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Viruses have a limited number of
genes but a complex life cycle

and have evolved to utilize numerous
host factors to complete their replication.
The assembly and budding process of
enveloped viruses utilizes numerous
cellular factors to facilitate transport from
one membrane bound compartment to
the other. The host SNARE proteins are
widely involved in late stages of vesicular
mediated transport by catalyzing the
docking and fusion of apposing mem-
branes in the vesicle and target compart-
ment. By generalized disruption of the
SNARE sorting machinery, we recently
demonstrated a role for these proteins
in HIV-1 assembly by affecting Gag
localization to the plasma membrane.
Whether the observed phenomenon is
specifically due to SNARE disruption or
generalized disturbance of the cell sorting
machinery and the involvement of speci-
fic “v” vs. “t” SNAREs in this phenome-
non remains to be elucidated.

Membrane bound vesicles transport
various proteins, lipids and other luminal
contents to different compartments in the
cell. The process of vesicular transport
consists of several steps including vesicle
formation, targeting to the appropriate
compartment and fusion of the vesicle
with the target membrane. This orche-
strated movement of vesicles in the cells
ensures appropriate targeting of proteins
to the intracellular and extracellular
compartments. The process of fusion of
the vesicle with the target membrane
is catalyzed by a group of proteins collec-
tively referred to as the SNARE (soluble
N-ethylmaleimide-sensitive factor attach-
ment protein receptors) proteins.1 Besides

their role in retrograde and anterograde
transport via the secretory and endocytic
pathway, SNARE proteins are also involved
in daughter cell separation (known as
abscission) during cell division.1-6

The SNARE proteins are broadly
classified into two main categories: the
v-SNAREs that are primarily found on
the transport vesicle and the t-SNAREs
that associate with the target membrane.3,6

Besides being structurally distinct, the
v-and t-SNAREs perform different
functions. Interactions between specific
v-SNAREs on the vesicular compartment
and t-SNAREs on the target membrane
leads to the formation of the trans-
SNARE complex which upon fusion of
the lipid bilayers is converted into a cis-
SNARE complex. Upon cargo delivery,
the cis-SNARE complex is disassembled
by the concerted efforts of the ATPase
N-ethylmaleimide (NEM)-sensitive factor
(NSF) and a-soluble NSF attachment
protein (a-SNAP).3,6 Dominant negative
mutants of NSF like K266A and E329Q
lead to defects in disassembly of cis-
SNARE complexes resulting in generalized
disruption of SNARE function.7

Viruses being simple organisms carry
the minimal genes essential for replication
in the host and make use of the cellular
machinery for completion of their life
cycle. Since the SNARE proteins are
universally important for vesicle-mediated
transport, it is tempting to speculate that
they may play a role in HIV protein
transport, virus assembly and/or budding.
Furthermore, the final stages of HIV
budding, specifically the release of virions
from the cell surface, shows marked
resemblance to the process of abscission8,9

suggesting that both phenomena may be
catalyzed by similar factors. With this
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premise in mind we studied the role of
SNARE proteins in the HIV life cycle
using the ATPase-defective NSF mutant
E329Q that prevents disassembly of the
cis-SNARE complexes thereby resulting
in a general disruption of the SNARE
machinery.10 Using this method of inhibi-
tion of the SNARE sorting machinery we
recently demonstrated that they play a role
in HIV assembly/release.

Upon dominant-negative NSF expres-
sion, we not only saw defects in Gag
localization to the plasma membrane but
also observed defects in CD63 and CD81
localization to membranes. Moreover,
localization of other membrane receptors
like CD4, CXCR4 and CCR5 to the
plasma membrane was also affected.10

Considering the role of SNARE proteins
both in cell division and in intracellular
vesicle-mediated transport events and
membrane fusion,1-6 we had anticipated
that SNARE disruption may lead to virion
tethering to the plasma membrane or
virion-virion tethering, defects similar to
those caused by Tsg101 depletion.11 On
the contrary, we found that SNARE
disruption led to defects in an earlier
step—plasma membrane association of
HIV-1 Gag. Moreover, only the mem-
brane-bound Gag (whether bound to
plasma membrane or internal membrane)
was affected by SNARE disruption. Our
findings suggest that SNARE disruption
either directly or indirectly plays a role
in Gag binding and/or transport to the
plasma membrane, which in turn leads to
defects in virus release.

The minimum viral domain required
for retrovirus budding is the Gag poly-
protein, expression of which is sufficient
to drive the formation of virus-like
particles (VLPs).12 The HIV-1 Gag poly-
protein is synthesized in the cytosol
following which it rapidly translocates to
the site of virus assembly.12,13 Although
the plasma membrane is believed to be

the predominant site for HIV-1 assembly,
the itinerary that Gag follows to get to
this site remains much disputed.14-16 Our
study suggests that Gag may traffic with
membrane-bound vesicles incorporating
SNARE proteins that are targeted to the
plasma membrane. It is also possible that
these Gag-laden vesicles are first taken to
intracellular compartments like the late
endosomes/multi-vesicular bodies (MVBs)
that may also serve as sites of virus
assembly.

The fact that SNAREs function not
only in the secretory but also the endo-
cytic pathway17 suggests that depletion of
the SNARE function would result in an
overall defect in intracellular membrane
compartments. DN NSF used in our
study prevents disassembly of the cis-
SNARE complex and recycling of the
proteins, so the function of SNARE
proteins would be unidirectional with the
accumulation of cis-SNARE complexes
on membranes.18-20 Thus, an overall dis-
ruption of intracellular membrane com-
partments would be anticipated. With the
assumption that Gag associates with intra-
cellular membrane bound-compartments,
a deficiency of these would ultimately lead
to the cytosolic pattern of Gag localization.
This was consistent with our observation
that CD63/CD81, markers of late endo-
somes,21-23 were also rendered cytosolic
upon SNARE disruption.

SNARE proteins are involved in the
transport of not only proteins but also the
majority of lipids between membrane
compartments. A disruption of SNARE
function would also result in dysregulation
of the lipid components of various mem-
brane compartments in cells. One such
biologically active lipid phosphatidyl-
inositol(4,5)bisphosphate [PI(4,5)P2], has
been shown to be critical for HIV budd-
ing by promoting Gag binding to plasma
membrane via interaction with the basic
residues in the matrix domain.24-27

Whether disruption of SNAREs leads to
a deficiency of PI(4,5)P2 on the plasma
membrane and subsequently Gag bind-
ing remains a possibility needing further
investigation. In the same context, it has
been shown that HIV buds via distinct
lipid raft-enriched microdomains28,29 in
the plasma membrane. Whether SNARE
disruption affects raft formation/function
also needs to be examined.

There is a great deal of redundancy
in the function of SNARE proteins, as
different SNARE members can give rise
to multiple SNARE complexes. More-
over, a given SNARE can not only be
incorporated into different SNARE com-
plexes but the same t-SNARE can interact
with different v-SNAREs and mediate
varied transport events in different cell
types. For example, VAMP-3 can func-
tionally replace VAMP-2 and several
different SNARE complexes are functional
in different cell compartments like ER,
golgi, endosomes, plasma membrane,
etc.3,6 It will be important to determine
whether specific v-or t-SNAREs play
a more important role in budding
than others. Considering the significant
redundancy in SNARE protein function,
it is likely that disruption of individual
v-or t-SNAREs would not have an effect
on virus budding but the combined
disruption of multiple SNAREs may affect
assembly/release. It would also be inter-
esting to test whether SNARE disruption
affects HIV assembly in physiologically
relevant cell types like T cells or macro-
phages. Moreover, it also needs to
be investigated whether SNAREs are
important only for retrovirus release or
whether other diverse intracellular patho-
gens also make use of the SNARE
machinery for budding.30 Considering
the fairly conserved nature of these
proteins, we speculate that they may
be important for other intracellular
pathogens as well.
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