of tumors and immunity 
to recurrence. This strategy has proven effective in treating 
different types of cancer and is now the standard of care for 
metastatic melanoma and lung cancer. The high-dimensional 
analysis of tissue and blood samples from patients with cancer 
is being performed with several technologies and different 
software. Examples of these technologies are flow cytometry 
and CyTOF; the analyses are made using specific software 
including FlowJo, viSNE, SPADE, Scaffold and CITRUS.

In conclusion, substantial improvement has been made 
in the development of cancer immunotherapy. Immune 
monitoring studies have identified certain biomarkers which 
are able to reveal the complexity of the cancer microenviron-
ment (217-226). The novel way of thinking and managing 
patients with cancer under immunotherapy perspectives by 
inducing the immune system to track down and destroy cancer 
cells it is not hyperbole, but rather a reality. Patients with only 
weeks or months to live are now surviving for years following 
treatment. Personalized cancer immunotherapies targeting 
tumor-specific mutant neoantigens are leading to combinato-
rial therapies, where several strategies act to kill cancer cells. 
Such effects have been accomplished in preclinical tumor 
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models and can now be extended to human patients with 
cancer including DIPG.
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