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Age‑related exacerbation 
of hematopoietic organ 
damage induced by systemic 
hyper‑inflammation 
in senescence‑accelerated mice
Tomonori Harada  1*, Isao Tsuboi1, Hirotsugu Hino1, Miyuki Yuda1, Yoko Hirabayashi2, 
Shuichi Hirai1 & Shin Aizawa1

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyper-inflammatory 
disorder. The mortality of HLH is higher in the elderly than in young adults. Senescence-accelerated 
mice (SAMP1/TA-1) exhibit characteristic accelerated aging after 30 weeks of age, and HLH-like 
features, including hematopoietic organ damage, are seen after lipopolysaccharide (LPS) treatment. 
Thus, SAMP1/TA-1 is a useful model of hematological pathophysiology in the elderly with HLH. 
In this study, dosing of SAMP1/TA-1 mice with LPS revealed that the suppression of myelopoiesis 
and B-lymphopoiesis was more severe in aged mice than in young mice. The bone marrow (BM) 
expression of genes encoding positive regulators of myelopoiesis (G-CSF, GM-CSF, and IL-6) and of 
those encoding negative regulators of B cell lymphopoiesis (TNF-α) increased in both groups, while 
the expression of genes encoding positive-regulators of B cell lymphopoiesis (IL-7, SDF-1, and SCF) 
decreased. The expression of the GM-CSF-encoding transcript was lower in aged mice than in young 
animals. The production of GM-CSF by cultured stromal cells after LPS treatment was also lower in 
aged mice than in young mice. The accumulation of the TNF-α-encoding transcript and the depletion 
of the IL-7-encoding transcript were prolonged in aged mice compared to young animals. LPS dosing 
led to a prolonged increase in the proportion of BM M1 macrophages in aged mice compared to young 
animals. The expression of the gene encoding p16INK4a and the proportion of β-galactosidase- and 
phosphorylated ribosomal protein S6-positive cells were increased in cultured stromal cells from 
aged mice compared to those from young animals, while the proportion of Ki67-positive cells was 
decreased in stromal cells from aged mice. Thus, age-related deterioration of stromal cells probably 
causes the suppression of hematopoiesis in aged mice. This age-related latent organ dysfunction may 
be exacerbated in elderly people with HLH, resulting in poor prognosis.

Hemophagocytic lymphohistiocytosis (HLH) is a hyper-inflammatory syndrome caused by the incessant activa-
tion of lymphocytes and macrophages, resulting in organ damage of the lungs, kidneys, liver, or heart1–3. Patients 
with HLH have high levels of various proinflammatory cytokines such as interferon-γ (IFN-γ), interleukin (IL)-6, 
IL-8, IL-10, IL-12, IL-18, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1α (MIP-1α)3. 
HLH is classified largely into primary HLH (pHLH) and secondary HLH (sHLH). pHLH is caused by inherited 
defects in various genes (PRF1, UNC13D, STX11, and STXBP2) that regulate the granule-dependent cytotoxic 
pathway in NK cells and cytotoxic T cells4–8. pHLH also includes X-linked lymphoproliferative disease, Griselli 
syndrome type 2, Chediak-Higashi syndrome, and Hermansky-Pudlak syndrome3. In contrast, sHLH is not 
caused by hereditary disorder, but by severe infectious diseases, autoimmune illnesses, and malignancies1,3,9. 
Clinical manifestations of HLH include fever, splenomegaly, pancytopenia, hypertriglyceridemia and/or hypofi-
brinogenemia, and hemophagocytosis in bone marrow (BM), spleen, or lymph nodes, accompanied by low or 
absent NK cells, hyperferritinemia, and high soluble levels of IL-2 receptor1. sHLH usually occurs in young 
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adolescents but has been reported in the elderly, albeit only rarely10,11. Although it has been reported that the 
prognosis of patients with sHLH is poorer in the elderly than in young adults, little is known about the patho-
genesis and the pathophysiology that lead to worse prognoses among elderly patients with sHLH10,12–14.

Previously, we demonstrated that SAMP1/TA-1 mice exhibit a senescent hematological phenotype including 
senescence-like stromal cell impairments after 30 weeks of age15–19. We recently found that SAMP1/TA-1 mice 
dosed repeatedly with lipopolysaccharide (LPS) exhibit HLH-like features such as severe pancytopenia, hepato-
megaly, splenomegaly, hypofibrinogenemia, hyperferritinemia, and hemophagocytosis in peripheral blood, BM, 
and spleen; thus, they serve as a useful model of sHLH20. In the BM of SAMP1/TA-1 mice repeatedly treated 
with LPS, B lymphoid progenitor cells are persistently and profoundly decreased. The mRNA levels of positive 
regulators of B lymphopoiesis, such as IL-7, stromal-cell derived factor-1 (SDF-1), and stem cell factor (SCF) 
are also profoundly decreased in both the BM and cultured stromal cells21. Furthermore, senescence markers, 
such as the expression of the gene encoding p16INK4a and the proportion of β-galactosidase-positive cells, are 
increased in cultured stromal cells21. There are similarities between hematopoietic alterations during inflamma-
tion and those that occur with aging. The cause of pancytopenia in HLH has previously been explained by the 
unregulated production of circulating proinflammatory cytokines including TNF-α and IFN-γ, possibly pro-
duced by activated T lymphocytes, monocytes/macrophages, and endothelial cells3. However, our recent study 
revealed that prolonged hyper-inflammation in HLH severely deteriorates the stromal cells that comprise the 
microenvironment that supports hematopoiesis in BM, resulting in disrupted dynamics of that hematopoiesis21.

Thus, the dynamics of hematopoiesis in the BM are disrupted by an impairment of the hematopoietic micro-
environment in LPS-dosed SAMP1/TA-1 mice, indicating that the hematopoietic tissue is among the organs that 
suffer life-threatening damage in HLH21. Therefore, we chose the hematopoietic organ to investigate differences 
in the pathophysiology of sHLH between young and elderly adults.

Hematological parameters that reflect hematopoietic dynamics (such as the number of peripheral blood 
cells and hematopoietic progenitor cells in the BM) and the levels (in the hematopoietic microenvironment) 
of mRNAs encoding hematopoiesis regulatory cytokines should be good indicators for evaluating the patho-
physiology that exacerbates organ damage in elderly patients with HLH20,21. In the present study, we compared 
hematological parameters between young (8- to 12-week-old) and aged (30- to 36-week-old) SAMP1/TA-1 
mice dosed with LPS.

Results
Changes in the numbers of peripheral blood cells in young and aged SAMP1/TA‑1 mice after 
LPS treatment.  The numbers of peripheral white blood cells (WBCs), red blood cells (RBCs), and platelets 
were evaluated in the blood of young and aged SAMP1/TA-1 mice nine days after dosing with saline (control) 
or LPS (Fig. 1). The number of WBCs in non-treated young and aged mice was 9695 ± 650/µl and 8299 ± 173/
µl, respectively. The number of WBCs in young and aged mice after LPS treatment was significantly decreased 
to 37.6% and 43.4% those of control mice, respectively (Fig. 1a). The number of RBCs in non-treated young and 
aged mice was 1081 ± 20 × 104/µl and 1018 ± 20 × 104/µl, respectively. The number of RBCs in young and aged 
mice after LPS treatment was significantly decreased to 62.2% and 51.6% those of control mice, respectively 
(Fig. 1b). The number of platelets in non-treated young and aged mice was 110 ± 7 × 104/µl and 126 ± 4 × 104/µl, 
respectively. The number of platelets in young and aged mice after LPS treatment was significantly decreased to 
12.4% and 13.9% those of control mice, respectively (Fig. 1c). There were no significant differences in the num-
bers of WBCs, RBCs, or platelets between LPS-treated young mice and LPS-treated aged mice.

Changes in the numbers of hematopoietic progenitor cells in the BM of young and aged 
SAMP1/TA‑1 mice after LPS treatment.  The numbers of CFU-GM and CFU-preB cells in the BM 
were evaluated in young and aged SAMP1/TA-1 mice after LPS treatment (Fig. 2). The number of CFU-GM in 
non-treated young- and aged-SAMP1/TA-1 mice was 41,920 ± 2963 and 63,419 ± 5411, respectively. The number 
of CFU-GM in young SAMP1/TA-1 mice after LPS treatment decreased rapidly to 26% of the pretreatment level 
during the first 24 h, increased to 101% of the pretreatment level by day 3, and remained unchanged thereafter. 
The number of CFU-GM in aged SAMP1/TA-1 mice after LPS treatment decreased rapidly to 12% of the pre-
treatment level during the first 24 h, increased to 82% of the pretreatment level by day 5, and remained lower 
than the pretreatment levels thereafter. The numbers of CFU-GM at days 3, 7, and 9 after LPS treatment were 
significantly lower in aged mice than in young mice (P < 0.05). The number of CFU-preB cells in non-treated 
young and aged SAMP1/TA-1 mice was 15,171 ± 1037 and 11,222 ± 602, respectively. The number of CFU-preB 
cells in young SAMP1/TA-1 mice after LPS treatment decreased rapidly to 8% of the pretreatment level by day 
3 and increased to 65% of the pretreatment level by day 9. The number of CFU-preB cells in aged SAMP1/TA-1 
mice after LPS treatment decreased rapidly to 2% of the pretreatment level by day 3, subsequently rising to only 
27% of the pretreatment level by day 9. The numbers of CFU-preB at days 7 and 9 after LPS treatment were sig-
nificantly lower in aged mice than in young mice (P < 0.05).

Changes in the proportion and the number of hematopoietic progenitor cells in S phase in 
the BM of young and aged SAMP1/TA‑1 mice after LPS treatment.  Changes in the numbers of 
CFU-GM and CFU-preB cells in S phase in the BM were evaluated in young and aged SAMP1/TA-1 mice nine 
days after LPS treatment, as assessed using cell suicide induced by exposure to a low concentration of hydrox-
yurea (HU) (Fig. 3). The proportions of CFU-GM cells in S phase of saline-treated (control) and LPS-treated 
young mice were 24 ± 4% and 31 ± 2%, respectively (Fig. 3a). The proportions of CFU-GM cells in S phase of 
saline-treated (control) and LPS-treated aged mice were 39 ± 4% and 41 ± 2%, respectively (Fig. 3a). The num-
ber of CFU-GM cells in S phase of non-treated (control) and LPS-treated young mice was 10,061 ± 1676 and 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23250  | https://doi.org/10.1038/s41598-021-02621-4

www.nature.com/scientificreports/

12,513 ± 807, respectively (Fig. 3a). The number of CFU-GM cells in S phase of non-treated (control) and LPS-
treated aged mice was 24,733 ± 2536 and 16,903 ± 824, respectively (Fig. 3a).

The proportions of CFU-preB cells in S phase of non-treated (control) and LPS-treated young mice were 
43 ± 1% and 51 ± 4%, respectively (Fig. 3b). The proportions of CFU-preB cells in S phase of non-treated (control) 
and LPS-treated aged mice were 37 ± 7% and 53 ± 6%, respectively (Fig. 3b). The number of CFU-preB cells in S 
phase of non-treated (control) and LPS-treated young mice was 6523 ± 151 and 4997 ± 391, respectively (Fig. 3b). 
The number of CFU-preB cells in S phase of non-treated (control) and LPS-treated aged mice on day 9 after LPS 
treatment was 4152 ± 785 and 1576 ± 208, respectively (Fig. 3b).

Changes in levels of transcripts encoding regulatory cytokines in the BM of young and aged 
SAMP1/TA‑1 mice after LPS treatment.  The hematopoietic microenvironment is composed of BM 
stromal cells that regulate hematopoiesis by producing positive and negative regulators. G-CSF, GM-CSF, and 
IL-6 are positive regulators of myelopoiesis. IL-7, SDF-1, and SCF are positive regulators of B lymphopoiesis, 
while TNF-α and TGF-β are negative regulators of B lymphopoiesis. All of these cytokines are known to be pro-
duced by stromal cells in BM21–23. To examine the LPS-induced changes in the regulation of myelopoiesis and 
B lymphopoiesis by BM stromal cells, we evaluated the levels of transcripts encoding regulators of myelopoiesis 
and B lymphopoiesis. For positive regulators of myelopoiesis, the levels of G-CSF, GM-CSF, and IL-6 were highly 
increased in BM cells from both young and aged SAMP1/TA-1 mice at 1, 3, and 6 h after LPS treatment, followed 
by rapid decreases (Fig. 4a–c). The magnitude of increase of the levels of mRNA encoding GM-CSF at 3 and 6 h 
after LPS treatment was significantly smaller in aged mice than in young mice (P < 0.05) (Fig. 4b). For positive 
regulators of B lymphopoiesis, BM cells from both young and aged SAMP1/TA-1 mice exhibited decreases in the 
levels of transcripts encoding IL-7, SDF-1, and SCF (Fig. 4d–f). The levels of mRNA encoding IL-7 in the BM 
of LPS-treated aged mice from day 1 through day 3 were significantly lower than those in young mice (P < 0.05) 
(Fig. 4d). For negative regulators of B lymphopoiesis, BM cells from both young and aged SAMP1/TA-1 mice 
exhibited a marked increase in the levels of transcripts encoding TNF-α and a decrease in the levels of transcripts 

Figure 1.   Changes in the numbers of peripheral blood cells after LPS treatment. Changes in the numbers of 
WBCs, RBCs, and platelets in young and aged SAMP1/TA-1 mice after LPS treatment are shown. Changes in 
the number of WBCs (a), RBCs (b), and platelets (c) in young and aged SAMP1/TA-1 mice after intravenous 
injection of 25 μg LPS are shown. Samples of peripheral blood cells were obtained from three mice per group at 
nine days after treatment with saline or LPS. Each bar represents the mean ± SD. *P < 0.05, †P < 0.005 vs. saline-
treated control.
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encoding TGF-β (Fig. 4g,h). The levels of mRNA encoding TNF-α in the BM of LPS-treated aged mice from 3 
through 6 h after dosing were significantly higher than those in young mice (P < 0.05) (Fig. 4g).

Levels of GM‑CSF and TNF‑α produced by cultured BM stromal cells from young and aged 
SAMP1/TA‑1 mice.  To study differences in stromal cell function between young and aged SAMP1/TA-1 
mice, the production of GM-CSF and TNF-α by cultured stromal cells from young and aged mice was examined 
(Fig. 5). In both young and aged mice, LPS treatment induced the production of GM-CSF and TNF-α in an LPS 
concentration-dependent manner. The production of TNF-α by stromal cells established from young mice was 
higher than that from aged mice; however, a significant difference was not observed. In contrast, a slight but 
significant difference (P < 0.05) was observed in the production of GM-CSF between young and aged mice after 
LPS treatment.

Changes in the polarization of M1/M2 macrophages in the BM of young and aged SAMP1/
TA‑1 mice after LPS treatment.  The polarization of M1/M2 macrophages was evaluated in the BM of 
young and aged SAMP1/TA-1 mice after LPS treatment. Figure 6 shows the changes in the proportions of M1 
and M2 macrophages in young and aged SAMP1/TA-1 mice after LPS treatment. In the control mice, the pro-
portions of M1 macrophages (CD11b-positive/NOS-positive cells) (Fig. 6a,c) and M2 macrophages (CD11b-

Figure 2.   Changes in the numbers of hematopoietic progenitor cells in BM after LPS treatment. Changes 
in the numbers of hematopoietic progenitor cells in the BM of young and aged SAMP1/TA-1 mice after LPS 
treatment are shown. Changes in the numbers of CFU-GM (a) and CFU-preB (b) in young (closed circles) and 
aged (open circles) SAMP1/TA-1 mice after intravenous injection of 25 μg LPS are shown. Samples of femoral 
BM were obtained from three mice per group at each time point (1, 3, 5, 7, and 9 days) after treatment with LPS. 
The results are expressed as the percentage of control. Each bar represents the mean ± S.D. *P < 0.05, †P < 0.005, 
‡P < 0.001 vs. saline-treated control.
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positive/CD206-positive cells) (Fig. 6b,d) were higher in aged mice than in young mice. The proportion of M2 
macrophages was higher than that of M1 macrophages in both young and aged SAMP1/TA-1 mice before LPS 
treatment (Fig. 6c,d). When treated with LPS, the proportion of M1 macrophages in young mice was increased 
by day 3, followed by a decrease at day 9 (Fig. 6c). However, the proportion of M1 macrophages in aged mice 
continued to increase through day 9 (Fig. 6c). After treatment with LPS, the proportion of M2 macrophages 
in young mice gradually and continuously increased through day 9 (from 45.6 ± 5.2% to 67.5 ± 4.4%; P < 0.05) 
(Fig. 6d). However, the proportion of M2 macrophages in aged mice showed temporality and insignificantly fell 
by day 1 after LPS treatment (from 60.1 ± 5.2% to 50.3 ± 4.0%), followed by a subsequent increase to pretreatment 
levels at day 3 (63.5 ± 5.0%) (Fig. 6d).

Age‑related qualitative changes of BM stromal cells in SAMP1/TA‑1 mice.  To characterize age-
related qualitative changes in BM stromal cells, we evaluated the proportions of β-galactosidase-, Ki67-, and 
phosphorylated ribosomal protein S6 (pRPS6) -positive cells and the levels of transcripts encoding p16INK4a 
in cultured stromal cells in young and aged SAMP1/TA-1 mice (Fig.  7). Figure  7a shows the images of 
β-galactosidase-, Ki67-, and pRPS6-positive cultured stromal cells obtained from young and aged SAMP1/TA-1 
mice. The proportions of β-galactosidase-positive cells among cultured stromal cells obtained from non-treated 

Figure 3.   Changes in the proportion and the number of hematopoietic progenitor cells in S phase in the BM 
after LPS treatment. Changes in the proportion and the number of hematopoietic progenitor cells in S phase 
in the BM of young and aged SAMP1/TA-1 mice after LPS treatment are shown. The numbers (absolute and 
proportional) of S-phase CFU-GM (a) and CFU-preB (b) cells in young and aged SAMP1/TA-1 mice nine days 
after treatment with saline or 25 µg LPS are shown. The proportions of S phase CFU-GM and CFU-preB cells 
in young and aged mice are indicated as percentages in the bars. Femoral BM samples were obtained from three 
mice per group at nine days after treatment with saline or 25 µg LPS. Each bar represents the mean ± S.D.
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control young and aged SAMP1/TA-1 mice were 23.3% and 42.7%, respectively (Fig. 7b). It has been reported 
that β-galactosidase activity is increased not only in senescent cells but also in stressed cells. A definitive senes-
cent phenotype can be identified by evaluating the expressions of Ki67, pRPS6, and β-galactosidase24. Thus, we 
also evaluated the proportions of Ki67- and pRPS6-positive cells in cultured stromal cells in young and aged 
SAMP1/TA-1 mice. The proportions of Ki67-positive cells in cultured stromal cells obtained from saline-treated 
control young and aged SAMP1/TA-1 mice were 22% and 11%, respectively (Fig. 7c). The proportions of pRPS6-
positive cells in cultured stromal cells from saline-treated control young and aged SAMP1/TA-1 mice were 6% 
and 22%, respectively (Fig. 7d). The level of the mRNA encoding p16INK4a in cultured stromal cells from aged 
SAMP1/TA-1 mice was 796% of that from young SAMP1/TA-1 mice (Fig. 7e).

Discussion
Overproduction of proinflammatory cytokines is seen in sHLH, but the mechanisms underlying this hypercy-
tokinemia are not clear3. An sHLH-like syndrome in a mouse model can be induced using a ligand for toll-like 
receptor (TLR), such as cytosine guanine dinucleotides and LPS20,21,25–27. Thus, the overproduction of proinflam-
matory mediators may be because of sustained TLR activation by infection or an autoimmune trigger28. TLR4 
for the ligand LPS is expressed not only on hematopoietic cells, but also on non-hematopoietic cells such as 
stromal cells. However, it has been reported that the primary, indispensable in vivo sensing site for LPS-induced 
emergency myelopoiesis is a TLR4-expressing nonhematopoietic cellular compartment, such as stromal cells in 

Figure 4.   Changes in levels of transcripts encoding regulatory cytokines in the BM after LPS treatment. 
Changes in the relative levels of transcripts encoding G-CSF, GM-CSF, IL-6, IL-7, SDF-1, SCF, TNF-α, and 
TGF-β in the BM of young and aged SAMP1/TA-1 mice after LPS treatment are shown. The levels of transcripts 
encoding positive regulators of myelopoiesis G-CSF (a), GM-CSF (b), and IL-6 (c); encoding positive regulators 
of B lymphopoiesis IL-7 (d), SDF-1 (e), and SCF (f); and encoding negative regulators of B lymphopoiesis 
TNF-α (g) and TGF-β (h) were evaluated in young (closed circles) and aged (open circles) SAMP1/TA-1 mice at 
1, 3, and 6 h and at 1, 3, 5, 7, and 9 days after treatment with 25 μg LPS are shown. Values shown for young and 
aged SAMP1/TA-1 mice after LPS treatment are normalized to the levels in non-treated control young and aged 
SAMP1/TA-1 mice, respectively. Each bar represents the mean ± S.D. The values in non-treated young and aged 
SAMP1/TA-1 mice were arbitrarily set to a value of 1.
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the BM29. The present results support the idea that BM stromal cells play a key role in the hematological changes 
in HLH.

With aging, hematopoietic defects become particularly evident in the lymphoid linages, and can be attrib-
uted to the skewing of the hematopoietic stem cell (HSC) repertoire toward the myeloid lineage, which suggests 
dynamic hematopoiesis during steady-state changes with aging17,30,31. Hematopoiesis in the BM is strictly regu-
lated by stromal cells composed of the hematopoietic microenvironment via diffusible factors and direct cellular 
interactions via adhesion molecules32–34. Current studies are revealing that the hematopoietic microenvironment 
may contribute to HSC aging17,35. The age-related change in hematopoiesis is latent and not harmful in the ordi-
nary lives of the elderly. However, HLH is a life-threatening systemic hyper-inflammatory disorder trigged by a 
prolonged and tremendous cytokine storm1,2. Thus, we postulate that latent deterioration of the hematopoietic 
organ may be revealed and exacerbated in elderly patients with HLH.

Inflammation redirects central hematopoiesis by altering the hematopoietic microenvironment to favor mye-
lopoiesis over lymphopoiesis, thereby inducing the mobilization of myeloid cells and B lymphoid cells followed 
by an acceleration of myelopoiesis to replenish the mature, consumed neutrophils and a concomitant inhibition 
of B lymphopoiesis36. When SAMP1/TA-1 mice were dosed with LPS, the numbers of CFU-GM and CFU-preB 
cells in both young and aged animals rapidly decreased. The recovery from the nadir in the number of CFU-GM 
cells was prompt. In contrast, the recovery in the number of CFU-preB cells from the nadir was delayed (Fig. 2). 
These results are compatible with those of previous studies21–23. Interestingly, the recoveries from the nadir in 
the number of not only CFU-preB cells but also CFU-GM cells in aged mice were limited compared with those 
in young mice. In myelopoiesis, the proportion of cycling CFU-GM cells in saline-treated (control) aged mice 
was higher than that in control young mice; this result suggested that myelopoiesis under steady-state conditions 
is accelerated with aging, as previously reported37,38. Although the total number of CFU-GM cells in aged mice 
on day 9 after LPS treatment was lower than that in control animals, the proportion of cycling CFU-GM cells in 
aged mice on day 9 after LPS treatment was about the same as that in control animals (Fig. 3a); this observation 

Figure 5.   Cytokine production by cultured stromal cells after LPS treatment. The productions of GM-CSF (a) 
and TNF-α (b) by cultured stromal cells obtained from young and aged mice after LPS treatment are shown. The 
concentrations of GM-CSF and TNF-α in the culture medium were determined using GM-CSF- and TNF-α-
specific ELISA. Each bar represents the mean ± SD obtained from three culture wells. *P < 0.05, †P < 0.005.
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indicated the kinetics of myelopoiesis in aged mice on day 9 after LPS treatment was not hyperdynamic but nor-
modynamic. Additionally, the magnitude of accumulation of transcripts encoding positive regulatory cytokines 

Figure 6.   The proportions of M1 and M2 macrophages in BM of young and aged mice. The proportions of M1 
and M2 macrophages in the BM of young and aged SAMP1/TA-1 mice after LPS treatment are shown. Typical 
dot plot histograms of two-color flow cytometry determined by CD11b (FL-1) and NOS (FL-2) for detecting 
M1 macrophages (a) and by CD206 (FL-1) and CD11b (FL-2) for detecting M2 macrophages (b) are shown. 
Changes in the proportions of M1 and M2 cells after LPS treatment are shown in (c) and (d). The samples of 
macrophages of the BM were obtained from non-treated control mice (day 0) and from treated mice at 1, 3, 
and 9 days after dosing with 25 µg of LPS. Each bar represents the mean ± SD. §P < 0.05 vs. control (day 0) and 
*P < 0.05 vs. SAMP1/TA-1 young mice.
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(such as GM-CSF) during the first 3 h after LPS treatment was smaller in aged mice than in young mice (Fig. 4b). 
Taken together, these data suggest that the LPS-induced positive regulation of myelopoiesis by stromal cells is 
impaired in aged mice. In B lymphopoiesis, the proportion of cycling CFU-preB cells in young and aged mice on 

Figure 7.   Age-related qualitative changes in BM stromal cells. (a) Images of cultured stromal cells obtained 
from young and aged SAMP1/TA-1 mice. β-galactosidase-positive cells are indicated by blue staining. Ki67-
positive cells were identified by brown staining in nuclei, and pRPS6-positive cells were identified by brown 
staining in the cytoplasm. Scale bar, 50 µm. The bar graph shows proportions of β-galactosidase-positive cells 
from (b), Ki-67-positive cells from (c), and pRPS6-positive cells from (d). (e) Levels of p16INK4a-encoding 
transcripts in cultured stromal cells obtained from young and aged SAMP1/TA-1 mice. The values in aged mice 
are normalized to the level in young mice, which was arbitrarily set to a value of 1. Each bar represents the 
mean ± SD obtained from three culture wells. *P < 0.05.
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day 9 after LPS treatment was increased compared with that in control mice (Fig. 3b). These results suggested that 
B lymphopoiesis of young and aged mice is accelerated on day 9 after LPS treatment. The total number of cycling 
CFU-preB cells on day 9 after LPS treatment was more attenuated in aged mice than in young mice (Fig. 3b). 
Additionally, the accumulation of transcripts encoding negative regulators (such as TNF-α) and the depletion 
of transcripts encoding positive regulators (such as IL-7) in aged mice were prolonged compared with those in 
young mice (Fig. 4d,g). Taken together, these data suggested that the recovery in the number of CFU-preB cells 
after LPS treatment is delayed in aged mice compared with that in young mice; presumably, an imbalance in the 
positive and negative regulation of B lymphopoiesis by stromal cells during the recovery period may occur in 
aged mice. In addition, the production and release of GM-CSF and TNF-α from LPS-stimulated stromal cells 
in vitro (48 h after LPS stimulation) were studied by ELISA (Fig. 5). Only GM-CSF in stromal cells from young 
mice was produced at a significantly higher level than from aged mice after LPS treatment. However, the dif-
ference in the GM-CSF level between young and aged mice was small (0.81 ng/mL in young and 0.26 ng/mL in 
aged after 100 ng/mL LPS stimulation), which may also suggest some lack of stromal cell function in aged mice.

Macrophages commonly exist in two distinct subsets, M1 and M2. M1 and M2 macrophages have opposing 
functions: M1 macrophages are proinflammatory, and M2 macrophages are anti-inflammatory, and the M1/
M2 macrophage balance governs the inflammation process39. Interestingly, the proportion of both M1 and M2 
macrophages of aged mice in the control was higher than that of macrophages in young mice. These results sug-
gest that inflammation happens chronically in aged mice even if the mice were not treated with LPS. In addition, 
LPS treatment resulted in a prolonged increase in the proportion of M1 macrophages in aged mice (compared to 
that in young mice) as measured on day 9 after LPS treatment (Fig. 6). These data indicated further and stronger 
inflammation that is prolonged in the BM of aged mice compared to that in younger animals. The importance of 
macrophage polarization has been previously reported; Wang et al. showed that an imbalance of M1 and M2 mac-
rophage polarization is associated with inflammation and various disorders27. Thus, LPS treatment led to severely 
unbalanced M1 and M2 macrophage polarization, causing serious and persistent inflammation in aged mice.

The levels of the transcript encoding p16INK4a and the proportions of β-galactosidase- and pRPS6-posi-
tive cells were higher in cultured stromal cells obtained from aged mice than in those obtained from young 
mice. In contrast, the proportion of Ki67-positive cells was lower in cultured stromal cells obtained from aged 
mice than in those obtained from young mice (Fig. 7). Both p16INK4a and β-galactosidase are well-known 
markers of senescence40. Furthermore, Alessio et al. recently identified three phenotypes: Ki67(+) pRPS6(+) 
β-galactosidase(+) cells, which are referred to as stress cells; Ki67(+) pRPS6(−) β-galactosidase(+) cells and 
Ki67(−) pRPS6(−) β-galactosidase(+) cells, which are referred to as pre-senescent; and Ki67(−) pRPS6(+) 
β-galactosidase(+) cells, which are referred to as senescent24. Taken together, our results indicated that cellular 
senescence occurred in the BM stromal cells of SAMP1/TA-1 mice with aging.

The functions of organs other than hematopoietic tissue also gradually deteriorate with aging41. Thus, the 
latent dysfunction of organs may progress rapidly, which may explain the poor prognosis observed for elderly 
patients with HLH.

Methods
Mice.  SAMP1/TA-1 mice were bred and maintained in an experimental facility at the Nihon University 
School of Medicine15,16. Eight- to twelve-week-old (young) and thirty- to 36-week-old (aged) SAMP1/TA-1 
male mice were used. For each data point of the protocol, three mice were examined (n = 3) to avoid empha-
sizing exceptional results. All protocols involving laboratory mice were reviewed and approved by the Nihon 
University Animal Care and Use Committee (Experimental Codes AP19MED019-2 and AP19MED050-1). The 
approved experimental protocol was performed humanely in strict accordance with ARRIVE criteria and the 
Nihon University “Rules Concerning Animal Care and Use”.

LPS treatment.  Escherichia coli LPS055:B5 (Sigma Chemical Co., St. Louis, MO, USA) was diluted in pyro-
gen-free saline to a final concentration of 125 µg/mL, and mice were injected intravenously at 25 µg/animal20,21. 
A control group of young and aged SAMP1/TA-1 mice was dosed with the same volume of pyrogen-free saline.

Preparation of peripheral blood cells and femoral BM cells.  Peripheral blood was collected from the 
retro-orbital plexus of mice under isoflurane anesthesia. Peripheral blood was smeared on glass slides, stained 
with Wright-Giemsa reagent, and then 100 cells were counted differentially according to the type of WBC20,21. 
BM cell suspensions were prepared by repeatedly flushing the cells from femora using either Iscove-modified 
Dulbecco’s medium (IMDM: Invitrogen Corp., Carlsbad, CA, USA) or α-minimal essential medium (α-MEM: 
Thermo Fisher Scientific, Waltham, MA, USA); the cells then were dispersed by repeated passage through a 
23-gauge hypodermic needle. BM cells were recovered from the femora of three mice per experimental group 
at each time point; the resulting individual cell suspensions then were counted. The number of cells was deter-
mined using a Sysmex PocH-100 iV Diff hematology analyzer (Sysmex Co., Kobe, Japan).

Progenitor cell colony assay.  The method used for the assay of hematopoietic progenitors has been 
described in detail elsewhere20,21. In brief, myeloid progenitor cells (CFU-GM) were assayed using MethoC-
ult M3231 (Stem Cell Technologies, Inc., Vancouver, BC, Canada) supplemented with 10 ng/mL recombinant 
murine granulocyte–macrophage colony-stimulating factor (rmGM-CSF) (R&D Systems, Minneapolis, MN, 
USA). B-lymphoid progenitor cells (CFU-preB) were assayed using MethoCult M3630 (Stem Cell Technologies, 
Inc.). Cells were cultured in a humidified incubator at 37 °C and 5% CO2. CFU-GM and CFU-preB cells were 
counted seven days after plating the cells.
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Cell suicide experiments by hydroxyurea (HU) to count hematopoietic progenitor cells in S 
phase.  Equal volumes of a cell suspension were placed into two test tubes. HU (Sigma-Aldrich, Inc., St. Louis, 
MO, USA) was dissolved in IMDM and added to one tube to a final concentration of 6 mM19,22. IMDM alone was 
added to the control. Both tubes were incubated for 1 h at 37 °C. After washing three times with IMDM, CFU-
GM and CFU-preB cell assays were performed. CFU-GM and CFU-preB cells in S phase are selectively killed 
by HU. Thus, the proportions of cells in S phase among CFU-GM and CFU-preB cells were calculated using the 
following formula: (untreated colony number − HU-treated colony number)/untreated colony number.

Flow cytometry analysis for M1 and M2 macrophage polarization in the BM of young and aged 
SAMP1/TA‑1 mice.  Harvested bone marrow cells were washed with PBS and passed through a 35-μm 
filter (Cell Strainer; Falcon 352235, Becton Dickinson Labware, Franklin Lake NJ, USA) to remove the bone 
debris and aggregated cells. Cells (2 × 106) were suspended in 0.5 mL PBS and incubated with FITC-conjugated 
rat anti-mouse CD11b monoclonal antibody (BD Pharmingen; Clone M1/70, Material number 557396) or 
PE-conjugated rat anti-mouse CD11b monoclonal antibody (BD Pharmingen; Clone M1/70, Material num-
ber 557397) for 30 min at 4 °C. Cells were washed with PBS twice. After the last wash, cells were resuspended 
with 100 µL PBS. Next, to detect intracellular NOS and CD206, an Intracellular Fixation and Permeabilization 
Buffer Set (Thermo Fisher Scientific; Catalog number: 88-8824) was used in accordance with the manufacturer’s 
instructions 20. Washed cells were fixed by adding 100 µL of Fixation Buffer and incubated for 30 min at room 
temperature in the dark. Then, 2 mL of Permeabilization Buffer was added and centrifuged at 500g for 5 min at 
room temperature. Cells were resuspend in 100 µL of Permeabilization Buffer and PE-conjugated rat anti-mouse 
NOS monoclonal antibody (Thermo Fisher Scientific; Clone CXNFT, Material number 25-5920-82) or FITC-
conjugated rat anti-mouse CD206 monoclonal antibody (Thermo Fisher Scientific; Clone MR5D3, Material 
number MA5-16870) for the detection of intracellular antigens and incubated for 30 min at room temperature 
in the dark. After treatment with antibodies, 2 mL of Permeabilization Buffer was added and centrifuged at 500g 
for 5 min at room temperature. The supernatant was discarded, and cells were resuspended with 2 mL of Per-
meabilization Buffer and centrifuged at 500g for 5 min at room temperature. Then cells were suspended in PBS 
and analyzed by flow cytometry (Cytomics FC500, Beckman Coulter, Brea, CA, USA) for the direct detection of 
CD11b-positive/NOS-positive M1 macrophages and CD11b-positive/CD206-positive M2 macrophages20.

Preparation of cultured BM stromal cells.  For preparation of the stromal monolayer, BM cells were 
cultured at 1 × 106 cells/mL in 6-well flat-bottom plates (Falcon 353046) in 4 mL per well of α-MEM supple-
mented with 10% fetal bovine serum. After three days of culture, the culture medium was removed completely, 
fresh culture medium was added, and the cells were cultured for another seven days. After 10 days of culture, 
the culture medium was removed completely and the cells were used for RNA extraction, β-galactosidase assays, 
and immunohistological analysis to detect the expression of Ki67 and phosphorylated ribosomal protein S6 
(pRPS6)21.

Gene expression assay.  The levels of gene expression for cytokines were determined by real-time PCR 
using the Applied Biosystems 7500 Fast Sequence Detection System (Applied Biosystems, Foster City, CA, USA). 
Briefly, total RNA from BM cells and cultured stromal cells was isolated using ISOGEN reagent (Nippongene 
Corp., Toyama, Japan). mRNA was reverse transcribed using Superscript III (Life Technologies, Carlsbad, CA, 
USA) and oligo-dT (Promega Corp., Madison, WI, USA). The transcript levels were determined by real-time 
PCR using TaqMan™ Universal Fast PCR master mix (Applied Biosystems) and gene-specific primers. Specific 
primers and probes for the murine genes encoding granulocyte colony-stimulating factor (G-CSF), GM-CSF, 
interleukin (IL)-6, IL-7, stromal-cell derived factor-1 (SDF-1), stem cell factor (SCF), tumor necrosis factor-α 
(TNF-α), transforming growth factor-β (TGF-β), p16INK4a, and glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) were as described elsewhere21–23 and were purchased from Applied Biosystems.

β‑galactosidase assay.  β-galactosidase activity was detected using the Cellular Senescence Kit (OZ Bio-
science, San Diego, CA, USA) according to the manufacturer’s instructions. The percentage of cells positive for 
β-galactosidase was determined in duplicate in 500 cells per sample21.

Immunohistological analysis for detecting the expression of Ki67 and pRPS6.  BM stromal cells 
from young and aged SAMP1/TA-1 mice were washed with PBS, then fixed in a solution of 4% formaldehyde 
for 10 min. Cells were washed with PBS twice and permeabilized with 0.3% Triton-X100 (Sigma-Aldrich) on 
ice for 5 min and incubated in a blocking solution (5% fetal calf serum (FCS) solution in PBS and 0.1% Triton-
X100) for 1 h at room temperature. Subsequently, samples were incubated with antibodies against pRPS6 (1:400, 
4858, Cell Signaling Technology, Danvers, MA, USA) and Ki67 (718071, Nichirei Bioscience Inc., Tokyo, Japan) 
at 4 °C overnight. Then, we used a VECTASTAIN ABC Kit (PK-4001, VECTOR LABORATORIES, INC., Burl-
ingame, CA, USA) and a HISTOFINE SAB-PO(M) Kit (425011, Nichirei Bioscience Inc.) as secondary antibod-
ies to detect the expressions of pRPS6 and Ki67 on cultured stromal cells. The percentage of positive cells was 
calculated by the number of cells that expressed the specific marker stain out of at least 500 cells in different 
microscopic fields.

Determination of the levels of GM‑CSF and TNF‑α produced by cultured BM stromal cells.  Stro-
mal monolayers were prepared by culturing bone marrow cells from young and aged SAMP1/TA-1 mice at 
1 × 106/mL in 24-well flat-bottomed plates (Falcon 353047) in 1 mL of IMDM supplemented with 10% FCS42. 
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Confluent adherent layers were obtained after seven days. The supernatant in the culture plate was replaced with 
new culture medium consisting of 1 mL of IMDM supplemented with 10% FCS. The next day, 10 or 100 ng/mL 
of LPS was added to the culture plate, and the culture medium was collected after 48 h of culture and used to 
determine the levels of GM-CSF and TNF-α produced by stromal cells. In the control culture, PBS was added, 
and the culture medium was collected. The concentrations of GM-CSF and TNF-α in the culture medium were 
determined using GM-CSF and TNF-α-specific ELISA Kits (R&D Systems, Inc.) according to the manufacturer’s 
instructions. All samples were assayed in triplicate.

Statistical analysis.  Data are expressed as the mean ± standard deviation (SD). Data analyses between the 
non-treated group and LPS-treated group in young and aged SAMP1/TA-1 mice were performed using two-
tailed unpaired Student’s t tests. Data analyses between young and aged SAMP1/TA-1 mice were performed 
using ANOVA with the Bonferroni test. Differences were considered statistically significant at P < 0.05.

Data availability
All data generated or analyzed during this study are included in this published article.
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